Research Article
BibTex RIS Cite

Evaluating Machine Learning Models for Gold Risk Premium Prediction: A Comparative Approach

Year 2025, Volume: 9 Issue: 1, 1 - 27, 30.06.2025
https://doi.org/10.47140/kusbder.1599320

Abstract

This study aims to investigate the effectiveness of machine learning (ML) models in predicting the Gold Risk Premium (ARP) in Turkish financial markets. The ARP is an important financial indicator that shows the extra return demanded by investors to compensate for the risk of investing in gold. Given the volatility and uncertainty of financial markets in Turkey, accurately estimating the ARP is important for investors and the functioning of financial markets. Using a dataset covering the period between 2004 and 2024, various economic and financial variables are used to model the ARP. The study involved data preprocessing, application of various ML models ranging from simple linear regression to complex ensemble methods, and evaluation and comparison based on performance measures such as MAE, MSE, RMSE, RMSLE and MAPE. Linear Regression, Ridge Regression and Random Forest models performed well in ARP prediction. Comparative analyses based on different performance measures identified the models that best capture the dynamics of gold investments in Turkey and the ARP. The research makes an important contribution to the field of financial forecasting by demonstrating the potential of machine learning models in Gold Risk Premium estimation, allowing a better understanding of gold investment strategies in the volatile conditions of emerging markets.

References

  • Alamsyah, A., Prasetyo, P. E., Sunyoto, S., Bintari, S. H., Saputro, D. D., Rohman, S., & Pratama, R. N. (2022). Customer segmentation using the integration of the recency frequency monetary model and the K-means cluster algorithm. Scientific Journal of Informatics, 9, pp.189–196. https://doi.org/10.15294/sji.v9i2.39437
  • Andrade, C. (2021). Z scores, standard scores, and composite test scores explained. The Indian Journal of Psychological Medicine, 43(6), pp.555–557. https://doi.org/10.1177/02537176211046525
  • Arfaoui, M., & Rejeb, A. B. (2017). Oil, gold, US dollar and stock market interdependencies: A global analytical insight. European Journal of Management and Business Economics, 26(3), pp.278–293. https://doi.org/10.1108/ejmbe-10-2017-016
  • Arize, A. C., & Osang, T. (2007). Foreign exchange reserves and import demand: Evidence from Latin America. World Economy, 30(9), pp.1477–1489. https://doi.org/10.1111/j.1467-9701.2007.01052.x
  • Aye, G. C., Gupta, R., Hammoudeh, S., & Kim, W. J. (2015). Forecasting the price of gold using dynamic model averaging. International Review of Financial Analysis, 41, pp.257–266. https://doi.org/10.1016/j.irfa.2015.03.010
  • Bampinas, G., & Panagiotidis, T. (2015). Are gold and silver a hedge against inflation? A two century perspective. International Review of Financial Analysis, 41, pp.267–276. https://doi.org/10.1016/j.irfa.2015.02.007
  • Banerjee, D., Ghosal, A., & Mukherjee, I. (2019). Prediction of gold price movement using geopolitical risk as a factor. Advances in Intelligent Systems and Computing, 814, 879–886. https://doi.org/10.1007/978-981-13-1501-5_77
  • Barişik, S., & Dursun, E. (2021). Gold, stock market, currency market of the economic confidence index impact test: The case of Turkey. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 22(1), pp.253–280. https://doi.org/10.37880/cumuiibf.742002
  • Baur, D. G., Beckmann, J., & Czudaj, R. (2019). The relative valuation of gold. Macroeconomic Dynamics, 24(6), pp.1346–1391. https://doi.org/10.1017/s1365100518000895
  • Beh, W. L., & Yew, W. K. (2021). The asymmetric responses of stock prices in US market. ITM Web of Conferences, 36(2), pp.1–8. https://doi.org/10.1051/itmconf/20213601013
  • Bordo, M. D., Dittmar, R., & Gavin, W. T. (2007). Gold, fiat money, and price stability. The BE Journal of Macroeconomics, 7(1). https://doi.org/10.2202/1935-1690.1525
  • Botosan, C. A., & Plumlee, M. A. (2005). Assessing alternative proxies for the expected risk premium. The Accounting Review, 80, 21–53. https://doi.org/10.2307/4093160
  • Brandtner, M., Kürsten, W., & Rischau, R. (2018). Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity. European Journal of Operational Research, 264, pp.707–716. https://doi.org/10.1016/j.ejor.2017.07.007
  • Choudhry, T., Hassan, S. S., & Shabi, S. (2015). Relationship between gold and stock markets during the global financial crisis: Evidence from nonlinear causality tests. International Review of Financial Analysis, 41, pp.247–256. https://doi.org/10.1016/j.irfa.2015.03.011
  • Cohen, G., & Aiche, A. (2023). Forecasting gold price using machine learning methodologies. Chaos, Solitons and Fractals, 175. https://doi.org/10.1016/j.chaos.2023.114079
  • Desta. (2022). Analysis of the causal relationship between precious metal prices and inflation: Evidence from Ethiopia. International Journal of Economics and Business Administration, 10(1), 77–88. https://doi.org/10.35808/ijeba/749
  • Díaz, J. D., Hansen, E., & Cabrera, G. (2023). Gold risk premium estimation with machine learning methods. Journal of Commodity Markets, 31. https://doi.org/10.1016/j.jcomm.2022.100293
  • Dichtl, H. (2020). Forecasting excess returns of the gold market: Can we learn from stock market predictions? Journal of Commodity Markets, 19, 100106. https://doi.org/10.1016/j.jcomm.2019.100106
  • Doojav, G., & Damdinjav, D. (2022). The macroeconomic effects of unconventional monetary policies in a commodity-exporting economy: Evidence from Mongolia. International Journal of Finance and Economics, 28(2), pp.1–28. https://doi.org/10.1002/ijfe.2669
  • Dow, J., Han, J., & Sangiorgi, F. (2020). Hysteresis in price efficiency and the economics of slow-moving capital. Review of Financial Studies, 34(6), pp.2857–2909. https://doi.org/10.1093/rfs/hhaa110
  • Dumitrescu, E. I., Arezki, R., Freytag, A., & Quintyn, M. (2012). Commodity prices and exchange rate volatility: Lessons from South Africa’s capital account liberalization. IMF Working Paper, 19(168). https://doi.org/10.5089/9781475505160.001
  • Elhishi, S., Rabea, Z., & El-Metwally, S. (2023). Exploring the predictive power of machine learning algorithms on daily gold prices. In The Impact of AI Innovation on Financial Sectors in the Era of Industry 5.0 (pp. 131–150). IGI Global. https://doi.org/10.4018/979-8-3693-0082-4.ch008
  • Ercolani, M. G. (2004). Risk aversion and risk loving in the small: A decomposition of the multivariate risk premium. Bulletin of Economic Research, 56(1), pp. 81–106. https://doi.org/10.1111/j.1467-8586.2004.00190.x
  • Fan, W., Fang, S., & Tao, L. (2014). Macro-factors on gold pricing during the financial crisis. China Finance Review International, 4(1), pp.58–75. https://doi.org/10.1108/cfri-09-2012-0097
  • Gao, M., Pan, S., Chen, S., Li, Y., Pan, N., Pan, D., & Shen, X. (2021). Identification method of electrical load for electrical appliances based on K-means++ and GCN. IEEE Access, 1(1), 99. https://doi.org/10.1109/access.2021.3057722
  • Garg, S. (2021). Forecasting of gold prices using Bayesian regularization neural network. Lecture Notes in Electrical Engineering, 692, pp.147–153. https://doi.org/10.1007/978-981-15-7486-3_15
  • Gaspareniene, L., Remeikiene, R., Sadeckas, A., & Ginevičius, R. (2018). Gold investment incentives: An empirical identification of the main gold price determinants and prognostication of gold price future trends. Economics and Sociology, 11(3), pp.248–264. https://doi.org/10.14254/2071-789x.2018/11-3/15
  • Gbadamosi, S. L., Nwulu, N. I., & Akinola, S. O. (2024). Exploring the effectiveness of a multilayer neural network model for gold price prediction [Badanie efektywności wielowarstwowego modelu sieci neuronowej do przewidywania ceny złota]. Przeglad Elektrotechniczny, 2024. https://doi.org/10.15199/48.2024.03.28
  • Ghalayini, L., & Farhat, S. (2020). Modeling and forecasting gold prices. Journal of Economics and Business, 3(4). https://doi.org/10.31014/aior.1992.03.04.314
  • Ghanbari, H., Larni Fooeik, A. M., Eskorouchi, A., & Mohammadi, E. (2022). Investigating the effect of US dollar, gold, and oil prices on the stock market. Journal of Future Sustainability, 2(3), pp.97–104. https://doi.org/10.5267/j.jfs.2022.9.009
  • Ghosh, D., Levin, E. J., Macmillan, P., & Wright, R. E. (2004). Gold as an inflation hedge? Studies in Economics and Finance. https://doi.org/10.1108/eb043380
  • Huaman, P., & Infantes, O. (2024). Prediction techniques applied to gold price analysis: A comparative approach. Lecture Notes in Networks and Systems, 812, 529–537. https://doi.org/10.1007/978-981-99-8031-4_46
  • Huong Le, T. M., Jian, Z., & Zhu, Z. (2019). Impact of macroeconomic variables on stock price index: Evidence from Vietnam stock market. Research Journal of Finance and Accounting, 10(12). https://doi.org/10.7176/rjfa/10-12-04
  • Huseynli, N. (2023). Analyzing the relationship between oil prices and gold prices before and after COVID-19. International Journal of Energy Economics and Policy, 13(2), 373–378. https://doi.org/10.32479/ijeep.13820
  • Ischuk, T. L., Zhilkin, D. V., & Aikina, T. Y. (2016). Gold as a tool for hedging financial risks. IOP Conference Series: Earth and Environmental Science, 43(1), 012085. https://doi.org/10.1088/1755-1315/43/1/012085
  • Janczura, J. (2014). Pricing electricity derivatives within a Markov regime-switching model: A risk premium approach. Mathematical Methods of Operations Research, 79, 1–30. https://doi.org/10.1007/S00186-013-0451-8/FIGURES/7
  • Jones, A. T., & Sackley, W. H. (2014). An uncertain suggestion for gold-pricing models: The effect of economic policy uncertainty on gold prices. Journal of Economics and Finance, 40, 367–379. https://doi.org/10.1007/s12197-014-9313-3
  • Kalsum, U., Hidayat, R., & Oktaviani, S. (2021). The effect of inflation, interest rates and world oil prices on gold prices in Indonesia with the US dollar exchange rate as an intermediary variable. International Journal of Finance Research, 2(1). https://doi.org/10.47747/financeinvestmentderivative.v2i1.228
  • Kharseh, M., Yousef, B., Amara, K. A., & Sakhrieh, A. (2022). Predicting market behavior with artificial neural networks: Gold price as an example. 2022 International Conference on Electrical and Computing Technologies and Applications, ICECTA 2022, pp.287–290. https://doi.org/10.1109/ICECTA57148.2022.9990343
  • Kherwa, P., Khurana, J., Budhraj, R., Gill, S., Sharma, S., & Rathee, S. (2023). Dimension reduction techniques in distributional semantics: An application specific review. In Data Wrangling: Concepts, Applications and Tools (pp. 147–185). https://doi.org/10.1002/9781119879862.ch8
  • Koziuk, V. (2022). Drivers of gold fraction in global exchange reserves. Journal of European Economy, 21(2)-81, pp.138–153. https://doi.org/10.35774/jee2022.02.137
  • Lou, D. (2010). A flow-based explanation for return predictability. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1468382
  • Mahajan, R., Patil, P., Chikmurge, D., & Barve, S. (2023). Forecasting gold price using ensemble-based machine learning approach. In Proceedings of the 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2023. https://doi.org/10.1109/ICSES60034.2023.10465360
  • Matha, R., Kumar, S., & Raghavendra, E. (2022). Dynamic relationship between equity, bond, commodity, forex and foreign institutional investments: Evidence from India. Investment Management and Financial Innovations, 4, pp.65–82. https://doi.org/10.21511/imfi.19(4).2022.06
  • McInish, T. H. (1980). The determinants of municipal bond risk premiums by maturity. The Journal of Financial Research, 3(2), 129. https://doi.org/10.1111/j.1475-6803.1980.tb00045.x
  • Mildenhall, S. J., & Major, J. A. (2022). Pricing insurance risk: Theory and practice. In Pricing insurance risk: Theory and practice. Wiley. https://doi.org/10.1002/9781119756538
  • Mirantes, A. G., Población, J., & Serna, G. (2014). Commodity derivative valuation under a factor model with time-varying market prices of risk. Review of Derivatives Research, 18(1), 75–93. https://doi.org/10.1007/s11147-014-9104-1
  • Mishra, P., & Montiel, P. J. (2012). How effective is monetary transmission in low-income countries? A survey of the empirical evidence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2127036
  • Montiel, P. J., Spilimbergo, A., & Mishra, P. (2010). Monetary transmission in low income countries. IMF Working Paper, 12(5). https://doi.org/10.5089/9781455208883.001
  • Mukhametzyanov, I. Z. (2023). MS-transformation of Z-score. In International Series in Operations Research and Management Science, 348, pp.151–166. Springer. https://doi.org/10.1007/978-3-031-33837-3_8
  • Nanthiya, D., Gopal, S. B., Balakumar, S., Harisankar, M., & Midhun, S. P. (2023). Gold price prediction using ARIMA model. In 2nd IEEE International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies, ViTECoN 2023. https://doi.org/10.1109/ViTECoN58111.2023.10157017
  • Nasution, M. A., Putri, T. M. S., Sani, A., & Bahri, S. S. (2023). The influence of cash flow, profitability, and sales growth on stock prices with capital structure as intervening variables in banking companies listed on the Indonesia Stock Exchange 2015-2019. International Journal of Economics and Management, 1(1). https://doi.org/10.54209/iem.v1i01.5
  • Nguyen, D. B. B., Prokopczuk, M., & Simen, C. W. (2019). The risk premium of gold. Journal of International Money and Finance, 94, pp.140–159. https://doi.org/10.1016/j.jimonfin.2019.02.011
  • Olmo, J., & Navarro, M. S. (2018). Unconventional monetary policies and the credit market. International Journal of Monetary Economics and Finance, 11(5), 480. https://doi.org/10.1504/ijmef.2018.095777
  • Öner, H., & Satıcı, H. K. (2020). How does gold and oil price volatility affect Turkish financial markets? International Journal of Research in Business and Social Science, 9(4), 2147–4478. https://doi.org/10.20525/ijrbs.v9i4.733
  • Punhani, A., Faujdar, N., Mishra, K. K., & Manoharan, S. (2022). Binning-based silhouette approach to find the optimal cluster using K-means. IEEE Access, 10, 115025–115032. https://doi.org/10.1109/access.2022.3215568
  • Puryandani, S., & Robiyanto, R. (2019). Gold: Hedge, safe haven or diversifier for Indonesian capital market. Fokus Ekonomi Jurnal Ilmiah Ekonomi, 14(2), pp.226–239. https://doi.org/10.34152/fe.14.2.226-239
  • Rifa’i, A. (2019). Optimized fuzzy backpropagation neural network using genetic algorithm for predicting Indonesian stock exchange composite index. Proceeding of the Electrical Engineering Computer Science and Informatics, 6(1). https://doi.org/10.11591/eecsi.v6.1980
  • Rosanti, N., & Hanggraeni, D. (2022). The effect of changes in oil prices and gold prices on the return of the sectoral stock index in Indonesia from 1999–2019. Proceedings of the EAI International Conference on Sustainable Development Goals Implementation Science. https://doi.org/10.4108/eai.31-3-2022.2320947
  • Salisu, A. A., Olaniran, A., & Lasisi, L. (2023). Climate risk and gold. Resources Policy, 82. https://doi.org/10.1016/j.resourpol.2023.103494
  • Sathasivam, S., Adebayo, S. A., Velavan, M., Fuad, N. J. A. B. Z., & Munawir, N. J. B. A. (2024). Developing optimization and prediction model for gold price forecasting in Malaysia. AIP Conference Proceedings, 2905(1), 030010. https://doi.org/10.1063/5.0171625
  • Satyatama, H. R., & Sumantyo, R. (2017). Performance analysis of Indonesia’s mining sector price index. Signifikan Jurnal Ilmu Ekonomi, 6(2). https://doi.org/10.15408/sjie.v6i2.5395
  • Shakil, M. H., Mustapha, I. M., Tasnia, M., & Saiti, B. (2018). Is gold a hedge or a safe haven? An application of ARDL approach. Journal of Economics Finance and Administrative Science, 22(44), pp.61–76. https://doi.org/10.1108/jefas-03-2017-0052
  • Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking, 22(1). https://doi.org/10.1186/s13638-021-01910-w
  • Singh, G., Tripathy, B., & Singh, J. (2023). An evaluation of extreme learning machine algorithm to forecasting the gold price. In 7th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2023 (pp. 523–529). https://doi.org/10.1109/ICECA58529.2023.10395223
  • Sordo, M. A., Castaño-Martínez, A., & Pigueiras, G. (2016). A family of premium principles based on mixtures of TVaRs. Insurance: Mathematics and Economics, 70, 397–405. https://doi.org/10.1016/j.insmatheco.2016.07.006 Sun, X., Shen, H., Cheng, X., & Zhang, Y. (2016). Market confidence predicts stock price: Beyond supply and demand. PLoS One, 11(7), pp.1–10. https://doi.org/10.1371/journal.pone.0158742
  • Tovar Jaco, C. A., Mucha Alhuay, M. K., Venegas Rodriguez, P. B., Santillan Zapata, N. A., & Deza Quispe, J. A. (2021). Analysis of macroeconomic determinants of Peruvian gold export value in the period 2003–2019. International Journal of Financial Research, 12(2), 43–54. https://doi.org/10.5430/ijfr.v12n2p43
  • Tufano, P. (1996). Who manages risk? An empirical examination of risk management practices in the gold mining industry. The Journal of Finance, 51(4). https://doi.org/10.2307/2329389
  • Tuncsiper, C. (2023). Nowcasting the gold prices in Türkiye employing multilayer perceptron (MLP) networks. International Journal of Innovative Research in Multidisciplinary Education, 2(4). https://doi.org/10.58806/ijirme.2023.v2i4n07
  • Van Hoang, T. H., Lahiani, A., & Heller, D. (2016). Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach. Economic Modelling, 54, pp.54–66. https://doi.org/10.1016/j.econmod.2015.12.013
  • Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. In Interdisciplinary applied mathematics, 40 (pp. 25–62). Springer Nature. https://doi.org/10.1007/978-0-387-87811-9_2
  • Xiao, B. (2022). A study on the hedging function of gold in the light of economic policy uncertainty. Computational Intelligence and Neuroscience, 2022(1), 1556475. https://doi.org/10.1155/2022/1556475
  • Yang, C. C., Garzon, M., & Deng, L. Y. (2022). Conventional statistical approaches. In Dimensionality reduction in data science (pp. 79–95). Springer International Publishing. https://doi.org/10.1007/978-3-031-05371-9_4
  • Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J — Multidisciplinary Scientific Journal, 2(2), 226–235. https://doi.org/10.3390/j2020016
  • Zainal, N. A., & Mustaffa, Z. (2015). A literature review on gold price predictive techniques. In 4th International Conference on Software Engineering and Computer Systems, ICSECS 2015: Virtuous Software Solutions for Big Data (pp. 39–44). https://doi.org/10.1109/ICSECS.2015.7333120
  • Zoubi, M. B. A., & Al-Rawi, M. (2008). An efficient approach for computing silhouette coefficients. Journal of Computer Science, 4(3). https://doi.org/10.3844/jcssp.2008.252.255

Altın Risk Primini Tahmininde Makine Öğrenme Modellerinin Etkinliğinin Keşfi: Karşılaştırmalı Bir Yaklaşım

Year 2025, Volume: 9 Issue: 1, 1 - 27, 30.06.2025
https://doi.org/10.47140/kusbder.1599320

Abstract

Bu çalışma, Türkiye finans piyasalarında Altın Risk Primini (ARP) tahmin etmede makine öğrenimi (MÖ) modellerinin etkinliğini araştırmayı amaçlamaktadır. ARP, yatırımcıların altına yatırım yapmanın riskini telafi etmek için talep ettiği ekstra getiriyi gösteren önemli bir finansal göstergedir. Türkiye'deki finansal piyasaların oynaklığı ve belirsizliği göz önüne alındığında, ARP'yi doğru bir şekilde tahmin etmek yatırımcılar ve finansal piyasaların işleyişi için önemlidir. 2004-2024 yılları arasını kapsayan bir veri seti kullanılarak, ARP'yi modellemek için çeşitli ekonomik ve finansal değişkenler kullanılmıştır. Çalışmada, veri ön işleme, basit doğrusal regresyondan karmaşık topluluk yöntemlerine kadar çeşitli MÖ modellerinin uygulanması ve MAE, MSE, RMSE, RMSLE ve MAPE gibi performans ölçütlerine dayalı olarak değerlendirme ve karşılaştırma işlemleri gerçekleştirilmiştir. Doğrusal Regresyon, Ridge Regresyon ve Rastgele Orman modelleri ARP tahmininde iyi bir performans göstermiştir. Farklı performans ölçütlerine dayalı karşılaştırmalı analizler, Türkiye'deki altın yatırımlarının dinamiklerini ve ARP'yi en iyi şekilde yakalayan modelleri belirlemiştir. Araştırma, Altın Risk Primi tahmininde makine öğrenimi modellerinin potansiyelini ortaya koyarak, finansal tahminleme alanına önemli bir katkı sağlamakta, gelişmekte olan piyasaların değişken koşullarında altın yatırım stratejilerinin daha iyi anlaşılmasına olanak tanımaktadır.

References

  • Alamsyah, A., Prasetyo, P. E., Sunyoto, S., Bintari, S. H., Saputro, D. D., Rohman, S., & Pratama, R. N. (2022). Customer segmentation using the integration of the recency frequency monetary model and the K-means cluster algorithm. Scientific Journal of Informatics, 9, pp.189–196. https://doi.org/10.15294/sji.v9i2.39437
  • Andrade, C. (2021). Z scores, standard scores, and composite test scores explained. The Indian Journal of Psychological Medicine, 43(6), pp.555–557. https://doi.org/10.1177/02537176211046525
  • Arfaoui, M., & Rejeb, A. B. (2017). Oil, gold, US dollar and stock market interdependencies: A global analytical insight. European Journal of Management and Business Economics, 26(3), pp.278–293. https://doi.org/10.1108/ejmbe-10-2017-016
  • Arize, A. C., & Osang, T. (2007). Foreign exchange reserves and import demand: Evidence from Latin America. World Economy, 30(9), pp.1477–1489. https://doi.org/10.1111/j.1467-9701.2007.01052.x
  • Aye, G. C., Gupta, R., Hammoudeh, S., & Kim, W. J. (2015). Forecasting the price of gold using dynamic model averaging. International Review of Financial Analysis, 41, pp.257–266. https://doi.org/10.1016/j.irfa.2015.03.010
  • Bampinas, G., & Panagiotidis, T. (2015). Are gold and silver a hedge against inflation? A two century perspective. International Review of Financial Analysis, 41, pp.267–276. https://doi.org/10.1016/j.irfa.2015.02.007
  • Banerjee, D., Ghosal, A., & Mukherjee, I. (2019). Prediction of gold price movement using geopolitical risk as a factor. Advances in Intelligent Systems and Computing, 814, 879–886. https://doi.org/10.1007/978-981-13-1501-5_77
  • Barişik, S., & Dursun, E. (2021). Gold, stock market, currency market of the economic confidence index impact test: The case of Turkey. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 22(1), pp.253–280. https://doi.org/10.37880/cumuiibf.742002
  • Baur, D. G., Beckmann, J., & Czudaj, R. (2019). The relative valuation of gold. Macroeconomic Dynamics, 24(6), pp.1346–1391. https://doi.org/10.1017/s1365100518000895
  • Beh, W. L., & Yew, W. K. (2021). The asymmetric responses of stock prices in US market. ITM Web of Conferences, 36(2), pp.1–8. https://doi.org/10.1051/itmconf/20213601013
  • Bordo, M. D., Dittmar, R., & Gavin, W. T. (2007). Gold, fiat money, and price stability. The BE Journal of Macroeconomics, 7(1). https://doi.org/10.2202/1935-1690.1525
  • Botosan, C. A., & Plumlee, M. A. (2005). Assessing alternative proxies for the expected risk premium. The Accounting Review, 80, 21–53. https://doi.org/10.2307/4093160
  • Brandtner, M., Kürsten, W., & Rischau, R. (2018). Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity. European Journal of Operational Research, 264, pp.707–716. https://doi.org/10.1016/j.ejor.2017.07.007
  • Choudhry, T., Hassan, S. S., & Shabi, S. (2015). Relationship between gold and stock markets during the global financial crisis: Evidence from nonlinear causality tests. International Review of Financial Analysis, 41, pp.247–256. https://doi.org/10.1016/j.irfa.2015.03.011
  • Cohen, G., & Aiche, A. (2023). Forecasting gold price using machine learning methodologies. Chaos, Solitons and Fractals, 175. https://doi.org/10.1016/j.chaos.2023.114079
  • Desta. (2022). Analysis of the causal relationship between precious metal prices and inflation: Evidence from Ethiopia. International Journal of Economics and Business Administration, 10(1), 77–88. https://doi.org/10.35808/ijeba/749
  • Díaz, J. D., Hansen, E., & Cabrera, G. (2023). Gold risk premium estimation with machine learning methods. Journal of Commodity Markets, 31. https://doi.org/10.1016/j.jcomm.2022.100293
  • Dichtl, H. (2020). Forecasting excess returns of the gold market: Can we learn from stock market predictions? Journal of Commodity Markets, 19, 100106. https://doi.org/10.1016/j.jcomm.2019.100106
  • Doojav, G., & Damdinjav, D. (2022). The macroeconomic effects of unconventional monetary policies in a commodity-exporting economy: Evidence from Mongolia. International Journal of Finance and Economics, 28(2), pp.1–28. https://doi.org/10.1002/ijfe.2669
  • Dow, J., Han, J., & Sangiorgi, F. (2020). Hysteresis in price efficiency and the economics of slow-moving capital. Review of Financial Studies, 34(6), pp.2857–2909. https://doi.org/10.1093/rfs/hhaa110
  • Dumitrescu, E. I., Arezki, R., Freytag, A., & Quintyn, M. (2012). Commodity prices and exchange rate volatility: Lessons from South Africa’s capital account liberalization. IMF Working Paper, 19(168). https://doi.org/10.5089/9781475505160.001
  • Elhishi, S., Rabea, Z., & El-Metwally, S. (2023). Exploring the predictive power of machine learning algorithms on daily gold prices. In The Impact of AI Innovation on Financial Sectors in the Era of Industry 5.0 (pp. 131–150). IGI Global. https://doi.org/10.4018/979-8-3693-0082-4.ch008
  • Ercolani, M. G. (2004). Risk aversion and risk loving in the small: A decomposition of the multivariate risk premium. Bulletin of Economic Research, 56(1), pp. 81–106. https://doi.org/10.1111/j.1467-8586.2004.00190.x
  • Fan, W., Fang, S., & Tao, L. (2014). Macro-factors on gold pricing during the financial crisis. China Finance Review International, 4(1), pp.58–75. https://doi.org/10.1108/cfri-09-2012-0097
  • Gao, M., Pan, S., Chen, S., Li, Y., Pan, N., Pan, D., & Shen, X. (2021). Identification method of electrical load for electrical appliances based on K-means++ and GCN. IEEE Access, 1(1), 99. https://doi.org/10.1109/access.2021.3057722
  • Garg, S. (2021). Forecasting of gold prices using Bayesian regularization neural network. Lecture Notes in Electrical Engineering, 692, pp.147–153. https://doi.org/10.1007/978-981-15-7486-3_15
  • Gaspareniene, L., Remeikiene, R., Sadeckas, A., & Ginevičius, R. (2018). Gold investment incentives: An empirical identification of the main gold price determinants and prognostication of gold price future trends. Economics and Sociology, 11(3), pp.248–264. https://doi.org/10.14254/2071-789x.2018/11-3/15
  • Gbadamosi, S. L., Nwulu, N. I., & Akinola, S. O. (2024). Exploring the effectiveness of a multilayer neural network model for gold price prediction [Badanie efektywności wielowarstwowego modelu sieci neuronowej do przewidywania ceny złota]. Przeglad Elektrotechniczny, 2024. https://doi.org/10.15199/48.2024.03.28
  • Ghalayini, L., & Farhat, S. (2020). Modeling and forecasting gold prices. Journal of Economics and Business, 3(4). https://doi.org/10.31014/aior.1992.03.04.314
  • Ghanbari, H., Larni Fooeik, A. M., Eskorouchi, A., & Mohammadi, E. (2022). Investigating the effect of US dollar, gold, and oil prices on the stock market. Journal of Future Sustainability, 2(3), pp.97–104. https://doi.org/10.5267/j.jfs.2022.9.009
  • Ghosh, D., Levin, E. J., Macmillan, P., & Wright, R. E. (2004). Gold as an inflation hedge? Studies in Economics and Finance. https://doi.org/10.1108/eb043380
  • Huaman, P., & Infantes, O. (2024). Prediction techniques applied to gold price analysis: A comparative approach. Lecture Notes in Networks and Systems, 812, 529–537. https://doi.org/10.1007/978-981-99-8031-4_46
  • Huong Le, T. M., Jian, Z., & Zhu, Z. (2019). Impact of macroeconomic variables on stock price index: Evidence from Vietnam stock market. Research Journal of Finance and Accounting, 10(12). https://doi.org/10.7176/rjfa/10-12-04
  • Huseynli, N. (2023). Analyzing the relationship between oil prices and gold prices before and after COVID-19. International Journal of Energy Economics and Policy, 13(2), 373–378. https://doi.org/10.32479/ijeep.13820
  • Ischuk, T. L., Zhilkin, D. V., & Aikina, T. Y. (2016). Gold as a tool for hedging financial risks. IOP Conference Series: Earth and Environmental Science, 43(1), 012085. https://doi.org/10.1088/1755-1315/43/1/012085
  • Janczura, J. (2014). Pricing electricity derivatives within a Markov regime-switching model: A risk premium approach. Mathematical Methods of Operations Research, 79, 1–30. https://doi.org/10.1007/S00186-013-0451-8/FIGURES/7
  • Jones, A. T., & Sackley, W. H. (2014). An uncertain suggestion for gold-pricing models: The effect of economic policy uncertainty on gold prices. Journal of Economics and Finance, 40, 367–379. https://doi.org/10.1007/s12197-014-9313-3
  • Kalsum, U., Hidayat, R., & Oktaviani, S. (2021). The effect of inflation, interest rates and world oil prices on gold prices in Indonesia with the US dollar exchange rate as an intermediary variable. International Journal of Finance Research, 2(1). https://doi.org/10.47747/financeinvestmentderivative.v2i1.228
  • Kharseh, M., Yousef, B., Amara, K. A., & Sakhrieh, A. (2022). Predicting market behavior with artificial neural networks: Gold price as an example. 2022 International Conference on Electrical and Computing Technologies and Applications, ICECTA 2022, pp.287–290. https://doi.org/10.1109/ICECTA57148.2022.9990343
  • Kherwa, P., Khurana, J., Budhraj, R., Gill, S., Sharma, S., & Rathee, S. (2023). Dimension reduction techniques in distributional semantics: An application specific review. In Data Wrangling: Concepts, Applications and Tools (pp. 147–185). https://doi.org/10.1002/9781119879862.ch8
  • Koziuk, V. (2022). Drivers of gold fraction in global exchange reserves. Journal of European Economy, 21(2)-81, pp.138–153. https://doi.org/10.35774/jee2022.02.137
  • Lou, D. (2010). A flow-based explanation for return predictability. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1468382
  • Mahajan, R., Patil, P., Chikmurge, D., & Barve, S. (2023). Forecasting gold price using ensemble-based machine learning approach. In Proceedings of the 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2023. https://doi.org/10.1109/ICSES60034.2023.10465360
  • Matha, R., Kumar, S., & Raghavendra, E. (2022). Dynamic relationship between equity, bond, commodity, forex and foreign institutional investments: Evidence from India. Investment Management and Financial Innovations, 4, pp.65–82. https://doi.org/10.21511/imfi.19(4).2022.06
  • McInish, T. H. (1980). The determinants of municipal bond risk premiums by maturity. The Journal of Financial Research, 3(2), 129. https://doi.org/10.1111/j.1475-6803.1980.tb00045.x
  • Mildenhall, S. J., & Major, J. A. (2022). Pricing insurance risk: Theory and practice. In Pricing insurance risk: Theory and practice. Wiley. https://doi.org/10.1002/9781119756538
  • Mirantes, A. G., Población, J., & Serna, G. (2014). Commodity derivative valuation under a factor model with time-varying market prices of risk. Review of Derivatives Research, 18(1), 75–93. https://doi.org/10.1007/s11147-014-9104-1
  • Mishra, P., & Montiel, P. J. (2012). How effective is monetary transmission in low-income countries? A survey of the empirical evidence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2127036
  • Montiel, P. J., Spilimbergo, A., & Mishra, P. (2010). Monetary transmission in low income countries. IMF Working Paper, 12(5). https://doi.org/10.5089/9781455208883.001
  • Mukhametzyanov, I. Z. (2023). MS-transformation of Z-score. In International Series in Operations Research and Management Science, 348, pp.151–166. Springer. https://doi.org/10.1007/978-3-031-33837-3_8
  • Nanthiya, D., Gopal, S. B., Balakumar, S., Harisankar, M., & Midhun, S. P. (2023). Gold price prediction using ARIMA model. In 2nd IEEE International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies, ViTECoN 2023. https://doi.org/10.1109/ViTECoN58111.2023.10157017
  • Nasution, M. A., Putri, T. M. S., Sani, A., & Bahri, S. S. (2023). The influence of cash flow, profitability, and sales growth on stock prices with capital structure as intervening variables in banking companies listed on the Indonesia Stock Exchange 2015-2019. International Journal of Economics and Management, 1(1). https://doi.org/10.54209/iem.v1i01.5
  • Nguyen, D. B. B., Prokopczuk, M., & Simen, C. W. (2019). The risk premium of gold. Journal of International Money and Finance, 94, pp.140–159. https://doi.org/10.1016/j.jimonfin.2019.02.011
  • Olmo, J., & Navarro, M. S. (2018). Unconventional monetary policies and the credit market. International Journal of Monetary Economics and Finance, 11(5), 480. https://doi.org/10.1504/ijmef.2018.095777
  • Öner, H., & Satıcı, H. K. (2020). How does gold and oil price volatility affect Turkish financial markets? International Journal of Research in Business and Social Science, 9(4), 2147–4478. https://doi.org/10.20525/ijrbs.v9i4.733
  • Punhani, A., Faujdar, N., Mishra, K. K., & Manoharan, S. (2022). Binning-based silhouette approach to find the optimal cluster using K-means. IEEE Access, 10, 115025–115032. https://doi.org/10.1109/access.2022.3215568
  • Puryandani, S., & Robiyanto, R. (2019). Gold: Hedge, safe haven or diversifier for Indonesian capital market. Fokus Ekonomi Jurnal Ilmiah Ekonomi, 14(2), pp.226–239. https://doi.org/10.34152/fe.14.2.226-239
  • Rifa’i, A. (2019). Optimized fuzzy backpropagation neural network using genetic algorithm for predicting Indonesian stock exchange composite index. Proceeding of the Electrical Engineering Computer Science and Informatics, 6(1). https://doi.org/10.11591/eecsi.v6.1980
  • Rosanti, N., & Hanggraeni, D. (2022). The effect of changes in oil prices and gold prices on the return of the sectoral stock index in Indonesia from 1999–2019. Proceedings of the EAI International Conference on Sustainable Development Goals Implementation Science. https://doi.org/10.4108/eai.31-3-2022.2320947
  • Salisu, A. A., Olaniran, A., & Lasisi, L. (2023). Climate risk and gold. Resources Policy, 82. https://doi.org/10.1016/j.resourpol.2023.103494
  • Sathasivam, S., Adebayo, S. A., Velavan, M., Fuad, N. J. A. B. Z., & Munawir, N. J. B. A. (2024). Developing optimization and prediction model for gold price forecasting in Malaysia. AIP Conference Proceedings, 2905(1), 030010. https://doi.org/10.1063/5.0171625
  • Satyatama, H. R., & Sumantyo, R. (2017). Performance analysis of Indonesia’s mining sector price index. Signifikan Jurnal Ilmu Ekonomi, 6(2). https://doi.org/10.15408/sjie.v6i2.5395
  • Shakil, M. H., Mustapha, I. M., Tasnia, M., & Saiti, B. (2018). Is gold a hedge or a safe haven? An application of ARDL approach. Journal of Economics Finance and Administrative Science, 22(44), pp.61–76. https://doi.org/10.1108/jefas-03-2017-0052
  • Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking, 22(1). https://doi.org/10.1186/s13638-021-01910-w
  • Singh, G., Tripathy, B., & Singh, J. (2023). An evaluation of extreme learning machine algorithm to forecasting the gold price. In 7th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2023 (pp. 523–529). https://doi.org/10.1109/ICECA58529.2023.10395223
  • Sordo, M. A., Castaño-Martínez, A., & Pigueiras, G. (2016). A family of premium principles based on mixtures of TVaRs. Insurance: Mathematics and Economics, 70, 397–405. https://doi.org/10.1016/j.insmatheco.2016.07.006 Sun, X., Shen, H., Cheng, X., & Zhang, Y. (2016). Market confidence predicts stock price: Beyond supply and demand. PLoS One, 11(7), pp.1–10. https://doi.org/10.1371/journal.pone.0158742
  • Tovar Jaco, C. A., Mucha Alhuay, M. K., Venegas Rodriguez, P. B., Santillan Zapata, N. A., & Deza Quispe, J. A. (2021). Analysis of macroeconomic determinants of Peruvian gold export value in the period 2003–2019. International Journal of Financial Research, 12(2), 43–54. https://doi.org/10.5430/ijfr.v12n2p43
  • Tufano, P. (1996). Who manages risk? An empirical examination of risk management practices in the gold mining industry. The Journal of Finance, 51(4). https://doi.org/10.2307/2329389
  • Tuncsiper, C. (2023). Nowcasting the gold prices in Türkiye employing multilayer perceptron (MLP) networks. International Journal of Innovative Research in Multidisciplinary Education, 2(4). https://doi.org/10.58806/ijirme.2023.v2i4n07
  • Van Hoang, T. H., Lahiani, A., & Heller, D. (2016). Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach. Economic Modelling, 54, pp.54–66. https://doi.org/10.1016/j.econmod.2015.12.013
  • Vidal, R., Ma, Y., & Sastry, S. S. (2016). Principal component analysis. In Interdisciplinary applied mathematics, 40 (pp. 25–62). Springer Nature. https://doi.org/10.1007/978-0-387-87811-9_2
  • Xiao, B. (2022). A study on the hedging function of gold in the light of economic policy uncertainty. Computational Intelligence and Neuroscience, 2022(1), 1556475. https://doi.org/10.1155/2022/1556475
  • Yang, C. C., Garzon, M., & Deng, L. Y. (2022). Conventional statistical approaches. In Dimensionality reduction in data science (pp. 79–95). Springer International Publishing. https://doi.org/10.1007/978-3-031-05371-9_4
  • Yuan, C., & Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. J — Multidisciplinary Scientific Journal, 2(2), 226–235. https://doi.org/10.3390/j2020016
  • Zainal, N. A., & Mustaffa, Z. (2015). A literature review on gold price predictive techniques. In 4th International Conference on Software Engineering and Computer Systems, ICSECS 2015: Virtuous Software Solutions for Big Data (pp. 39–44). https://doi.org/10.1109/ICSECS.2015.7333120
  • Zoubi, M. B. A., & Al-Rawi, M. (2008). An efficient approach for computing silhouette coefficients. Journal of Computer Science, 4(3). https://doi.org/10.3844/jcssp.2008.252.255
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Finance
Journal Section Research Articles
Authors

Ahmet Akusta 0000-0002-5160-3210

Publication Date June 30, 2025
Submission Date December 10, 2024
Acceptance Date June 5, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Akusta, A. (2025). Altın Risk Primini Tahmininde Makine Öğrenme Modellerinin Etkinliğinin Keşfi: Karşılaştırmalı Bir Yaklaşım. Kırklareli Üniversitesi Sosyal Bilimler Dergisi, 9(1), 1-27. https://doi.org/10.47140/kusbder.1599320