Research Article
BibTex RIS Cite

Buzağılarda Ekstremite Kırıklarının Klinik, Biyokimyasal, Radyografik ve Termografik Olarak Değerlendirilmesi

Year 2025, Volume: 18 Issue: 2, 112 - 122, 27.06.2025

Abstract

Bu çalışmada 0-6 aylık yaş aralığındaki buzağılarda ekstremite kırıklarının klinik, biyokimyasal, termografik ve radyografik olarak değerlendirilmesi amaçlanmıştır. Toplam 26 olgu klinik, termografik ve radyografik olarak değerlendirilmiştir. Termografi cihazı ile termografik incelemeler gerçekleştirilmiş ve kırık olgularının radyografik incelemeleri yapılarak kırıklar sınıflandırılmıştır. Serum kalsiyum ölçüm değerleri kontrol ve kırık gruplarında sırasıyla; 10.60±0.25, 11.67±0.23 mg.dl-1 olarak belirlenmiş ve kırık olgularındaki artış istatistiksel olarak anlamlı bulunmuştur (p<0.05). TNF-α ölçüm değerleri gruplarda sırasıyla 0.11±0.01, 0.15±0.05 pg/ml olarak belirlenmiş ve kırık olgularındaki artış istatistiksel olarak anlamlı bulunmuştur (p<0.05). IL-1β ölçüm değerleri sırasıyla 18,67±4,71, 30,69±7,53 pg.ml-1 olarak belirlenmiş ve kırık olgularındaki artış istatistiksel olarak anlamlı bulunmuştur (p<0,05). IL-6 ölçüm değerleri sırasıyla 61,79±5,52, 98,29±31,85 pg.ml-1 olarak belirlenmiş ve kırık olgularındaki artış istatistiksel olarak anlamlı bulunmuştur (p<0,05). Kortizol ölçüm değerleri sırasıyla; 3,36±0,54, 4,93±0,97 mcg.dl-1 olarak belirlenmiş ve kırık olgularındaki artış istatistiksel olarak anlamlı bulunmuştur (p<0,05). Kırık olgularının termografik incelemesinde kırık hattında 4,14±2,2 ℃'lik istatistiksel olarak anlamlı artış kaydedilmiştir. Buzağılarda distosi ve travmaya bağlı gelişen kırıklar, buzağı cerrahi hastalıkları arasında önemli bir yere sahiptir. Termografinin kırık olgularında da tanı yöntemi olarak kullanılabileceği ve termografik muayenenin cerrahi sağaltımı izleyen dönemde kullanımına ilişkin daha ayrıntılı çalışmalara ihtiyaç olduğu sonucuna varılmıştır.

References

  • Aengwanich, W., Kongbuntad, W., & Boonsorn, T. (2011). Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle. International Journal of Biometeorology, 55(5), 741-748. https://doi.org/10.1007/s00484-010-0389-y
  • Akin, I. (2017). Calf metacarpal fractures in association with bovine dystocia: Case series among calves. Veterinary Sciences and Practices, 12(3), 235-241. https://doi.org/10.17094/ataunivbd.369526
  • Aksoy, O., Ozaydin, I., Kilic, E., Ozturk, S., Gungor, E., Kurt, B., & Oral, H. (2009). Evaluation of fractures in calves due to forced extraction during dystocia: 27 cases (2003- 2008). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 15(3). https://doi.org/10.9775/kvfd.2008.100-
  • Alam, M. M., Juyena, N. S., Alam, M. M., Ferdousy, R. N., & Paul, S. (2014). Use of wire suture for the management of fractures in calves. IOSR Journal of Agriculture and Veterinary Science, 7, 90-96.
  • Alsaaod, M., & Buscher, W. (2012). Detection of hoof lesions using digital infrared thermography in dairy cows. Journal of Dairy Science, 95, 735–742. https://doi.org/10.3168/jds.2011-4762
  • Alsaaod, M., Schaefer, A. L., Büscher, W., & Steiner, A. (2015). The role of infrared thermography as a noninvasive tool for the detection of lameness in cattle. Sensors, 15(6), 14513-14525. https://doi.org/10.3390/s150614513
  • Arican, M., Erol, H., Esin, E., & Parlak, K. (2014). A retrospective study of fractures in neonatal calves: 181 cases (2002-2012). Pakistan Veterinary Journal, 34(2), 247- 250.
  • Arican, M., Altan, S., Parlak, K., & Alkan, F. (2024). Interlocking nail stabilization technique for long bone fractures in calves. The Thai Journal of Veterinary Medicine, 53(2), 213-220. https://doi.org/10.56808/2985-1130.3518
  • Baines, M., & Shenkin, A. (2002). Lack of effectiveness of shortterm intravenous micronutrient nutrition in restoring plasma antioxidant status after surgery. Clinical Nutrition, 21(2), 145-150. https://doi.org/10.1054/clnu.2001.0524
  • Belge, A., Akin, I., Gülaydın, A., & Yazici, M. F. (2016). The treatment of distal metacarpus fracture with locking 121 compression plate in calves. Turkish Journal of Veterinary & Animal Sciences, 40(2), 234-242. https://doi.org/10.3906/vet-1510-4
  • Bellon, J., & Mulon, P. Y. (2011). Use of a novel intramedullary nail for femoral fracture repair in calves: 25 cases (2008– 2009). J Am Vet Med Assoc, 238(11), 1490-1496. https://doi.org/10.2460/javma.238.11.1490
  • Bilgili, H., Kurum, B., & Captug, O. (2008). Use of a circular external skeletal fixator to treat comminuted metacarpal and tibial fractures in six calves. Veterinary Record, 163(23), 683-687. https://doi.org/10.1136/vr.163.23.683
  • Bozukluhan, K., Merhan, O., Gökçe, H. İ., Metin, Ö., Atakişi, E., Kızıltepe, Ş., & Gökçe, G. (2018). Determination of some acute phase proteins, biochemical parameters and oxidative stress in sheep with naturally infected sheeppox virus. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3). https://doi.org/10.9775/kvfd.2017.19167
  • Chaurasia, A., Jawre, S., Singh, R., Shahi, A., Pathak, R., Das, B., & Verma, N. K. (2019). Evaluation of HaematoBiochemical Parameters using Different Biomaterials in Fracture Healing of Dogs. International Journal of Current Microbiology and Applied Sciences, 8(5), 2265-2271. https://doi.org/10.20546/ijcmas.2019.805.266
  • Chirase, N. K., Greene, L. W., Purdy, C. W., Loan, R. W., Auvermann, B. W., Parker, D. B., & Klaunig, J. E. (2004). Effect of transport stress on respiratory disease, serum antioxidant status, and serum concentrations of lipid peroxidation biomarkers in beef cattle. American Journal of Veterinary Research, 65(6), 860-864. https://doi.org/10.2460/ajvr.2004.65.860
  • Clark, R. G., Henderson, H. V., Hoggard, G. K., Ellison, R. S., & Young, B. J. (1987). The ability of biochemical and haematological tests to predict recovery in periparturient recumbent cows. New Zealand Veterinary Journal, 35(8), 126-133. https://doi.org/10.1080/00480169.1987.35410
  • Cockcroft, P.D., Henson, F.M., & Parker, C. (2000). Thermography of a septic metatarsophalangeal joint in a heifer. Veterinary Record, 146, 258–260. Cray, C., Zaias, J., & Altman, N. H. (2009). Acute phase response in animals: a review. Comparative Medicine, 59(6), 517-526.
  • Deka, D. K., Lahon, L. C., Saika, J., & Mukit, A. (1994). Effect of cissus quadrangularis in accelerating healing process of experimentally fractured radius-ulna of dog: a preliminary study. Indian Journal of Pharmacology; 26, 44–45.
  • Dogan, E., Yanmaz, L. E., Okumus, Z., Kaya, M., Senocak, M. G., & Cengiz, S. (2016). Radiographic, ultrasonographic and thermographic findings in neonatal calves with septic arthritis: 82 cases (2006-2013). Veterinary Sciences and Practices, 11(1), 6-12. https://doi.org/10.17094/avbd.51116
  • Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid Peroxidation. In Methods in enzymology, Academic press, 186, 421-431.
  • Durmuș, A. S., Karabulut, E., & Sağliyan, A. (2009). Supracondyler femoral fracture and its treatment in a newborn calf: a case report. Sağlık Bilimleri Veteriner Dergisi, Fırat Üniversitesi, 23(2), 119-122
  • El-Shafey, A., Sayed-Ahmed, A., El-Shafey, A., & SayedAhmed, A. (2012). Computed tomography and cross sectional anatomy of the metacarpus and digits of the onehumped camel and Egyptian water buffalo. International Journal of Morphology, 30(2), 473-482.
  • Feist, M., Rieger, A., Müller, C., & Knubben-Schweizer, G. (2019). Long bone fractures in cattle: A retrospective study of treatment and outcome in 194 cases. Schweiz Arch Tierheilkd, 161(9), 509-521. https://doi.org/10.17236/sat00217
  • Fischer, V., Haffner-Luntzer, M., Amling, M., & Ignatius, A. (2018). Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. European Cells & Materials, 35, 365-385. https://doi.org/10.22203/eCM.v035a25
  • Gangl, M., Grulke, S., Serteyn, D., & Touati, K. (2006). Retrospective study of 99 cases of bone fractures in cattle treated by external coaptation or confinement. Veterinary Record, 158(8), 264-268. https://doi.org/10.1136/vr.158.8.264
  • Gerstenfeld, L. C., Cullinane, D. M., Barnes, G. L., Graves, D. T., & Einhorn, T. A. (2003). Fracture healing as a post‐natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of Cellular Biochemistry, 88(5), 873-884. https://doi.org/10.1002/jcb.10435
  • Görgül, O. S., İntaş, S. D., Çelimli, N., Çeçen, G., Salcı, H., & Akın, İ. (2004). Buzağılarda kırık olgularının değerlendirilmesi: 31 olgu (1996-2003). Türk Veteriner Cerrahi Dergisi, 10(3-4), 16-20.
  • Ivany Ewoldt, J. M., Hull, B. L., & Ayars, W. H. (2003). Repair of femoral capital physeal fractures in 12 cattle. Veterinary Surgery, 32(1), 30-36. https://doi.org/10.1053/jvet.2003.50002
  • John, C. D., & Buckingham, J. C. (2003). Cytokines: regulation of the hypothalamo–pituitary–adrenocortical axis. Current Opinion in Pharmacology, 3(1),78-84. https://doi.org/10.1016/S1471-4892(02)00009-7
  • Keel, M., & Trentz, O. (2005). Pathophysiology of polytrauma. Injury, 36(6), 691-709. https://doi.org/10.1016/j.injury.2004.12.037
  • Korkmaz, M., Sarıtaş, Z. K., Bülbül, A., & Demirkan, I. (2015). Effect of pre-emptive dexketoprofen trometamol on acute cortisol, inflammatory response and oxidative stress to hot-iron disbudding in calves. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21, 563-568. https://doi.org/10.9775/kvfd.2015.12963
  • Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of clinical pathology, 54(5), 356-361. https://doi.org/10.1136/jcp.54.5.356
  • Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551-555. https://doi.org/10.1016/j.injury.2011.03.031
  • Mohiuddin, M., Hasan, M. M., Shohag, M., Ferdousy, R. N., Alam, M. M., & Juyena, N. S. (2018). Surgical management of limb fractures in calves and goats. Bangladesh Journal of Veterinary Medicine, 52(1-4), 46-56. https://doi.org/10.32856/BVJ-2018.06
  • Murata, H., Shimada, N., & Yoshioka, M. (2004). Current research on acute phase proteins in veterinary diagnosis: an overview. The Veterinary Journal, 168(1), 28-40. https://doi.org/10.1016/S1090-0233(03)00119-9 Nichols, S., Anderson, D. E., Miesner, M. D., & Newman, K. D. (2010). Femoral diaphysis fractures in cattle: 26 cases (1994–2005). Australian veterinary journal, 88(1‐2), 39-44. https://doi.org/10.1111/j.1751-0813.2009.00531.x Nikolaevna, K. L., & Uygunovich, G. A. (2021). Biochemical Parameters of Rabbit Blood Serum in the Treatment of Limb Bone Fracture with Autologous Platelet-rich Plasma. Acta Scientific Medical Sciences, 5(5), 122-128. Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22(4), 502-548. https://doi.org/10.1210/edrv.22.4.0436
  • Paskalev, M. D. (2009). Time course of serum malondialdehyde concentrations as a marker of oxidative stress in experimental canine osteotomies fixed by two different techniques. Comparative Clinical Pathology, 18(3), 265- 268. https://doi.org/10.1007/s00580-008-0796-1
  • Pearson, J. M., Homerosky, E. R., Caulkett, N. A., Campbell, J. R., Levy, M., Pajor, E. A., & Windeyer, M. C. (2019). Quantifying subclinical trauma associated with calving difficulty, vigour, and passive immunity in newborn beef calves. Veterinary Record Open, 6(1), e000325. https://doi.org/10.1136/vetreco-2018-000325 122
  • Prasad, G., Dhillon, M. S., Khullar, M., & Nagi, O. N. (2003). Evaluation of oxidative stress after fractures. A preliminary study. Acta Orthopaedica Belgica, 69(6), 546-551.
  • Rassel, M. G. R., Orchy, K. A. H., Khan, M. M. R., Rahman, M., & Alam, M. M. (2021). Hematological and serum biochemical indices in calves with navel ill. International Journal of Veterinary Sciences Research, 7(1), 14-18. http://dx.doi.org/10.17582/journal.vsrr/2021/7.1.14.18
  • Redaelli, V., Tarantino, S., Ricci, C., Luzi, F., Zecconi, A., & Verga, M. A. (2009). Non invasive method to measure the lameness in dairy cows. Italian Journal of Animal Science, 8, 672.
  • Renn, N., Onyango, J., & McCormick, W. (2014). Digital infrared thermal imaging and manual lameness scoring as a means for lameness detection in cattle. Veterinary Clinical Sciences, 2, 16–23.
  • Roadknight, N. W., Courtman, N. F., Mansell, P. D., Jongman, E. C., Loh, Z. A., & Fisher, A. D. (2021). Biochemistry and hematology reference intervals for neonatal dairy calves aged 5‐12 days. Veterinary Clinical Pathology, 50(2), 278- https://doi.org/286. 10.1111/vcp.12955
  • Rodrigues, L. B., Las Casas, E. B., Lopes, D. S., Folgado, J., Fernandes, P. R., Pires, E. A., Alves, G. E. S., & Faleiros, R. R. (2012). A finite element model to simulate femoral fractures in calves: testing different polymers for intramedullary interlocking nails. Veterinary surgery, 41(7), 838-844. https://doi.org/10.1111/j.1532- 950X.2012.01032.x
  • Sheweita, S. A., & Khoshhal, K. I. (2007). Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Current Drug Metabolism, 8(5), 519-525. https://doi.org/10.2174/138920007780866852
  • Soroko M., Henklewski R., Filipowski H., & Jodkowska E., (2013). The effectiveness of thermographic analysis in equine orthopedics. Journal of Equine Veterinary Science, 33, 760-762. https://doi.org/10.1016/j.jevs.2012.11.009
  • Steiner, A., Hirsbrunner, G., & Geissbühler, U. (1996). Management of malunion of metacarpus III/IV in two calves. Journal of Veterinary Medicine, 43(1‐10), 561-571. https://doi.org/10.1111/j.1439-0442.1996.tb00488.x Stromberg B. (1974). The use of the thermography in equine orthopedics. Journal of the American Veterinary Radiology Society, 15, 94-7. https://doi.org/10.1111/j.1740-8261.1974.tb00676.x Tasatargil, A., Sadan, G., & Karasu, E. (2007). Homocysteineinduced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulmonary Pharmacology & Therapeutics, 20(3), 265-272. https://doi.org/10.1016/j.pupt.2006.02.004
  • Tulleners, E. P. (1986). Metacarpal and metatarsal fractures in dairy cattle: 33 cases (1979-1985). Journal of the American Veterinary Medical Association, 189(4), 463-468.
  • Turner, T. A. (1991). Thermography as an aid to the clinical lameness evaluation. Veterinary Clinics of North America: Equine Practice, 7, 311-38. https://doi.org/10.1016/S0749-0739(17)30502-3
  • Vaden, M. F., Purohit R. C., Mc Coy D., & Vaughan J. T. (1980). Thermography: a technique for subclinical diagnosis of osteoarthritis. American Journal of Veterinary Research, 41, 1175-9.
  • Whay, H. R., Bell, M. J., & Main, D. C. J. (2004). Validation of lame limb identification through thermalimaging. In Proceedings of the 13th International Symposium and 5th Conference on Lameness in Ruminants, Maribor, Slovenia, 11–15 February; pp. 237–238.
  • Wolf, T. M., Chenaux-Ibrahim, Y. M., Isaac, E. J., Wünschmann, A., & Moore, S. A. (2021). Neonate health and calf mortality in a declining population of north american moose (alces alces americanus). Journal of Wildlife Diseases, 57(1), 40-50. https://doi.org/10.7589/JWD-D-20-00049
  • Wood, D., & Quiroz-Rocha G. F. (2010). Normal hematology of cattle. Schalm’s veterinary hematology, 829-835. Yanmaz, L. E., Mahir, K., Doğan, E., & Okumuş, Z. (2014). Sığır ve buzağılardaki kırık olgularının değerlendirilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 25(1), 23-26.
  • Yanmaz, L. E., Okumus, Z., & Dogan, E. (2007). Instrumentation of thermography and its applications in horses. Journal of Animal and Veterinary Advances, 6(7), 858-62. Yeler, H., Tahtabas, F., & Candan, F. (2005). Investigation of oxidative stress during fracture healing in the rats. Cell Biochemistry and Function, 23(2), 137-139.

Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves

Year 2025, Volume: 18 Issue: 2, 112 - 122, 27.06.2025

Abstract

This study aim to assess extremity fractures in calves aged 0-6 months by clinical, thermographic, and radiographic methods. A total of 26 patients were assessed clinically, thermographically, and radiographically. Thermographic assessments were conducted using a thermography apparatus. Radiographic evaluations of fracture cases were conducted, and the fractures were categorized. Serum calcium levels in the control and fracture groups were 10.60±0.25 and 11.67±0.23 mg.dl-1, respectively, with the increase in fractures being statistically significant (p<0.05). The TNF-α measurement levels were recorded as 0.11±0.01 and 0.15±0.05 pg.ml-1 in the respective groups, with the increase in fractures being statistically significant (p<0.05). The IL-1β measurement levels were recorded as 18.67±4.71 and 30.69±7.53 pg.ml-1, respectively, with the increase in fractures being statistically significant (p<0.05). The IL-6 measurement levels were recorded as 61.79±5.52 and 98.29±31.85 pg.ml-1, respectively, with the increase in fractures being statistically significant (p<0.05). Cortisol measurement values were established at 3.36±0.54 and 4.93±0.97 mcg.dl-1, with a statistically significant increase in fracture cases (p<0.05). A thermographic assessment of fracture cases revealed an elevation of 4.14±2.2 °C along the fracture line. Fractures resulting from dystocia and trauma in calves are significant among calf surgical conditions. It was determined that thermography may serve as a diagnostic tool in fracture cases, and further comprehensive investigations are required for its application in the postoperative period.

References

  • Aengwanich, W., Kongbuntad, W., & Boonsorn, T. (2011). Effects of shade on physiological changes, oxidative stress, and total antioxidant power in Thai Brahman cattle. International Journal of Biometeorology, 55(5), 741-748. https://doi.org/10.1007/s00484-010-0389-y
  • Akin, I. (2017). Calf metacarpal fractures in association with bovine dystocia: Case series among calves. Veterinary Sciences and Practices, 12(3), 235-241. https://doi.org/10.17094/ataunivbd.369526
  • Aksoy, O., Ozaydin, I., Kilic, E., Ozturk, S., Gungor, E., Kurt, B., & Oral, H. (2009). Evaluation of fractures in calves due to forced extraction during dystocia: 27 cases (2003- 2008). Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 15(3). https://doi.org/10.9775/kvfd.2008.100-
  • Alam, M. M., Juyena, N. S., Alam, M. M., Ferdousy, R. N., & Paul, S. (2014). Use of wire suture for the management of fractures in calves. IOSR Journal of Agriculture and Veterinary Science, 7, 90-96.
  • Alsaaod, M., & Buscher, W. (2012). Detection of hoof lesions using digital infrared thermography in dairy cows. Journal of Dairy Science, 95, 735–742. https://doi.org/10.3168/jds.2011-4762
  • Alsaaod, M., Schaefer, A. L., Büscher, W., & Steiner, A. (2015). The role of infrared thermography as a noninvasive tool for the detection of lameness in cattle. Sensors, 15(6), 14513-14525. https://doi.org/10.3390/s150614513
  • Arican, M., Erol, H., Esin, E., & Parlak, K. (2014). A retrospective study of fractures in neonatal calves: 181 cases (2002-2012). Pakistan Veterinary Journal, 34(2), 247- 250.
  • Arican, M., Altan, S., Parlak, K., & Alkan, F. (2024). Interlocking nail stabilization technique for long bone fractures in calves. The Thai Journal of Veterinary Medicine, 53(2), 213-220. https://doi.org/10.56808/2985-1130.3518
  • Baines, M., & Shenkin, A. (2002). Lack of effectiveness of shortterm intravenous micronutrient nutrition in restoring plasma antioxidant status after surgery. Clinical Nutrition, 21(2), 145-150. https://doi.org/10.1054/clnu.2001.0524
  • Belge, A., Akin, I., Gülaydın, A., & Yazici, M. F. (2016). The treatment of distal metacarpus fracture with locking 121 compression plate in calves. Turkish Journal of Veterinary & Animal Sciences, 40(2), 234-242. https://doi.org/10.3906/vet-1510-4
  • Bellon, J., & Mulon, P. Y. (2011). Use of a novel intramedullary nail for femoral fracture repair in calves: 25 cases (2008– 2009). J Am Vet Med Assoc, 238(11), 1490-1496. https://doi.org/10.2460/javma.238.11.1490
  • Bilgili, H., Kurum, B., & Captug, O. (2008). Use of a circular external skeletal fixator to treat comminuted metacarpal and tibial fractures in six calves. Veterinary Record, 163(23), 683-687. https://doi.org/10.1136/vr.163.23.683
  • Bozukluhan, K., Merhan, O., Gökçe, H. İ., Metin, Ö., Atakişi, E., Kızıltepe, Ş., & Gökçe, G. (2018). Determination of some acute phase proteins, biochemical parameters and oxidative stress in sheep with naturally infected sheeppox virus. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3). https://doi.org/10.9775/kvfd.2017.19167
  • Chaurasia, A., Jawre, S., Singh, R., Shahi, A., Pathak, R., Das, B., & Verma, N. K. (2019). Evaluation of HaematoBiochemical Parameters using Different Biomaterials in Fracture Healing of Dogs. International Journal of Current Microbiology and Applied Sciences, 8(5), 2265-2271. https://doi.org/10.20546/ijcmas.2019.805.266
  • Chirase, N. K., Greene, L. W., Purdy, C. W., Loan, R. W., Auvermann, B. W., Parker, D. B., & Klaunig, J. E. (2004). Effect of transport stress on respiratory disease, serum antioxidant status, and serum concentrations of lipid peroxidation biomarkers in beef cattle. American Journal of Veterinary Research, 65(6), 860-864. https://doi.org/10.2460/ajvr.2004.65.860
  • Clark, R. G., Henderson, H. V., Hoggard, G. K., Ellison, R. S., & Young, B. J. (1987). The ability of biochemical and haematological tests to predict recovery in periparturient recumbent cows. New Zealand Veterinary Journal, 35(8), 126-133. https://doi.org/10.1080/00480169.1987.35410
  • Cockcroft, P.D., Henson, F.M., & Parker, C. (2000). Thermography of a septic metatarsophalangeal joint in a heifer. Veterinary Record, 146, 258–260. Cray, C., Zaias, J., & Altman, N. H. (2009). Acute phase response in animals: a review. Comparative Medicine, 59(6), 517-526.
  • Deka, D. K., Lahon, L. C., Saika, J., & Mukit, A. (1994). Effect of cissus quadrangularis in accelerating healing process of experimentally fractured radius-ulna of dog: a preliminary study. Indian Journal of Pharmacology; 26, 44–45.
  • Dogan, E., Yanmaz, L. E., Okumus, Z., Kaya, M., Senocak, M. G., & Cengiz, S. (2016). Radiographic, ultrasonographic and thermographic findings in neonatal calves with septic arthritis: 82 cases (2006-2013). Veterinary Sciences and Practices, 11(1), 6-12. https://doi.org/10.17094/avbd.51116
  • Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid Peroxidation. In Methods in enzymology, Academic press, 186, 421-431.
  • Durmuș, A. S., Karabulut, E., & Sağliyan, A. (2009). Supracondyler femoral fracture and its treatment in a newborn calf: a case report. Sağlık Bilimleri Veteriner Dergisi, Fırat Üniversitesi, 23(2), 119-122
  • El-Shafey, A., Sayed-Ahmed, A., El-Shafey, A., & SayedAhmed, A. (2012). Computed tomography and cross sectional anatomy of the metacarpus and digits of the onehumped camel and Egyptian water buffalo. International Journal of Morphology, 30(2), 473-482.
  • Feist, M., Rieger, A., Müller, C., & Knubben-Schweizer, G. (2019). Long bone fractures in cattle: A retrospective study of treatment and outcome in 194 cases. Schweiz Arch Tierheilkd, 161(9), 509-521. https://doi.org/10.17236/sat00217
  • Fischer, V., Haffner-Luntzer, M., Amling, M., & Ignatius, A. (2018). Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. European Cells & Materials, 35, 365-385. https://doi.org/10.22203/eCM.v035a25
  • Gangl, M., Grulke, S., Serteyn, D., & Touati, K. (2006). Retrospective study of 99 cases of bone fractures in cattle treated by external coaptation or confinement. Veterinary Record, 158(8), 264-268. https://doi.org/10.1136/vr.158.8.264
  • Gerstenfeld, L. C., Cullinane, D. M., Barnes, G. L., Graves, D. T., & Einhorn, T. A. (2003). Fracture healing as a post‐natal developmental process: molecular, spatial, and temporal aspects of its regulation. Journal of Cellular Biochemistry, 88(5), 873-884. https://doi.org/10.1002/jcb.10435
  • Görgül, O. S., İntaş, S. D., Çelimli, N., Çeçen, G., Salcı, H., & Akın, İ. (2004). Buzağılarda kırık olgularının değerlendirilmesi: 31 olgu (1996-2003). Türk Veteriner Cerrahi Dergisi, 10(3-4), 16-20.
  • Ivany Ewoldt, J. M., Hull, B. L., & Ayars, W. H. (2003). Repair of femoral capital physeal fractures in 12 cattle. Veterinary Surgery, 32(1), 30-36. https://doi.org/10.1053/jvet.2003.50002
  • John, C. D., & Buckingham, J. C. (2003). Cytokines: regulation of the hypothalamo–pituitary–adrenocortical axis. Current Opinion in Pharmacology, 3(1),78-84. https://doi.org/10.1016/S1471-4892(02)00009-7
  • Keel, M., & Trentz, O. (2005). Pathophysiology of polytrauma. Injury, 36(6), 691-709. https://doi.org/10.1016/j.injury.2004.12.037
  • Korkmaz, M., Sarıtaş, Z. K., Bülbül, A., & Demirkan, I. (2015). Effect of pre-emptive dexketoprofen trometamol on acute cortisol, inflammatory response and oxidative stress to hot-iron disbudding in calves. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21, 563-568. https://doi.org/10.9775/kvfd.2015.12963
  • Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of clinical pathology, 54(5), 356-361. https://doi.org/10.1136/jcp.54.5.356
  • Marsell, R., & Einhorn, T. A. (2011). The biology of fracture healing. Injury, 42(6), 551-555. https://doi.org/10.1016/j.injury.2011.03.031
  • Mohiuddin, M., Hasan, M. M., Shohag, M., Ferdousy, R. N., Alam, M. M., & Juyena, N. S. (2018). Surgical management of limb fractures in calves and goats. Bangladesh Journal of Veterinary Medicine, 52(1-4), 46-56. https://doi.org/10.32856/BVJ-2018.06
  • Murata, H., Shimada, N., & Yoshioka, M. (2004). Current research on acute phase proteins in veterinary diagnosis: an overview. The Veterinary Journal, 168(1), 28-40. https://doi.org/10.1016/S1090-0233(03)00119-9 Nichols, S., Anderson, D. E., Miesner, M. D., & Newman, K. D. (2010). Femoral diaphysis fractures in cattle: 26 cases (1994–2005). Australian veterinary journal, 88(1‐2), 39-44. https://doi.org/10.1111/j.1751-0813.2009.00531.x Nikolaevna, K. L., & Uygunovich, G. A. (2021). Biochemical Parameters of Rabbit Blood Serum in the Treatment of Limb Bone Fracture with Autologous Platelet-rich Plasma. Acta Scientific Medical Sciences, 5(5), 122-128. Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22(4), 502-548. https://doi.org/10.1210/edrv.22.4.0436
  • Paskalev, M. D. (2009). Time course of serum malondialdehyde concentrations as a marker of oxidative stress in experimental canine osteotomies fixed by two different techniques. Comparative Clinical Pathology, 18(3), 265- 268. https://doi.org/10.1007/s00580-008-0796-1
  • Pearson, J. M., Homerosky, E. R., Caulkett, N. A., Campbell, J. R., Levy, M., Pajor, E. A., & Windeyer, M. C. (2019). Quantifying subclinical trauma associated with calving difficulty, vigour, and passive immunity in newborn beef calves. Veterinary Record Open, 6(1), e000325. https://doi.org/10.1136/vetreco-2018-000325 122
  • Prasad, G., Dhillon, M. S., Khullar, M., & Nagi, O. N. (2003). Evaluation of oxidative stress after fractures. A preliminary study. Acta Orthopaedica Belgica, 69(6), 546-551.
  • Rassel, M. G. R., Orchy, K. A. H., Khan, M. M. R., Rahman, M., & Alam, M. M. (2021). Hematological and serum biochemical indices in calves with navel ill. International Journal of Veterinary Sciences Research, 7(1), 14-18. http://dx.doi.org/10.17582/journal.vsrr/2021/7.1.14.18
  • Redaelli, V., Tarantino, S., Ricci, C., Luzi, F., Zecconi, A., & Verga, M. A. (2009). Non invasive method to measure the lameness in dairy cows. Italian Journal of Animal Science, 8, 672.
  • Renn, N., Onyango, J., & McCormick, W. (2014). Digital infrared thermal imaging and manual lameness scoring as a means for lameness detection in cattle. Veterinary Clinical Sciences, 2, 16–23.
  • Roadknight, N. W., Courtman, N. F., Mansell, P. D., Jongman, E. C., Loh, Z. A., & Fisher, A. D. (2021). Biochemistry and hematology reference intervals for neonatal dairy calves aged 5‐12 days. Veterinary Clinical Pathology, 50(2), 278- https://doi.org/286. 10.1111/vcp.12955
  • Rodrigues, L. B., Las Casas, E. B., Lopes, D. S., Folgado, J., Fernandes, P. R., Pires, E. A., Alves, G. E. S., & Faleiros, R. R. (2012). A finite element model to simulate femoral fractures in calves: testing different polymers for intramedullary interlocking nails. Veterinary surgery, 41(7), 838-844. https://doi.org/10.1111/j.1532- 950X.2012.01032.x
  • Sheweita, S. A., & Khoshhal, K. I. (2007). Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Current Drug Metabolism, 8(5), 519-525. https://doi.org/10.2174/138920007780866852
  • Soroko M., Henklewski R., Filipowski H., & Jodkowska E., (2013). The effectiveness of thermographic analysis in equine orthopedics. Journal of Equine Veterinary Science, 33, 760-762. https://doi.org/10.1016/j.jevs.2012.11.009
  • Steiner, A., Hirsbrunner, G., & Geissbühler, U. (1996). Management of malunion of metacarpus III/IV in two calves. Journal of Veterinary Medicine, 43(1‐10), 561-571. https://doi.org/10.1111/j.1439-0442.1996.tb00488.x Stromberg B. (1974). The use of the thermography in equine orthopedics. Journal of the American Veterinary Radiology Society, 15, 94-7. https://doi.org/10.1111/j.1740-8261.1974.tb00676.x Tasatargil, A., Sadan, G., & Karasu, E. (2007). Homocysteineinduced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulmonary Pharmacology & Therapeutics, 20(3), 265-272. https://doi.org/10.1016/j.pupt.2006.02.004
  • Tulleners, E. P. (1986). Metacarpal and metatarsal fractures in dairy cattle: 33 cases (1979-1985). Journal of the American Veterinary Medical Association, 189(4), 463-468.
  • Turner, T. A. (1991). Thermography as an aid to the clinical lameness evaluation. Veterinary Clinics of North America: Equine Practice, 7, 311-38. https://doi.org/10.1016/S0749-0739(17)30502-3
  • Vaden, M. F., Purohit R. C., Mc Coy D., & Vaughan J. T. (1980). Thermography: a technique for subclinical diagnosis of osteoarthritis. American Journal of Veterinary Research, 41, 1175-9.
  • Whay, H. R., Bell, M. J., & Main, D. C. J. (2004). Validation of lame limb identification through thermalimaging. In Proceedings of the 13th International Symposium and 5th Conference on Lameness in Ruminants, Maribor, Slovenia, 11–15 February; pp. 237–238.
  • Wolf, T. M., Chenaux-Ibrahim, Y. M., Isaac, E. J., Wünschmann, A., & Moore, S. A. (2021). Neonate health and calf mortality in a declining population of north american moose (alces alces americanus). Journal of Wildlife Diseases, 57(1), 40-50. https://doi.org/10.7589/JWD-D-20-00049
  • Wood, D., & Quiroz-Rocha G. F. (2010). Normal hematology of cattle. Schalm’s veterinary hematology, 829-835. Yanmaz, L. E., Mahir, K., Doğan, E., & Okumuş, Z. (2014). Sığır ve buzağılardaki kırık olgularının değerlendirilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 25(1), 23-26.
  • Yanmaz, L. E., Okumus, Z., & Dogan, E. (2007). Instrumentation of thermography and its applications in horses. Journal of Animal and Veterinary Advances, 6(7), 858-62. Yeler, H., Tahtabas, F., & Candan, F. (2005). Investigation of oxidative stress during fracture healing in the rats. Cell Biochemistry and Function, 23(2), 137-139.
There are 53 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section RESEARCH ARTICLE
Authors

Yusuf Koç 0000-0002-6342-5466

Zülfükar Sarıtaş 0000-0002-7659-6635

Early Pub Date June 11, 2025
Publication Date June 27, 2025
Submission Date January 8, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Koç, Y., & Sarıtaş, Z. (2025). Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves. Kocatepe Veterinary Journal, 18(2), 112-122.
AMA Koç Y, Sarıtaş Z. Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves. kvj. June 2025;18(2):112-122.
Chicago Koç, Yusuf, and Zülfükar Sarıtaş. “Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves”. Kocatepe Veterinary Journal 18, no. 2 (June 2025): 112-22.
EndNote Koç Y, Sarıtaş Z (June 1, 2025) Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves. Kocatepe Veterinary Journal 18 2 112–122.
IEEE Y. Koç and Z. Sarıtaş, “Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves”, kvj, vol. 18, no. 2, pp. 112–122, 2025.
ISNAD Koç, Yusuf - Sarıtaş, Zülfükar. “Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves”. Kocatepe Veterinary Journal 18/2 (June 2025), 112-122.
JAMA Koç Y, Sarıtaş Z. Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves. kvj. 2025;18:112–122.
MLA Koç, Yusuf and Zülfükar Sarıtaş. “Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves”. Kocatepe Veterinary Journal, vol. 18, no. 2, 2025, pp. 112-2.
Vancouver Koç Y, Sarıtaş Z. Clinical, Biochemical, Radiographic and Thermographic Evaluation of Extremity Fractures in Calves. kvj. 2025;18(2):112-2.

13520    13521       13522   1352314104

14105         14106        14107       14108