Research Article
BibTex RIS Cite

Bazı Sofralık Üzüm Çeşitlerinin Bioklimatik İsteklerinin Belirlenmesi: Manisa'nın Sarıgöl İlçesi Örneği

Year 2025, Volume: 28 Issue: 5, 1267 - 1278
https://doi.org/10.18016/ksutarimdoga.vi.1697080

Abstract

Bu araştırmada, Akdeniz havzasında bağcılık açısından önemli bir bölge olan Türkiye'nin Sarıgöl ilçesindeki ticari açıdan önemli 12 sofralık üzüm çeşidinin biyoiklimsel gereksinimleri ve adaptasyon potansiyeli incelenmiştir. Araştırma verileri, Sarıgöl meteoroloji istasyonlarından (00203455-İmetos 3,3 ve 0020345D -İmetos 3,3) alınmıştır. Çeşit adaptasyonunun ve optimum olgunlaşma koşullarının kantitatif değerlendirmesi için üç kritik biyoiklimsel indeks olan Heliothermik İndeks (HI), Hidrotermik İndeks (HyI) ve Etkili Sıcaklık Toplamı (EST)'nı belirlemek amacıyla uzun vadeli meteorolojik veri analizini (1992-2022) içermektedir. İncelenen bulgular, tüm çeşitler için uygun sıcaklık ve güneş radyasyonu koşullarını gösteren 5,80'lik bir ortalama HI değeri ortaya koymuş olup, bölgeyi uluslararası sınıflandırmalara göre son derece uygun bağcılık bölgesi içinde yer almaktadır. Kritik fenolojik dönemde (Mayıs-Temmuz) hesaplanan 0,48'lik HyI değeri, bu çeşitlerin yetiştirilmesinde ek sulama uygulamalarının gerekliliğini ortaya koyarak, bölgenin Akdeniz etkilerine yakınlığına rağmen yarı kurak özelliklerini doğrulamıştır. Vejetasyon periyodu boyunca (1 Nisan-31 Ekim) uzun vadeli ortalama EST, çeşitler arasında termal birikim gereksinimlerinde önemli farklılıklar gözlemlenerek 2598 °C gün olarak hesaplanmıştır. Trakya İlkeren (1125 °C gün) gibi erken olgunlaşan çeşitlerin, Autumn Royal (2297 °C gün) gibi geç olgunlaşan çeşitlere kıyasla tam olgunlaşma için önemli ölçüde daha düşük termal birikime ihtiyaç duyduğu belirlenmiştir. Fenolojik değerler ise 2019-2020 yıllarında Çanakçı, Ahmetağa ve Afşar mahallelerinden alınmıştır. Sonuç olarak, on iki sofralık üzüm çeşidinin de Sarıgöl ilçesinin iklim koşullarına uygun adaptasyon gösterdiğini ve ilgili biyoiklimsel gereksinimlerine göre başarılı bir şekilde yetiştirilebileceğini, ancak optimum verim ve kalite için tamamlayıcı sulamanın hala gerekli olduğunu doğrulamaktadır. Bu çalışma, özellikle iklim değişikliğinin bağcılık üzerindeki öngörülen etkileri bağlamında, benzer Akdeniz iklim bölgelerinde iklim açısından akıllı bağcılık planlaması ve çeşit seçimi için değerli nicel veriler içermektedir.

References

  • Akın, S., & Özdemir, G. (2010). Perspectives of Viticulture and Grape Producers of Çermik District of Diyarbakır Province on Organization, IX. Turkish Agricultural Economics Congress, Volume 1, 526-533, Şanlıurfa.
  • Aktürk, B., Uzun, H.İ. (2019). Suitability of Some Table Grape Varieties for Different Regions in Antalya and Their Effective Temperature Sum Requirements. Mediterranean Agricultural Sciences, 32(3), 1-1.
  • Alston, J. M., & Sambucci, O. (2019). Grapes in the world economy. In The grape genome (pp. 1-24). Cham: Springer International Publishing.
  • Amerine, M.A., Winkler, A.J. (1944). Composition and quality of musts and wines of California grapes. Hilgardia, 15(6), 493-675.
  • Baltas, E. (2007). Spatial distribution of climatic indices in northern Greece. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 14(1), 69-78.
  • Bayramoğlu, Z., Göktolga, Z. G., & Gündüz, O. (2010). Geographical indication as a tool for regional development: The case of Tokat province. Journal of Agricultural Faculty of Gaziosmanpasa University, 27(2), 65-75.
  • Bekar, T., Cangi, R. (2017). Determination of Phenological Development Stages and Effective Temperature Sum Requirements of Narince Grape Variety Grown in Different Ecology in Tokat, Turkish Journal of Technology and Applied Sciences, 1(2), 86-90.
  • Bozkurt, A. (2019). Determination of yield and some quality traits of some wine grape varieties grown in Kırşehir conditions (Master's thesis, Institute of Science).
  • Branas, J. (1974). Viticulture. Chapitre 3, Climat 343-357. Montpellier.
  • Branas, J., Bernon, G., & Levadoux, L. (1946). Elements de viticulture generale. Ecole National d'Agriculture de Montpellier.
  • Cangi, R., Şen, A., & Kılıç, D. (2008). Determination of phenological characteristics and effective temperature sum (ETS) requirements of some grape varieties in Kazova (Tokat-Turhal) conditions. International Journal of Agricultural and Natural Sciences, 1(2), 45-48.
  • Constantinescu, G. H. (1967). Methodes et pricipes de la determination des aptitudes viticola d’une region et choix des cepages appropries. Bulletin de I’OIV, 40, 441.
  • Carbonneau, A. (1985). The early selection of grapevine rootstocks for resistance to drought conditions. American Journal of Enology and Viticulture, 36(3), 195-198.
  • Carbonneau, A., Deloire, A., Jaillard, B. (1992). Vine and Wine Quality: The Terroir Effect. In Proceedings of the International Symposium on Quality of the Harvest (pp. 15-28).
  • Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5-18.
  • Çelik, H. (2011). Grape Growing Technique. Namık Kemal University, Faculty of Agriculture, Department of Horticulture, Tekirdağ.
  • Çelik, H., Çetiner, H., Söylemezoğlu, G., Kunter, B., & Çakır, A. (2005). Determination of phenological characteristics and effective temperature sum (ETS) requirements of some grape cultivars in Kalecik (Ankara) conditions. Turkey, 6, 390-397.
  • Çelik, H., Marasalı, B., & Demir, İ. (1988). A research on the determination of effective total temperature requirements of table and wine grape varieties grown in Ankara conditions. Turkey III. Viticulture Symposium, 31.
  • de Martonne, E. (1942, October). Nouvelle Carte Mondiale De L'indice D'aridité (Carte hors texte). In Annales de Géographie (Vol. 51, No. 288, pp. 241-250). Armand Colin.
  • Demirbüker, D. (1983). A study on effective heat summation needs of some grape varieties grown in Aegean Region. Ege University, Graduate School of Natural and Applied Sciences, Izmir, Turkey.
  • Doğan, A., Uyak, C., Kazankaya, A., Küsmüş, S., & Özatak, Ö. F. (2018). Chemical changes that occur during ripening in some wine Grape varieties grown in malatya gerion. Bahçe, 47(Special Issue 1), 55-62.
  • Fortes, A. M., & Pais, M. S. (2016). Grape (Vitis species). In Nutritional composition of fruit cultivars (pp. 257-286). Academic Press.
  • Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global change biology, 22(11), 3774-3788.
  • Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2013). Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. International Journal of Biometeorology, 57(6), 909-925.
  • Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2020). Climate change projections for the Portuguese viticulture using a multi-model approach. Climatic Change, 132(3), 395-412.
  • Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2014). Climate factors driving wine production in the Portuguese Minho region. Agricultural and Forest Meteorology, 185, 26-36.
  • Gladstones, J. (1992). Viticulture and environment: Winetitles. Adelaide, Australia.
  • Gu, S. (2016). Growing degree hours a simple, accurate, and precise protocol to approximate growing heat summation for grapevines. International Journal of Biometeorology 60: 1123-1134.
  • Huglin, P. (1986). Biologie et ecologie de la vigne. Relation sentreles facteurs dumili eunaturel et la vigne. 264- 309. Editions Payot Lausanne. Paris.
  • Huglin, M. P. (1978). Nouveau mode d'evaluation des possibilites heliothermiques d'un milieu viticole [climatologie]. Comptes rendus des Séances de l'Académie d'Agriculture de France, 64.
  • IPCC (The Intergovernmental Panel on Climate Change). (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Işık, H. (1988). Bioclimatic Research on Grape Variety and Compatible Site Selection on V. vinifera L. Science Title Thesis. Pleven.
  • Işık, H., Delice, N., & Özer, C. (2001). Studies on Bioecological Adaptation of Table Grape Varieties to Marmara Region Conditions and Storage and Marketing Problems. Viticulture Research Institute Publications, Tekirdağ.
  • Jackson, D. I., & Lombard, P. B. (1993). Environmental and management practices affecting grape composition and wine quality-a review. American journal of enology and viticulture, 44(4), 409-430.
  • Jones, G. V., Duff, A. A., Hall, A., & Myers, J. W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States. American Journal of Enology and Viticulture, 61(3), 313-326.
  • Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic change, 73(3), 319-343.
  • Kaplan, N. (1994). A study on the determination of ampelographic properties of grape varieties grown in Diyarbakir and Mardin provinces. Institute of Science, Ankara.
  • Karantonis, N. (1978). Influence des Facteurs Ecologiques sur la Production du Raisin de Table. In Ecologie de la Vigne (1. er Symposium International su I’Ecologie de la Vigne) Constanta.
  • Keller, M. (2015). The Science of Grapevines: Anatomy and Physiology. Academic Press, San Diego, CA.
  • Kök, D., Bal, E., Çelik, S. (2007). Determination of suitable grape cultivars for Tokat ecological conditions. Gaziosmanpaşa University Journal of Agricultural Faculty, 24(2), 39-46.
  • Kök, D., & Çelik, S. (2003). Determination of effective temperature total requirement of some wine Grape varieties and its effect on quality measures. Trakya University Journal of Science, 4(1).
  • Köse, B. (2014a). The place and importance of light and temperature in viticulture. Turkish Journal of Agricultural Research, 1(2), 203-212.
  • Köse, B. (2014b). Phenology and ripening of Vitis vinifera L. cultivars in a Mediterranean climate (West Turkey). Journal of Agricultural Sciences, 20(2), 201-212.
  • Molitor, D., Caffarra, A., Sinigoj, P., Pertot, I., Hoffmann, L., & Junk, J. (2014). Late frost damage risk for viticulture under future climate conditions: a case study for the L uxembourgish winegrowing region. Australian Journal of Grape and Wine Research, 20(1), 160-168.
  • Netzer, Y., Yao, C., Shenker, M., Bravdo, B. A., & Schwartz, A. (2009). Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open gable trellis system. Irrigation Science, 27(2), 109-120.
  • Odabaşıoğlu, M. İ., & Gürsöz, S. (2021). Determination of effective temperature sum (ETS) requirements of table grape varieties grown on different rootstocks in Şanlıurfa ecological conditions. Mustafa Kemal University Journal of Agricultural Sciences, 26(3), 746-758.
  • Palliotti, A., Tombesi, S., Silvestroni, O., Lanari, V., Gatti, M., & Poni, S. (2014). Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Scientia Horticulturae, 178, 43-54.
  • Riou, C., Carbonneau, A., Becker, N., Caló, A., Costacurta, A., Castro, R., Pinto, P.A., Carneiro, L.C., Climaco, P., Clímaco, M.C. (1994). Le déterminisme climatique de la maturation du raisin: application au zonage de la teneur en sucre dans la Communauté européenne. Office des Publications Officielles des Communautés Européennes, Luxembourg.
  • Sağlam, M., Boz, Y., Kiracı, M. A., & Aydın, S. (2009). Adaptation of table grape varieties to different ecological conditions in Thrace region. Turkiye, 7, 129-138.
  • Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda Aumedes, S. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092.
  • Schultz, H.R., (2000). Climate change and viticulture. A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12.
  • Smart, R. E., & Dry, P. R. (1980). A climatic classification for Australian viticultural regions.
  • Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and forest meteorology, 124(1-2), 81-97.
  • TUIK, (2025). http://www.tuik.gov.tr/bitkiselapp/bitkisel.üzüm. 2024 data (Access: June 22, 2025).
  • Turkish Patent Institute (2019). Geographical Indications in Turkey: Economic Impact Assessment. Turkish Patent and Trademark Office, Ankara.
  • UNEP (United Nations Environment Programme), (1997). World Atlas of Desertification. 2nd Edition, Arnold, London.
  • Uzun, H.İ. (1997). Heat summation requirements of grape cultivars. Acta Horticulturae 441: 383-386.
  • Uzun, H. İ., & Bayır, A. (2008). Determination of the maturation periods, heat summation requirements and climatic adaptation of some grape cultivars in the eastern Mediterranean region of Turkey. Research Journal of Agricultural Sciences, 1(1), 1-6.
  • Ünal, M.S. (2019). Determination of Effective Temperature Sum Requirements of Local Grape Varieties Grown in İdil/Şırnak Ecology, International Journal of Agricultural and Wildlife Sciences, 5(1), 46-53.
  • Van Leeuwen, C., & Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1), 150-167.
  • Van Leeuwen, C., Friant, P., Chone, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55(3), 207-217.
  • Van Leeuwen, C., Garnier, C., Agut, C., Baculat, B., Barbeau, G., Besnard, E., ... & Trambouze, W. (2008). Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate. In 7. Congrès International des Terroirs Viticoles.
  • Van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of wine research, 17(1), 1-10.
  • Winkler, A. J., Cook, J. A., Kliewer, W. M., & Lider, L. A. (1974). General Viticulture. Univ. Calif. Press. Berkeley and Los Angeles.

Bioclimatic Requirements and Adaptation Potential of Some Table Grape Cultivars: A Case Study in Sarıgöl District of Manisa

Year 2025, Volume: 28 Issue: 5, 1267 - 1278
https://doi.org/10.18016/ksutarimdoga.vi.1697080

Abstract

This study investigates the bioclimatic requirements and adaptation potential of twelve commercially important table grape cultivars grown in Sarıgöl, a key viticultural district in Turkey located within the Mediterranean basin. The research is based on long-term meteorological data (1992–2022) obtained from two local meteorological stations (00203455-İmetos 3.3 and 0020345D-İmetos 3.3). To quantitatively assess varietal adaptation and optimal ripening conditions, three critical bioclimatic indices were evaluated: the Heliothermal Index (HI), the Hydrothermal Index (HyI), and the Sum of Effective Temperatures (SET). The findings revealed an average HI value of 5.80 across all cultivars, indicating highly favorable temperature and solar radiation conditions, thus classifying the region as an exceptionally suitable viticultural zone according to international standards. The HyI value of 0.48, calculated for the critical phenological period (May–July), highlighted the necessity for supplemental irrigation despite the region’s proximity to Mediterranean climatic influences, confirming its semi-arid characteristics. The long-term average SET for the vegetation period (April 1 – October 31) was 2598 °C days, revealing significant differences in thermal accumulation requirements among cultivars. For instance, early-ripening cultivars such as 'Trakya İlkeren' required substantially lower thermal sums (1125 °C days) compared to late-ripening ones like 'Autumn Royal' (2297 °C days). Phenological data were recorded from the villages of Çanakçı, Ahmetağa and Afşar during the 2019–2020 growing seasons. Overall, the results confirm that all twelve table grape cultivars exhibit suitable adaptation to Sarıgöl’s climatic conditions and can be cultivated successfully in accordance with their bioclimatic needs. However, the findings also underscore the continued need for supplementary irrigation to achieve optimal yield and fruit quality. This study provides valuable quantitative data for climate-smart viticultural planning and varietal selection in Mediterranean-type climate regions, especially in the context of projected climate change impacts on grape production

References

  • Akın, S., & Özdemir, G. (2010). Perspectives of Viticulture and Grape Producers of Çermik District of Diyarbakır Province on Organization, IX. Turkish Agricultural Economics Congress, Volume 1, 526-533, Şanlıurfa.
  • Aktürk, B., Uzun, H.İ. (2019). Suitability of Some Table Grape Varieties for Different Regions in Antalya and Their Effective Temperature Sum Requirements. Mediterranean Agricultural Sciences, 32(3), 1-1.
  • Alston, J. M., & Sambucci, O. (2019). Grapes in the world economy. In The grape genome (pp. 1-24). Cham: Springer International Publishing.
  • Amerine, M.A., Winkler, A.J. (1944). Composition and quality of musts and wines of California grapes. Hilgardia, 15(6), 493-675.
  • Baltas, E. (2007). Spatial distribution of climatic indices in northern Greece. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 14(1), 69-78.
  • Bayramoğlu, Z., Göktolga, Z. G., & Gündüz, O. (2010). Geographical indication as a tool for regional development: The case of Tokat province. Journal of Agricultural Faculty of Gaziosmanpasa University, 27(2), 65-75.
  • Bekar, T., Cangi, R. (2017). Determination of Phenological Development Stages and Effective Temperature Sum Requirements of Narince Grape Variety Grown in Different Ecology in Tokat, Turkish Journal of Technology and Applied Sciences, 1(2), 86-90.
  • Bozkurt, A. (2019). Determination of yield and some quality traits of some wine grape varieties grown in Kırşehir conditions (Master's thesis, Institute of Science).
  • Branas, J. (1974). Viticulture. Chapitre 3, Climat 343-357. Montpellier.
  • Branas, J., Bernon, G., & Levadoux, L. (1946). Elements de viticulture generale. Ecole National d'Agriculture de Montpellier.
  • Cangi, R., Şen, A., & Kılıç, D. (2008). Determination of phenological characteristics and effective temperature sum (ETS) requirements of some grape varieties in Kazova (Tokat-Turhal) conditions. International Journal of Agricultural and Natural Sciences, 1(2), 45-48.
  • Constantinescu, G. H. (1967). Methodes et pricipes de la determination des aptitudes viticola d’une region et choix des cepages appropries. Bulletin de I’OIV, 40, 441.
  • Carbonneau, A. (1985). The early selection of grapevine rootstocks for resistance to drought conditions. American Journal of Enology and Viticulture, 36(3), 195-198.
  • Carbonneau, A., Deloire, A., Jaillard, B. (1992). Vine and Wine Quality: The Terroir Effect. In Proceedings of the International Symposium on Quality of the Harvest (pp. 15-28).
  • Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5-18.
  • Çelik, H. (2011). Grape Growing Technique. Namık Kemal University, Faculty of Agriculture, Department of Horticulture, Tekirdağ.
  • Çelik, H., Çetiner, H., Söylemezoğlu, G., Kunter, B., & Çakır, A. (2005). Determination of phenological characteristics and effective temperature sum (ETS) requirements of some grape cultivars in Kalecik (Ankara) conditions. Turkey, 6, 390-397.
  • Çelik, H., Marasalı, B., & Demir, İ. (1988). A research on the determination of effective total temperature requirements of table and wine grape varieties grown in Ankara conditions. Turkey III. Viticulture Symposium, 31.
  • de Martonne, E. (1942, October). Nouvelle Carte Mondiale De L'indice D'aridité (Carte hors texte). In Annales de Géographie (Vol. 51, No. 288, pp. 241-250). Armand Colin.
  • Demirbüker, D. (1983). A study on effective heat summation needs of some grape varieties grown in Aegean Region. Ege University, Graduate School of Natural and Applied Sciences, Izmir, Turkey.
  • Doğan, A., Uyak, C., Kazankaya, A., Küsmüş, S., & Özatak, Ö. F. (2018). Chemical changes that occur during ripening in some wine Grape varieties grown in malatya gerion. Bahçe, 47(Special Issue 1), 55-62.
  • Fortes, A. M., & Pais, M. S. (2016). Grape (Vitis species). In Nutritional composition of fruit cultivars (pp. 257-286). Academic Press.
  • Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global change biology, 22(11), 3774-3788.
  • Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2013). Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. International Journal of Biometeorology, 57(6), 909-925.
  • Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2020). Climate change projections for the Portuguese viticulture using a multi-model approach. Climatic Change, 132(3), 395-412.
  • Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., & Santos, J. A. (2014). Climate factors driving wine production in the Portuguese Minho region. Agricultural and Forest Meteorology, 185, 26-36.
  • Gladstones, J. (1992). Viticulture and environment: Winetitles. Adelaide, Australia.
  • Gu, S. (2016). Growing degree hours a simple, accurate, and precise protocol to approximate growing heat summation for grapevines. International Journal of Biometeorology 60: 1123-1134.
  • Huglin, P. (1986). Biologie et ecologie de la vigne. Relation sentreles facteurs dumili eunaturel et la vigne. 264- 309. Editions Payot Lausanne. Paris.
  • Huglin, M. P. (1978). Nouveau mode d'evaluation des possibilites heliothermiques d'un milieu viticole [climatologie]. Comptes rendus des Séances de l'Académie d'Agriculture de France, 64.
  • IPCC (The Intergovernmental Panel on Climate Change). (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Işık, H. (1988). Bioclimatic Research on Grape Variety and Compatible Site Selection on V. vinifera L. Science Title Thesis. Pleven.
  • Işık, H., Delice, N., & Özer, C. (2001). Studies on Bioecological Adaptation of Table Grape Varieties to Marmara Region Conditions and Storage and Marketing Problems. Viticulture Research Institute Publications, Tekirdağ.
  • Jackson, D. I., & Lombard, P. B. (1993). Environmental and management practices affecting grape composition and wine quality-a review. American journal of enology and viticulture, 44(4), 409-430.
  • Jones, G. V., Duff, A. A., Hall, A., & Myers, J. W. (2010). Spatial analysis of climate in winegrape growing regions in the western United States. American Journal of Enology and Viticulture, 61(3), 313-326.
  • Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic change, 73(3), 319-343.
  • Kaplan, N. (1994). A study on the determination of ampelographic properties of grape varieties grown in Diyarbakir and Mardin provinces. Institute of Science, Ankara.
  • Karantonis, N. (1978). Influence des Facteurs Ecologiques sur la Production du Raisin de Table. In Ecologie de la Vigne (1. er Symposium International su I’Ecologie de la Vigne) Constanta.
  • Keller, M. (2015). The Science of Grapevines: Anatomy and Physiology. Academic Press, San Diego, CA.
  • Kök, D., Bal, E., Çelik, S. (2007). Determination of suitable grape cultivars for Tokat ecological conditions. Gaziosmanpaşa University Journal of Agricultural Faculty, 24(2), 39-46.
  • Kök, D., & Çelik, S. (2003). Determination of effective temperature total requirement of some wine Grape varieties and its effect on quality measures. Trakya University Journal of Science, 4(1).
  • Köse, B. (2014a). The place and importance of light and temperature in viticulture. Turkish Journal of Agricultural Research, 1(2), 203-212.
  • Köse, B. (2014b). Phenology and ripening of Vitis vinifera L. cultivars in a Mediterranean climate (West Turkey). Journal of Agricultural Sciences, 20(2), 201-212.
  • Molitor, D., Caffarra, A., Sinigoj, P., Pertot, I., Hoffmann, L., & Junk, J. (2014). Late frost damage risk for viticulture under future climate conditions: a case study for the L uxembourgish winegrowing region. Australian Journal of Grape and Wine Research, 20(1), 160-168.
  • Netzer, Y., Yao, C., Shenker, M., Bravdo, B. A., & Schwartz, A. (2009). Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open gable trellis system. Irrigation Science, 27(2), 109-120.
  • Odabaşıoğlu, M. İ., & Gürsöz, S. (2021). Determination of effective temperature sum (ETS) requirements of table grape varieties grown on different rootstocks in Şanlıurfa ecological conditions. Mustafa Kemal University Journal of Agricultural Sciences, 26(3), 746-758.
  • Palliotti, A., Tombesi, S., Silvestroni, O., Lanari, V., Gatti, M., & Poni, S. (2014). Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Scientia Horticulturae, 178, 43-54.
  • Riou, C., Carbonneau, A., Becker, N., Caló, A., Costacurta, A., Castro, R., Pinto, P.A., Carneiro, L.C., Climaco, P., Clímaco, M.C. (1994). Le déterminisme climatique de la maturation du raisin: application au zonage de la teneur en sucre dans la Communauté européenne. Office des Publications Officielles des Communautés Européennes, Luxembourg.
  • Sağlam, M., Boz, Y., Kiracı, M. A., & Aydın, S. (2009). Adaptation of table grape varieties to different ecological conditions in Thrace region. Turkiye, 7, 129-138.
  • Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda Aumedes, S. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092.
  • Schultz, H.R., (2000). Climate change and viticulture. A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12.
  • Smart, R. E., & Dry, P. R. (1980). A climatic classification for Australian viticultural regions.
  • Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and forest meteorology, 124(1-2), 81-97.
  • TUIK, (2025). http://www.tuik.gov.tr/bitkiselapp/bitkisel.üzüm. 2024 data (Access: June 22, 2025).
  • Turkish Patent Institute (2019). Geographical Indications in Turkey: Economic Impact Assessment. Turkish Patent and Trademark Office, Ankara.
  • UNEP (United Nations Environment Programme), (1997). World Atlas of Desertification. 2nd Edition, Arnold, London.
  • Uzun, H.İ. (1997). Heat summation requirements of grape cultivars. Acta Horticulturae 441: 383-386.
  • Uzun, H. İ., & Bayır, A. (2008). Determination of the maturation periods, heat summation requirements and climatic adaptation of some grape cultivars in the eastern Mediterranean region of Turkey. Research Journal of Agricultural Sciences, 1(1), 1-6.
  • Ünal, M.S. (2019). Determination of Effective Temperature Sum Requirements of Local Grape Varieties Grown in İdil/Şırnak Ecology, International Journal of Agricultural and Wildlife Sciences, 5(1), 46-53.
  • Van Leeuwen, C., & Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1), 150-167.
  • Van Leeuwen, C., Friant, P., Chone, X., Tregoat, O., Koundouras, S., & Dubourdieu, D. (2004). Influence of climate, soil, and cultivar on terroir. American Journal of Enology and Viticulture, 55(3), 207-217.
  • Van Leeuwen, C., Garnier, C., Agut, C., Baculat, B., Barbeau, G., Besnard, E., ... & Trambouze, W. (2008). Heat requirements for grapevine varieties is essential information to adapt plant material in a changing climate. In 7. Congrès International des Terroirs Viticoles.
  • Van Leeuwen, C., & Seguin, G. (2006). The concept of terroir in viticulture. Journal of wine research, 17(1), 1-10.
  • Winkler, A. J., Cook, J. A., Kliewer, W. M., & Lider, L. A. (1974). General Viticulture. Univ. Calif. Press. Berkeley and Los Angeles.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section RESEARCH ARTICLE
Authors

Fadime Ates 0000-0003-4466-4573

Fulya Kuştutan 0000-0001-8437-1877

Turhan Yılmaz 0000-0002-3756-4497

Özkan Kaya 0000-0002-1679-6125

Early Pub Date August 7, 2025
Publication Date
Submission Date May 12, 2025
Acceptance Date August 6, 2025
Published in Issue Year 2025 Volume: 28 Issue: 5

Cite

APA Ates, F., Kuştutan, F., Yılmaz, T., Kaya, Ö. (2025). Bazı Sofralık Üzüm Çeşitlerinin Bioklimatik İsteklerinin Belirlenmesi: Manisa’nın Sarıgöl İlçesi Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 28(5), 1267-1278. https://doi.org/10.18016/ksutarimdoga.vi.1697080


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149