Year 2025,
Volume: 13 Issue: 2, 384 - 396, 01.06.2025
Ebru Saraç
,
Eylül Sena Ceylan
,
Mustafa Kemal Ruhi
Project Number
This study was supported by Boğaziçi University Research Fund Grant Number 19541.
References
- H. Tschernitschek, L. Borchers, and W. Geurtsen, "Nonalloyed titanium as a bioinert metal--a review," Quintessence Int, vol. 36, no. 7-8, pp. 523-30, Jul-Aug 2005. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/15997933.
- W. Orapiriyakul, P. S. Young, L. Damiati, and P. M. Tsimbouri, "Antibacterial surface modification of titanium implants in orthopaedics," J Tissue Eng, vol. 9, p. 2041731418789838, Jan-Dec 2018, doi: 10.1177/2041731418789838.
- B. Klinge, M. Hultin, and T. Berglundh, "Peri-implantitis," Dent Clin North Am, vol. 49, no. 3, pp. 661-76, vii-viii, Jul 2005, doi: 10.1016/j.cden.2005.03.007.
- P. Diaz, E. Gonzalo, L. J. G. Villagra, B. Miegimolle, and M. J. Suarez, "What is the prevalence of peri-implantitis? A systematic review and meta-analysis," BMC Oral Health, vol. 22, no. 1, p. 449, Oct 19 2022, doi: 10.1186/s12903-022-02493-8.
- D. Rokaya, V. Srimaneepong, W. Wisitrasameewon, M. Humagain, and P. Thunyakitpisal, "Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment," Eur J Dent, vol. 14, no. 4, pp. 672-682, Oct 2020, doi: 10.1055/s-0040-1715779.
- A. J. van Winkelhoff, "Antibiotics in the treatment of peri-implantitis," Eur J Oral Implantol, vol. 5 Suppl, pp. S43-50, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/22834393.
- O. Unursaikhan et al., "Comparative evaluation of roughness of titanium surfaces treated by different hygiene instruments," J Periodontal Implant Sci, vol. 42, no. 3, pp. 88-94, Jun 2012, doi: 10.5051/jpis.2012.42.3.88.
- F. Cieplik et al., "Antimicrobial photodynamic therapy - what we know and what we don't," Crit Rev Microbiol, vol. 44, no. 5, pp. 571-589, Sep 2018, doi: 10.1080/1040841X.2018.1467876.
- Y. Feng, C. Coradi Tonon, S. Ashraf, and T. Hasan, "Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives," Adv Drug Deliv Rev, vol. 177, p. 113941, Oct 2021, doi: 10.1016/j.addr.2021.113941.
- R. Youf et al., "Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies," Pharmaceutics, vol. 13, no. 12, Nov 24 2021, doi: 10.3390/pharmaceutics13121995.
- S. Rajesh, E. Koshi, K. Philip, and A. Mohan, "Antimicrobial photodynamic therapy: An overview," J Indian Soc Periodontol, vol. 15, no. 4, pp. 323-7, Oct 2011, doi: 10.4103/0972-124X.92563.
- S. K. Sharma et al., "Drug discovery of antimicrobial photosensitizers using animal models," Curr Pharm Des, vol. 17, no. 13, pp. 1303-19, 2011, doi: 10.2174/138161211795703735.
- O. Dortbudak, R. Haas, T. Bernhart, and G. Mailath-Pokorny, "Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis," Clin Oral Implants Res, vol. 12, no. 2, pp. 104-8, Apr 2001, doi: 10.1034/j.1600-0501.2001.012002104.x.
- G. Garcia de Carvalho, J. C. Sanchez-Puetate, N. Casalle, E. Marcantonio Junior, and D. Leal Zandim-Barcelos, "Antimicrobial photodynamic therapy associated with bone regeneration for peri-implantitis treatment: A case report," Photodiagnosis Photodyn Ther, vol. 30, p. 101705, Jun 2020, doi: 10.1016/j.pdpdt.2020.101705.
- A. Ghanem et al., "Is mechanical curettage with adjunct photodynamic therapy more effective in the treatment of peri-implantitis than mechanical curettage alone?," Photodiagnosis Photodyn Ther, vol. 15, pp. 191-6, Sep 2016, doi: 10.1016/j.pdpdt.2016.06.007.
- M. Tim, "Strategies to optimize photosensitizers for photodynamic inactivation of bacteria," J Photochem Photobiol B, vol. 150, pp. 2-10, Sep 2015, doi: 10.1016/j.jphotobiol.2015.05.010.
- J. Yu, C. H. Hsu, C. C. Huang, and P. Y. Chang, "Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells," ACS Appl Mater Interfaces, vol. 7, no. 1, pp. 432-41, Jan 14 2015, doi: 10.1021/am5064298.
- Y. Y. Huang, A. Wintner, P. C. Seed, T. Brauns, J. A. Gelfand, and M. R. Hamblin, "Antimicrobial photodynamic therapy mediated by methylene blue and potassium iodide to treat urinary tract infection in a female rat model," Sci Rep, vol. 8, no. 1, p. 7257, May 8 2018, doi: 10.1038/s41598-018-25365-0.
- T. E. Kim and J. E. Chang, "Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials," Pharmaceutics, vol. 15, no. 9, Aug 31 2023, doi: 10.3390/pharmaceutics15092257.
- A. Hak, M. S. Ali, S. A. Sankaranarayanan, V. R. Shinde, and A. K. Rengan, "Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine," ACS Appl Bio Mater, vol. 6, no. 2, pp. 349-364, Feb 20 2023, doi: 10.1021/acsabm.2c00891.
- M. Nie et al., "Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm," Photodiagnosis Photodyn Ther, vol. 31, p. 101817, Sep 2020, doi: 10.1016/j.pdpdt.2020.101817.
- M. Nie et al., "Synergetic antimicrobial effect of chlorin e6 and hydrogen peroxide on multi-species biofilms," Biofouling, vol. 37, no. 6, pp. 656-665, Jul 2021, doi: 10.1080/08927014.2021.1954169.
- N. Topaloğlu Avşar, E. Bakay, and A. Kolkıran, "Photodynamic action of chlorin e6 against methicillin resistant staphylococcus aureus with the aid of ethanol," (in en), Archives of Clinical and Experimental Medicine, vol. 5, no. 3, pp. 100-105, December 2020, doi: 10.25000/acem.740365.
- K. Winkler et al., "Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (lambda=670nm)," J Photochem Photobiol B, vol. 162, pp. 340-347, Sep 2016, doi: 10.1016/j.jphotobiol.2016.07.007.
- J. H. Park et al., "In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29," Biol Pharm Bull, vol. 35, no. 4, pp. 509-14, 2012, doi: 10.1248/bpb.35.509.
- V. D. Gordon and L. Wang, "Bacterial mechanosensing: the force will be with you, always," J Cell Sci, vol. 132, no. 7, Apr 3 2019, doi: 10.1242/jcs.227694.
- F. Camacho-Alonso, J. Salinas, M. Sanchez-Siles, J. Pato-Mourelo, B. D. Cotrina-Veizaga, and N. Ortega, "Synergistic antimicrobial effect of photodynamic therapy and chitosan on the titanium-adherent biofilms of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa: An in vitro study," J Periodontol, vol. 93, no. 6, pp. e104-e115, Jun 2022, doi: 10.1002/JPER.21-0306.
- M. Giannelli et al., "Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study," Lasers Med Sci, vol. 32, no. 4, pp. 857-864, May 2017, doi: 10.1007/s10103-017-2185-y.
- L. Cegelski, C. L. Smith, and S. J. Hultgren, "Adhesion, Microbial," in Encyclopedia of Microbiology (Third Edition), M. Schaechter Ed. Oxford: Academic Press, 2009, pp. 1-10.
- P. Shree, C. K. Singh, K. K. Sodhi, J. N. Surya, and D. K. Singh, "Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics," Medicine in Microecology, vol. 16, p. 100084, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.medmic.2023.100084.
- W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, "Effect of material characteristics and/or surface topography on biofilm development," Clin Oral Implants Res, vol. 17 Suppl 2, pp. 68-81, Oct 2006, doi: 10.1111/j.1600-0501.2006.01353.x.
- T. Wassmann, S. Kreis, M. Behr, and R. Buergers, "The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants," Int J Implant Dent, vol. 3, no. 1, p. 32, Dec 2017, doi: 10.1186/s40729-017-0093-3.
- Y. Wu, J. P. Zitelli, K. S. TenHuisen, X. Yu, and M. R. Libera, "Differential response of Staphylococci and osteoblasts to varying titanium surface roughness," Biomaterials, vol. 32, no. 4, pp. 951-60, Feb 2011, doi: 10.1016/j.biomaterials.2010.10.001.
- S. T. Hale İnan, Evşen Tamam, Bora Bağış, "Farklı kaide materyallerine mikrobiyal tutunmanın değerlendirilmesi," (in tr), Cumhuriyet Dental Journal, vol. 17, no. 2, pp. 151-158, May 2014, doi: 10.7126/cdj.58140.1008002313.
- I. Yoda et al., "Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion," BMC Microbiol, vol. 14, p. 234, Sep 2 2014, doi: 10.1186/s12866-014-0234-2.
- M. Çağan, A. Kolkiran, and N. Topaloğlu, "The effect of ethanol on photoinactivation of pseudomonas aeruginosa with chlorin e6 as an adjuvant therapy," in 2017 Medical Technologies National Congress (TIPTEKNO), 12-14 Oct. 2017 2017, pp. 1-4, doi: 10.1109/TIPTEKNO.2017.8238123.
- A. Widodo, D. Spratt, V. Sousa, A. Petrie, and N. Donos, "An in vitro study on disinfection of titanium surfaces," Clin Oral Implants Res, vol. 27, no. 10, pp. 1227-1232, Oct 2016, doi: 10.1111/clr.12733.
- N. de Campos Kajimoto, Y. de Paiva Buischi, M. Mohamadzadeh, and P. Loomer, "The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review," Dent J (Basel), vol. 12, no. 10, Sep 24 2024, doi: 10.3390/dj12100299.
- S. Dieckow et al., "Structure and composition of early biofilms formed on dental implants are complex, diverse, subject-specific and dynamic," NPJ Biofilms Microbiomes, vol. 10, no. 1, p. 155, Dec 24 2024, doi: 10.1038/s41522-024-00624-3.
- P. S. Kumar, M. R. Mason, M. R. Brooker, and K. O'Brien, "Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants," J Clin Periodontol, vol. 39, no. 5, pp. 425-33, May 2012, doi: 10.1111/j.1600-051X.2012.01856.x.
- F. Schwarz, J. Derks, A. Monje, and H. L. Wang, "Peri-implantitis," J Periodontol, vol. 89 Suppl 1, pp. S267-S290, Jun 2018, doi: 10.1002/JPER.16-0350.
PHOTODYNAMIC THERAPY FOR PERI-IMPLANTITIS: COMPARATIVE ANALYSES ON IN VITRO MODELS
Year 2025,
Volume: 13 Issue: 2, 384 - 396, 01.06.2025
Ebru Saraç
,
Eylül Sena Ceylan
,
Mustafa Kemal Ruhi
Abstract
Chlorin e6 (Ce6) is a Food and Drug Administration-approved photosensitizer that is promising with its low cytotoxicity and effective generation of reactive oxygen species for PDT of bacterial infections. Although the eradication of bacteria by Ce6-mediated antibacterial photodynamic therapy (aPDT) was previously investigated, no previous study has systematically analyzed this treatment method using distinct experimental models in the context of peri-implantitis. This study aims to compare the effectiveness of Ce6-mediated antibacterial aPDT by comparing the outcomes with methylene blue (MB)-mediated protocol as a standard for aPDT in oral applications using two different experimental models. By evaluating these treatments across different conditions, this study intended to provide new insights into their relative efficacy. Additionally, this study investigated the differences in bacterial susceptibility between planktonic and surface-attached states, highlighting how attachment alone may influence treatment resistance. Planktonic Staphylococcus aureus (S. aureus) and S. aureus adhered to roughened titanium discs were treated with non-toxic concentrations of Ce6 and MB, followed by the irradiation using a 660 nm light source at 100 mW/cm2 power density. The treatment outcomes were evaluated using the serial dilution method. Ce6-mediated aPDT could achieve less than a log decrease in normalized colony forming unit (CFU) in planktonic bacteria, while the reduction in normalized CFU in MB-mediated protocol was about 4-log. In the titanium-adhered infection model, the reduction after both protocols was below 1-log, representing a relatively low bactericidal efficacy. In conclusion, Ce6-mediated aPDT is as efficient as the MB-mediated protocol on bacteria adhered to titanium discs. However, both protocols exhibited limited efficacy. These results emphasize the challenge of effectively targeting adhered bacterial populations and suggest the need for optimizing aPDT protocols.
Project Number
This study was supported by Boğaziçi University Research Fund Grant Number 19541.
References
- H. Tschernitschek, L. Borchers, and W. Geurtsen, "Nonalloyed titanium as a bioinert metal--a review," Quintessence Int, vol. 36, no. 7-8, pp. 523-30, Jul-Aug 2005. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/15997933.
- W. Orapiriyakul, P. S. Young, L. Damiati, and P. M. Tsimbouri, "Antibacterial surface modification of titanium implants in orthopaedics," J Tissue Eng, vol. 9, p. 2041731418789838, Jan-Dec 2018, doi: 10.1177/2041731418789838.
- B. Klinge, M. Hultin, and T. Berglundh, "Peri-implantitis," Dent Clin North Am, vol. 49, no. 3, pp. 661-76, vii-viii, Jul 2005, doi: 10.1016/j.cden.2005.03.007.
- P. Diaz, E. Gonzalo, L. J. G. Villagra, B. Miegimolle, and M. J. Suarez, "What is the prevalence of peri-implantitis? A systematic review and meta-analysis," BMC Oral Health, vol. 22, no. 1, p. 449, Oct 19 2022, doi: 10.1186/s12903-022-02493-8.
- D. Rokaya, V. Srimaneepong, W. Wisitrasameewon, M. Humagain, and P. Thunyakitpisal, "Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment," Eur J Dent, vol. 14, no. 4, pp. 672-682, Oct 2020, doi: 10.1055/s-0040-1715779.
- A. J. van Winkelhoff, "Antibiotics in the treatment of peri-implantitis," Eur J Oral Implantol, vol. 5 Suppl, pp. S43-50, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/22834393.
- O. Unursaikhan et al., "Comparative evaluation of roughness of titanium surfaces treated by different hygiene instruments," J Periodontal Implant Sci, vol. 42, no. 3, pp. 88-94, Jun 2012, doi: 10.5051/jpis.2012.42.3.88.
- F. Cieplik et al., "Antimicrobial photodynamic therapy - what we know and what we don't," Crit Rev Microbiol, vol. 44, no. 5, pp. 571-589, Sep 2018, doi: 10.1080/1040841X.2018.1467876.
- Y. Feng, C. Coradi Tonon, S. Ashraf, and T. Hasan, "Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives," Adv Drug Deliv Rev, vol. 177, p. 113941, Oct 2021, doi: 10.1016/j.addr.2021.113941.
- R. Youf et al., "Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies," Pharmaceutics, vol. 13, no. 12, Nov 24 2021, doi: 10.3390/pharmaceutics13121995.
- S. Rajesh, E. Koshi, K. Philip, and A. Mohan, "Antimicrobial photodynamic therapy: An overview," J Indian Soc Periodontol, vol. 15, no. 4, pp. 323-7, Oct 2011, doi: 10.4103/0972-124X.92563.
- S. K. Sharma et al., "Drug discovery of antimicrobial photosensitizers using animal models," Curr Pharm Des, vol. 17, no. 13, pp. 1303-19, 2011, doi: 10.2174/138161211795703735.
- O. Dortbudak, R. Haas, T. Bernhart, and G. Mailath-Pokorny, "Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis," Clin Oral Implants Res, vol. 12, no. 2, pp. 104-8, Apr 2001, doi: 10.1034/j.1600-0501.2001.012002104.x.
- G. Garcia de Carvalho, J. C. Sanchez-Puetate, N. Casalle, E. Marcantonio Junior, and D. Leal Zandim-Barcelos, "Antimicrobial photodynamic therapy associated with bone regeneration for peri-implantitis treatment: A case report," Photodiagnosis Photodyn Ther, vol. 30, p. 101705, Jun 2020, doi: 10.1016/j.pdpdt.2020.101705.
- A. Ghanem et al., "Is mechanical curettage with adjunct photodynamic therapy more effective in the treatment of peri-implantitis than mechanical curettage alone?," Photodiagnosis Photodyn Ther, vol. 15, pp. 191-6, Sep 2016, doi: 10.1016/j.pdpdt.2016.06.007.
- M. Tim, "Strategies to optimize photosensitizers for photodynamic inactivation of bacteria," J Photochem Photobiol B, vol. 150, pp. 2-10, Sep 2015, doi: 10.1016/j.jphotobiol.2015.05.010.
- J. Yu, C. H. Hsu, C. C. Huang, and P. Y. Chang, "Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells," ACS Appl Mater Interfaces, vol. 7, no. 1, pp. 432-41, Jan 14 2015, doi: 10.1021/am5064298.
- Y. Y. Huang, A. Wintner, P. C. Seed, T. Brauns, J. A. Gelfand, and M. R. Hamblin, "Antimicrobial photodynamic therapy mediated by methylene blue and potassium iodide to treat urinary tract infection in a female rat model," Sci Rep, vol. 8, no. 1, p. 7257, May 8 2018, doi: 10.1038/s41598-018-25365-0.
- T. E. Kim and J. E. Chang, "Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials," Pharmaceutics, vol. 15, no. 9, Aug 31 2023, doi: 10.3390/pharmaceutics15092257.
- A. Hak, M. S. Ali, S. A. Sankaranarayanan, V. R. Shinde, and A. K. Rengan, "Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine," ACS Appl Bio Mater, vol. 6, no. 2, pp. 349-364, Feb 20 2023, doi: 10.1021/acsabm.2c00891.
- M. Nie et al., "Photodynamic inactivation mediated by methylene blue or chlorin e6 against Streptococcus mutans biofilm," Photodiagnosis Photodyn Ther, vol. 31, p. 101817, Sep 2020, doi: 10.1016/j.pdpdt.2020.101817.
- M. Nie et al., "Synergetic antimicrobial effect of chlorin e6 and hydrogen peroxide on multi-species biofilms," Biofouling, vol. 37, no. 6, pp. 656-665, Jul 2021, doi: 10.1080/08927014.2021.1954169.
- N. Topaloğlu Avşar, E. Bakay, and A. Kolkıran, "Photodynamic action of chlorin e6 against methicillin resistant staphylococcus aureus with the aid of ethanol," (in en), Archives of Clinical and Experimental Medicine, vol. 5, no. 3, pp. 100-105, December 2020, doi: 10.25000/acem.740365.
- K. Winkler et al., "Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (lambda=670nm)," J Photochem Photobiol B, vol. 162, pp. 340-347, Sep 2016, doi: 10.1016/j.jphotobiol.2016.07.007.
- J. H. Park et al., "In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29," Biol Pharm Bull, vol. 35, no. 4, pp. 509-14, 2012, doi: 10.1248/bpb.35.509.
- V. D. Gordon and L. Wang, "Bacterial mechanosensing: the force will be with you, always," J Cell Sci, vol. 132, no. 7, Apr 3 2019, doi: 10.1242/jcs.227694.
- F. Camacho-Alonso, J. Salinas, M. Sanchez-Siles, J. Pato-Mourelo, B. D. Cotrina-Veizaga, and N. Ortega, "Synergistic antimicrobial effect of photodynamic therapy and chitosan on the titanium-adherent biofilms of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa: An in vitro study," J Periodontol, vol. 93, no. 6, pp. e104-e115, Jun 2022, doi: 10.1002/JPER.21-0306.
- M. Giannelli et al., "Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study," Lasers Med Sci, vol. 32, no. 4, pp. 857-864, May 2017, doi: 10.1007/s10103-017-2185-y.
- L. Cegelski, C. L. Smith, and S. J. Hultgren, "Adhesion, Microbial," in Encyclopedia of Microbiology (Third Edition), M. Schaechter Ed. Oxford: Academic Press, 2009, pp. 1-10.
- P. Shree, C. K. Singh, K. K. Sodhi, J. N. Surya, and D. K. Singh, "Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics," Medicine in Microecology, vol. 16, p. 100084, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.medmic.2023.100084.
- W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, "Effect of material characteristics and/or surface topography on biofilm development," Clin Oral Implants Res, vol. 17 Suppl 2, pp. 68-81, Oct 2006, doi: 10.1111/j.1600-0501.2006.01353.x.
- T. Wassmann, S. Kreis, M. Behr, and R. Buergers, "The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants," Int J Implant Dent, vol. 3, no. 1, p. 32, Dec 2017, doi: 10.1186/s40729-017-0093-3.
- Y. Wu, J. P. Zitelli, K. S. TenHuisen, X. Yu, and M. R. Libera, "Differential response of Staphylococci and osteoblasts to varying titanium surface roughness," Biomaterials, vol. 32, no. 4, pp. 951-60, Feb 2011, doi: 10.1016/j.biomaterials.2010.10.001.
- S. T. Hale İnan, Evşen Tamam, Bora Bağış, "Farklı kaide materyallerine mikrobiyal tutunmanın değerlendirilmesi," (in tr), Cumhuriyet Dental Journal, vol. 17, no. 2, pp. 151-158, May 2014, doi: 10.7126/cdj.58140.1008002313.
- I. Yoda et al., "Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion," BMC Microbiol, vol. 14, p. 234, Sep 2 2014, doi: 10.1186/s12866-014-0234-2.
- M. Çağan, A. Kolkiran, and N. Topaloğlu, "The effect of ethanol on photoinactivation of pseudomonas aeruginosa with chlorin e6 as an adjuvant therapy," in 2017 Medical Technologies National Congress (TIPTEKNO), 12-14 Oct. 2017 2017, pp. 1-4, doi: 10.1109/TIPTEKNO.2017.8238123.
- A. Widodo, D. Spratt, V. Sousa, A. Petrie, and N. Donos, "An in vitro study on disinfection of titanium surfaces," Clin Oral Implants Res, vol. 27, no. 10, pp. 1227-1232, Oct 2016, doi: 10.1111/clr.12733.
- N. de Campos Kajimoto, Y. de Paiva Buischi, M. Mohamadzadeh, and P. Loomer, "The Oral Microbiome of Peri-Implant Health and Disease: A Narrative Review," Dent J (Basel), vol. 12, no. 10, Sep 24 2024, doi: 10.3390/dj12100299.
- S. Dieckow et al., "Structure and composition of early biofilms formed on dental implants are complex, diverse, subject-specific and dynamic," NPJ Biofilms Microbiomes, vol. 10, no. 1, p. 155, Dec 24 2024, doi: 10.1038/s41522-024-00624-3.
- P. S. Kumar, M. R. Mason, M. R. Brooker, and K. O'Brien, "Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants," J Clin Periodontol, vol. 39, no. 5, pp. 425-33, May 2012, doi: 10.1111/j.1600-051X.2012.01856.x.
- F. Schwarz, J. Derks, A. Monje, and H. L. Wang, "Peri-implantitis," J Periodontol, vol. 89 Suppl 1, pp. S267-S290, Jun 2018, doi: 10.1002/JPER.16-0350.