Research Article
BibTex RIS Cite

Screening of Antibacterial Effects of Various Trichoderma Isolates on Some Human and Plant Pathogenic Bacteria Under in vitro Conditions

Year 2025, Volume: 16 Issue: 1, 34 - 41, 30.04.2025

Abstract

The increasing global antibacterial resistance constitutes a major public health issue. Consequently, there is a substantial growing need for effective new antibacterial compounds for the treatment and prevention of bacterial infections. This is where the concept of biological control comes into play. In particular, fungi of the Trichoderma Pers. species play a significant role in this biological control. Investigating the effects of biological control agents such as Trichoderma spp. in combating pathogens and controlling diseases in both agricultural production and human infections represents an important area of research. The aim of this study is to determine the antibacterial effects of metabolites from previously isolated local and unique Trichoderma isolates against some plant and human pathogenic bacteria under in vitro conditions. Among the Trichoderma isolates (n=30) tested, 11 showed antibacterial activity against Escherichia coli, 6 against Staphylococcus aureus, 18 against Pseudomonas aeruginosa, 5 against Pseudomonas cichorii, and 20 against P. syringae pv. tomato. Our study shows that antibacterial metabolites obtained from Trichoderma isolates have the potential to control of pathogens.

Project Number

1139B412100971

References

  • Afandi, A. ve Doğruman-Ala, F., (2019). Investigation of the effectiveness of igY antibodies obtained from chickens where immunized with Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa by ELISA. Turk Hij ve Deney Biyol Derg. 76(4):379–90.
  • Anwar, J. ve Iqbal, Z., (2017). Effect of Growth Conditions on Antibacterial Activity of Trichoderma harzianum against Selected Pathogenic Bacteria. Sarhad J Agric. 33(4).
  • Aytar, M., Oryaşın, E., Başbülbül, G. ve Bozdoğan, B., (2019). Standardization Study for Agar Well Diffusion Method. Bartın Univ Int J Nat Appl Sci. 2(2):138–45.
  • Baazeem, A., Almanea, A., Manikandan, P., Alorabi, M., Vijayaraghavan, P. ve Abdel-Hadi, A., (2021). In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum fb10 and its secondary metabolites. J Fungi. 7(5):1–13.
  • Cerna-Vargas, J.P., Santamaría-Hernando, S., Matill, M.A., Rodríguez-Herva, J.J., Daddaou, A., Rodríguez-Palenzuela, P., Krell, T. ve Lopez-Solanilla, E., (2019). Chemoperception of specific amino acids controls phytopathogenicity in Pseudomonas syringae pv. tomato. MBio. 10(5).
  • Dang, H., Kong, Q., Winchester, W., Wan, X., Lei, Y., Zhang, H., Zhao, Y., Liu, X., Xu, B.B., Zhang, B. ve Wang, Z., (2022). Isolation, Identification and Pathogenic Effects of Trichoderma spp. from Auricularia auricula. Advanced Composites and Hybrid Materials, 6(3), 96.
  • De Tommaso, G., Salvatore, M.M., Nicoletti, R., DellaGreca, M., Vinale, F., Bottiglieri, A., Staropoli, A., Salvatore, F., Lorito, M., Iuliano, M. ve Adolfi, A., (2020). Bivalent metal-chelating properties of harzianic acid produced by Trichoderma pleuroticola associated to the gastropod Melarhaphe neritoides. Molecules.25(9).
  • Frieri, M., Kumar, K. ve Boutin, A., (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378.
  • Garcia-Clemente, M., de la Rosa, D., Máiz, L., Girón, R., Blanco, M., Olveira, C., Canton, R. ve Martinez-Garcia, M.A., (2020). Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases. J Clin Med. 9(12):1–32.
  • Genç, F. ve Kaya, O., (2015). Subklinik Mastitisli Sığırlardan Staphylococcus aureus, Streptococcus uberis ve Streptococcus dysgalactiae Etkenlerinin İzolasyonu ve Antibiyotiklere Duyarlılıklarının Belirlenmesi. Animal Health Production and Hygiene, 4(2), 415-419.
  • Liyama, K., Tani, S., Yagi, H., Hashimoto, S., Suga, Y., Tsuchiya, K. ve Furuya, N., (2021). D-Tartrate utilization correlates with phylogenetic subclade in Pseudomonas cichorii. FEMS Microbiol Lett. 4;368(2).
  • Kalyoncu, F, Oskay, M. ve Kalmiş, E., (2010). Bazı Yabani Makrofungus Misellerinin Antimikrobiyal Aktivitelerinin Belirlenmesi. Mantar Dergisi. 1(1):1–8.
  • Karabüyük, F. ve Aysan, Y., (2019). Antibacterial effects of some plant extracts against tomato bacterial speck disease caused by Pseudomonas syringae pv. tomato. J Tekirdag Agric Fac. 16(2):231–43.
  • Leylaie, S. ve Zafari, D., (2018). Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma Species From Vinca Plants. Front Microbiol. 9(JUL):1–16
  • Maral Gül, D. ve Eltem, R., (2022). Bazı Gübre ve Fungisitlerin Trichoderma Türlerinin Büyümesine Etkisinin in vitro Koşullarda İncelenmesi. Anadolu Ege Tarımsal Araştırma Enstitüsü Derg.0225(2):167–81.
  • Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A. ve Osek, J., (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079.
  • Pehlivan, N., Gedik, K., Eltem, R. ve Terzi, E., (2021). Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal (oid) s phytoextraction and bioenergy crop farming. Journal of Hazardous Materials, 403, 123609.
  • Phupiewkham, W, Sirithorn, P, Saksirirat, W. ve Thammasirirak, S., (2015). Antibacterial agents from Trichoderma harzianum strain T9 against pathogenic bacteria. Chiang Mai J Sci. 42(2):304–16.
  • Poirel, L., Madec, J-Y., Lupo, A., Schink, A-K., Kieffer, N., Nordmann, P. ve Schwarz, S., (2018). Antimicrobial Resistance in Escherichia coli. Aarestrup FM, Schwarz S, Shen J, Cavaco L, editors. Microbiol Spectr. 27;6(4):979–80.
  • Pollitt, E.J.G., Szkuta, P.T., Burns, N. ve Foster, S.J., (2018). Staphylococcus aureus infection dynamics. PLoS Pathog.14(6):1–27.
  • Saleh, R.M., Kabli, S.A., Al-Garni, S.M. ve Mohamed, S.A., (2011). Screening and production of antibacterial compound from Trichoderma spp. against human-pathogenic bacteria. African J Microbiol Res. 5(13):1619–28.
  • Saravanakumar, K., Chelliah, R., Ramakrishnan, S.R., Kathiresan, K., Oh, D.H. ve Wang, M.H., (2018). Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microb Pathog. 115,338–42.
  • Sargın, S., Gezgin, Y., Eltem, R. ve Vardar, F., (2013). Micropropagule production from Trichoderma harzianum EGE-K38 using solid-state fermentation and a comparative study for drying methods. Turkish J Biol. 37(2):139–46.
  • Sesli, E., Asan, A. ve Selçuk, F. (edlr.) Abacı Günyar, Ö., Akata, I., Akgül, H., Aktaş, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H.H., Erdoğdu, M., Ergül, C.C., Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu.,Yoltaş, A. (2020). Türkiye Mantarları Listesi. İstanbul: Ali Nihat Gökyiğit Vakfı Yayınları.
  • Sharma, D., Pramanik, A. ve Agrawal, P.K., (2016). Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech. 6(2):1–14.
  • Shruthi, S. ve Sangeetha, K., (2022). Comparison of Antibacterial Activity of Ethyl Acetate Fractions Separated from Trichoderma with Commercial Antibiotic Methicillin Against Drug-Resistant Bacteria using Minimum Inhibitory Concentration Method. Cardiometry. (25):1101–7.
  • Turgay, G., Eren, E., Eltem, R., Çakır, D. ve Aydemir, B. Ç., (2023). Molecular characterization of Trichoderma spp. isolates in mushroom‐growing farms in Turkey and their effects on Agaricus bisporus production. Plant Pathology, 72(7), 1272-1282.
  • Zhang, J.C., Chen, G.Y., Li, X.Z., Hu, M., Wang, B.Y., Ruan, B.H., Zhou, H., Zhao, L.X., Zhou, J., Ding, Z.T. ve Yang, Y.B., (2017). Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat Prod Res.31(23):2745–52.

Çeşitli Trichoderma İzolatlarının Bazı İnsan ve Bitki Patojeni Bakteriler Üzerindeki Antibakteriyel Etkisinin in vitro Koşullarda Taranması

Year 2025, Volume: 16 Issue: 1, 34 - 41, 30.04.2025

Abstract

Küresel çapta antibakteriyel direncin giderek artması büyük bir halk sağlığı sorununu oluşturmaktadır. Dolayısıyla bakteriyel enfeksiyonların tedavi edilmesi ve önlenmesi için etkili yeni antibakteriyel bileşiklere duyulan ihtiyaç büyük ölçüde artmaktadır. Bu noktada devreye biyolojik mücadele kavramı girmektedir. Özellikle Trichoderma Pers. türü funguslar bu biyolojik mücadelede büyük rol oynamaktadırlar. Tarımsal üretimde ve insan enfeksiyonlarında patojenlerle mücadele ile hastalık kontrolünü sağlamada Trichoderma spp. gibi biyolojik mücadele etmenlerinin etkilerinin incelenmesi önemli bir alanı oluşturmaktadır. Çalışmanın amacı bazı bitki ve insan patojeni bakterilere karşı daha önceki çalışmalar kapsamında izole edilmiş yerel ve özgün Trichoderma izolatlarının metabolitlerinin in vitro koşullarda antibakteriyel etkilerinin belirlenmesidir. Trichoderma izolatları (n=30) arasından antibakteriyel etkiye sahip Escherichia coli’ye karşı 11, Staphylococcus aureus’a karşı 6, Pseudomonas aeruginosa’ya karşı 18, Pseudomonas cichorii’ye karşı 5 ve P. syringae pv. tomato’ya karşı 20 adet izolat tespit edilmiştir. Çalışmamız Trichoderma izolatlarından elde edilecek antibakteriyel metabolitlerin patojenler ile mücadelede potansiyelinin olduğunu göstermektedir.

Ethical Statement

Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur (Kemal KARACA, Melise İPHAR, Rengin ELTEM).

Supporting Institution

TÜBİTAK

Project Number

1139B412100971

Thanks

Gerçekleştirilen çalışma “2209-B Üniversite Öğrencileri Sanayi Yönelik Araştırma Projeleri Destekleme Programı” 1139B412100971 nolu proje ile desteklenmiştir. Tübitak BİDEB birimine mali destekleri için teşekkür ederiz.

References

  • Afandi, A. ve Doğruman-Ala, F., (2019). Investigation of the effectiveness of igY antibodies obtained from chickens where immunized with Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa by ELISA. Turk Hij ve Deney Biyol Derg. 76(4):379–90.
  • Anwar, J. ve Iqbal, Z., (2017). Effect of Growth Conditions on Antibacterial Activity of Trichoderma harzianum against Selected Pathogenic Bacteria. Sarhad J Agric. 33(4).
  • Aytar, M., Oryaşın, E., Başbülbül, G. ve Bozdoğan, B., (2019). Standardization Study for Agar Well Diffusion Method. Bartın Univ Int J Nat Appl Sci. 2(2):138–45.
  • Baazeem, A., Almanea, A., Manikandan, P., Alorabi, M., Vijayaraghavan, P. ve Abdel-Hadi, A., (2021). In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum fb10 and its secondary metabolites. J Fungi. 7(5):1–13.
  • Cerna-Vargas, J.P., Santamaría-Hernando, S., Matill, M.A., Rodríguez-Herva, J.J., Daddaou, A., Rodríguez-Palenzuela, P., Krell, T. ve Lopez-Solanilla, E., (2019). Chemoperception of specific amino acids controls phytopathogenicity in Pseudomonas syringae pv. tomato. MBio. 10(5).
  • Dang, H., Kong, Q., Winchester, W., Wan, X., Lei, Y., Zhang, H., Zhao, Y., Liu, X., Xu, B.B., Zhang, B. ve Wang, Z., (2022). Isolation, Identification and Pathogenic Effects of Trichoderma spp. from Auricularia auricula. Advanced Composites and Hybrid Materials, 6(3), 96.
  • De Tommaso, G., Salvatore, M.M., Nicoletti, R., DellaGreca, M., Vinale, F., Bottiglieri, A., Staropoli, A., Salvatore, F., Lorito, M., Iuliano, M. ve Adolfi, A., (2020). Bivalent metal-chelating properties of harzianic acid produced by Trichoderma pleuroticola associated to the gastropod Melarhaphe neritoides. Molecules.25(9).
  • Frieri, M., Kumar, K. ve Boutin, A., (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378.
  • Garcia-Clemente, M., de la Rosa, D., Máiz, L., Girón, R., Blanco, M., Olveira, C., Canton, R. ve Martinez-Garcia, M.A., (2020). Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases. J Clin Med. 9(12):1–32.
  • Genç, F. ve Kaya, O., (2015). Subklinik Mastitisli Sığırlardan Staphylococcus aureus, Streptococcus uberis ve Streptococcus dysgalactiae Etkenlerinin İzolasyonu ve Antibiyotiklere Duyarlılıklarının Belirlenmesi. Animal Health Production and Hygiene, 4(2), 415-419.
  • Liyama, K., Tani, S., Yagi, H., Hashimoto, S., Suga, Y., Tsuchiya, K. ve Furuya, N., (2021). D-Tartrate utilization correlates with phylogenetic subclade in Pseudomonas cichorii. FEMS Microbiol Lett. 4;368(2).
  • Kalyoncu, F, Oskay, M. ve Kalmiş, E., (2010). Bazı Yabani Makrofungus Misellerinin Antimikrobiyal Aktivitelerinin Belirlenmesi. Mantar Dergisi. 1(1):1–8.
  • Karabüyük, F. ve Aysan, Y., (2019). Antibacterial effects of some plant extracts against tomato bacterial speck disease caused by Pseudomonas syringae pv. tomato. J Tekirdag Agric Fac. 16(2):231–43.
  • Leylaie, S. ve Zafari, D., (2018). Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma Species From Vinca Plants. Front Microbiol. 9(JUL):1–16
  • Maral Gül, D. ve Eltem, R., (2022). Bazı Gübre ve Fungisitlerin Trichoderma Türlerinin Büyümesine Etkisinin in vitro Koşullarda İncelenmesi. Anadolu Ege Tarımsal Araştırma Enstitüsü Derg.0225(2):167–81.
  • Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A. ve Osek, J., (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079.
  • Pehlivan, N., Gedik, K., Eltem, R. ve Terzi, E., (2021). Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal (oid) s phytoextraction and bioenergy crop farming. Journal of Hazardous Materials, 403, 123609.
  • Phupiewkham, W, Sirithorn, P, Saksirirat, W. ve Thammasirirak, S., (2015). Antibacterial agents from Trichoderma harzianum strain T9 against pathogenic bacteria. Chiang Mai J Sci. 42(2):304–16.
  • Poirel, L., Madec, J-Y., Lupo, A., Schink, A-K., Kieffer, N., Nordmann, P. ve Schwarz, S., (2018). Antimicrobial Resistance in Escherichia coli. Aarestrup FM, Schwarz S, Shen J, Cavaco L, editors. Microbiol Spectr. 27;6(4):979–80.
  • Pollitt, E.J.G., Szkuta, P.T., Burns, N. ve Foster, S.J., (2018). Staphylococcus aureus infection dynamics. PLoS Pathog.14(6):1–27.
  • Saleh, R.M., Kabli, S.A., Al-Garni, S.M. ve Mohamed, S.A., (2011). Screening and production of antibacterial compound from Trichoderma spp. against human-pathogenic bacteria. African J Microbiol Res. 5(13):1619–28.
  • Saravanakumar, K., Chelliah, R., Ramakrishnan, S.R., Kathiresan, K., Oh, D.H. ve Wang, M.H., (2018). Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microb Pathog. 115,338–42.
  • Sargın, S., Gezgin, Y., Eltem, R. ve Vardar, F., (2013). Micropropagule production from Trichoderma harzianum EGE-K38 using solid-state fermentation and a comparative study for drying methods. Turkish J Biol. 37(2):139–46.
  • Sesli, E., Asan, A. ve Selçuk, F. (edlr.) Abacı Günyar, Ö., Akata, I., Akgül, H., Aktaş, S., Alkan, S., Allı, H., Aydoğdu, H., Berikten, D., Demirel, K., Demirel, R., Doğan, H.H., Erdoğdu, M., Ergül, C.C., Eroğlu, G., Giray, G., Halikî Uztan, A., Kabaktepe, Ş., Kadaifçiler, D., Kalyoncu, F., Karaltı, İ., Kaşık, G., Kaya, A., Keleş, A., Kırbağ, S., Kıvanç, M., Ocak, İ., Ökten, S., Özkale, E., Öztürk, C., Sevindik, M., Şen, B., Şen, İ., Türkekul, İ., Ulukapı, M., Uzun, Ya., Uzun, Yu.,Yoltaş, A. (2020). Türkiye Mantarları Listesi. İstanbul: Ali Nihat Gökyiğit Vakfı Yayınları.
  • Sharma, D., Pramanik, A. ve Agrawal, P.K., (2016). Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech. 6(2):1–14.
  • Shruthi, S. ve Sangeetha, K., (2022). Comparison of Antibacterial Activity of Ethyl Acetate Fractions Separated from Trichoderma with Commercial Antibiotic Methicillin Against Drug-Resistant Bacteria using Minimum Inhibitory Concentration Method. Cardiometry. (25):1101–7.
  • Turgay, G., Eren, E., Eltem, R., Çakır, D. ve Aydemir, B. Ç., (2023). Molecular characterization of Trichoderma spp. isolates in mushroom‐growing farms in Turkey and their effects on Agaricus bisporus production. Plant Pathology, 72(7), 1272-1282.
  • Zhang, J.C., Chen, G.Y., Li, X.Z., Hu, M., Wang, B.Y., Ruan, B.H., Zhou, H., Zhao, L.X., Zhou, J., Ding, Z.T. ve Yang, Y.B., (2017). Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat Prod Res.31(23):2745–52.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Industrial Microbiology, Mycology
Journal Section RESEARCH ARTICLE
Authors

Kemal Karaca 0000-0003-2193-2854

Melise İphar 0009-0006-2190-5601

Rengin Eltem 0000-0002-0642-7676

Project Number 1139B412100971
Publication Date April 30, 2025
Submission Date December 24, 2024
Acceptance Date January 9, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

APA Karaca, K., İphar, M., & Eltem, R. (2025). Çeşitli Trichoderma İzolatlarının Bazı İnsan ve Bitki Patojeni Bakteriler Üzerindeki Antibakteriyel Etkisinin in vitro Koşullarda Taranması. Mantar Dergisi, 16(1), 34-41. https://doi.org/10.30708/mantar.1606682

The works submitted to our journals are first judged grammatically. After this phase, articles are sent two reviewers. If necessary, the third reviewer is assessed. In the publication of works, a decision is made by evaluating the level of contribution to science and readers within the criteria specified in the writing rules. Reviewers are requested to submit their assessments within 30 days at the latest. The reviewers' evaluations and the answers to these evaluations are reviewed by the editor and it is decided whether the work will be published or not.

International Peer Reviewed Journal

The journal doesn’t have APC or any submission charges

Creative Commons Lisansı
This work is licensed under a Creative Commons Attribution 4.0 License