Research Article
BibTex RIS Cite

Deniz Kabuklarının Biyojenik Yapısı: Bandırma Körfezi, Marmara Denizi'nden Toplanan Flexopecten glaber'in (Linnaeus, 1758) Mineralojik ve Yüzey Özellikleri

Year 2025, Volume: 7 Issue: 1, 29 - 36, 30.06.2025
https://doi.org/10.51756/marlife.1714618

Abstract

Bu çalışma, Flexopecten glaber türüne ait deniz kabuklarının mineralojik yapısını ve yüzey karakteristiklerini belirlemek amacıyla gerçekleştirilmiştir. Araştırma kapsamında, PZC (sıfır yük noktası), XRD (X-ışını kırınımı), SEM-EDS (Taramalı Elektron Mikroskobu – Enerji Dağılımlı Spektroskopi) ve FT-IR (Fourier Dönüşümlü Kızılötesi Spektroskopi) teknikleri kullanılarak kapsamlı bir karakterizasyon yapılmıştır. PZC analizi sonucunda, kabuk yüzeyinin sıfır yük noktası pH 8,33 olarak belirlenmiş ve bu değer, yüzeyin pH 8,33'ün altında pozitif, üzerinde ise negatif yük taşıdığını ortaya koymuştur. Bu durum, kabuk yüzeyinin çevresel pH değişikliklerine karşı elektrostatik davranışlarında önemli farklılıklar gösterebileceğini işaret etmektedir. XRD analizleri, kabukların kristal yapısının büyük oranda aragonit formundaki kalsiyum karbonat (CaCO₃) olduğunu ortaya koymuştur. EDS sonuçları, kabuk kompozisyonunun %55,3 oranında karbon, %30,2 oranında kalsiyum ve %5,8 oranında azot içerdiğini ortaya koymuştur. Ayrıca, eser miktarda sodyum (%0,3), magnezyum (%0,1) ve kükürt (%0,1) elementleri de tespit edilmiştir. Bu veriler, kabuk yapısının hem inorganik hem de organik bileşenlerden oluşan kompleks bir biyomalzeme olduğunu göstermektedir. Elde edilen bulgular, Flexopecten glaber kabuklarının çevresel faktörlere duyarlı ve denizel organizmaların çevresel değişimlere verdiği yanıtların anlaşılması açısından önemli veriler ortaya koymaktadır. Bu çalışma, çevresel adaptasyon mekanizmalarının anlaşılması ve sürdürülebilir deniz kaynaklarının değerlendirilmesi açısından önemli bilimsel katkılar sunmaktadır.

Project Number

113O381

References

  • Alkhaldi, H., Alharthi, S., Alharthi, S., AlGhamdi, H. A., AlZahrani, Y. M., Mahmoud, S. A., Amin, L. G., AlShaalan, N. H., Boraie, W. E., Attia, M. S., Al-Gahtany, S. A., Aldaleeli, N., Ghobashy, M. M., Sharshir, A. I., Madani, M., Darwesh, R., & Abazal, S. F. (2024). Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: A review. RSC Advances, 14, 33143-33190. https://doi.org/10.1039/D4RA05269B
  • Al-Maliky, E. A., Gzar, H. A., & Al-Azawy, M. G. (2021). Determination of point of zero charge (PZC) of concrete particles adsorbents. IOP Conference Series Materials Science and Engineering, 1184(1), 012004. https://doi.org/10.1088/1757-899x/1184/1/012004
  • Bakatula, E. N., Richard, D., Neculita, C. M., & Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25(8), 7823-7833. https://doi.org/10.1007/s11356-017-1115-7
  • Bayraklı, B., Yildiz, H., Bektaş, S., & Kizilkaya, B. (2024). Reassessment of Rapa whelk shells and an innovative roadmap for industrial applications: Reassessment of Rapa whelk shells. Marine Reports, 3(1), 21-31. https://doi.org/10.5281/zenodo.12354616
  • Bayram, O., Özkan, U., Şahin, H. T., & Göde, F. (2023). Malachite green (cationic dye) removal with modified Pinus brutia biochar. International Journal of Phytoremediation, 26(3), 416-426. https://doi.org/10.1080/15226514.2023.2246573
  • Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Advances, 10(49), 29543-29554. https://doi.org/10.1039/d0ra04271d
  • Chen, Y., Feng, Y., Deveaux, J. G., Masoud, M. A., Chandra, F. S., Chen, H., Zhang, D., & Feng, L. (2019). Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals, 9(2), 68. https://doi.org/10.3390/min9020068
  • Cristiano, E., Hu, Y., Sigfried, M., Kaplan, D., & Nitsche, H. (2011). A comparison of point of zero charge measurement methodology. Clays and Clay Minerals, 59(2), 107-115. https://doi.org/10.1346/ccmn.2011.0590201
  • de Moura, A. A., Straioto, H., Martins, W. M., de Araújo, T. P., Diório, A., Gil, G. A., Moisés, M. P., Dornellas Barros, M. A. S. (2023). Eco-friendly synthesis of a novel adsorbent from sugarcane and high-pressure boiler water. Environmental Technology, 45(18), 3621-3634. https://doi.org/10.1080/09593330.2023.2224064
  • Faizal, A. N. M., Putra, N. R., & Zaini, M. A. A. (2022). Insight into the adsorptive mechanisms of methyl violet and reactive orange from water-a short review. Particulate Science and Technology, 41(5), 730-739. https://doi.org/10.1080/02726351.2022.2140462
  • Fallah, N., Bloise, E., Santoro, D., & Mele, G. (2023). State of art and perspectives in catalytic ozonation for removal of organic pollutants in water: Influence of process and operational parameters. Catalysts, 13(2), 324. https://doi.org/10.3390/catal13020324
  • Fiol, N., & Villaescusa, I. (2008). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79-84. https://doi.org/10.1007/s10311-008-0139-0
  • Ghaedi, S., Rajabi, H., Mosleh, M. H., Babakhani, P., & Sedighi, M. (2024). UiO-67 metal-organic framework loaded on hardwood biochar for sustainable management of environmental boron contaminations. Journal of Environmental Chemical Engineering, 12(6), 114511. https://doi.org/10.1016/j.jece.2024.114511
  • Hamester, M. R. R.; Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research, 15(2), 204-208. https://doi.org/10.1590/S1516-14392012005000014
  • Hossain, M. S., & Ahmed, S. (2023). Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. Journal of Saudi Chemical Society, 27(3), 101649. https://doi.org/10.1016/j.jscs.2023.101649
  • Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. International Journal of Agricultural Policy and Research, 3(1), 53-59. https://doi.org/10.15739/IJAPR.026
  • Khan, F., Naeem, A., Din, I. U., Saeed, T., Alotaibi, M. A., Alharthi, A. I., Habib, A., & Malik, T. (2021). Synthesis, characterization and adsorption studies of h-BN crystal for efficient removal of Cd²⁺ from aqueous solution. Ceramics International, 47(4), 4749-4757. https://doi.org/10.1016/j.ceramint.2020.10.044
  • Kızılkaya, B., Yıldız, H., & Vural, P. (2024a). Shell composition analysis of european flat oyster (Ostrea edulis, Linnaeus 1758) From Marmara Sea, Türkiye: insights into chemical properties. Marine Science and Technology Bulletin, 13(2), 142-150. https://doi.org/10.33714/masteb.1493896
  • Kızılkaya, B., Yıldız, H., Acarlı, S., & Vural, P. (2024b). Investigation of the chemical composition of the shell structure of Mytilus galloprovincialis mussel from Kefken, Türkiye. Acta Natura et Scientia, 5(1), 57-68. https://doi.org/10.61326/actanatsci.v5i1.7
  • Kosmulski, M. (2002). The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science, 99(3), 255-264. https://doi.org/10.1016/s0001-8686(02)00080-5
  • Kosmulski, M. (2018). The pH dependent surface charging and points of zero charge. VII. Update. Advances in Colloid and Interface Science, 251, 115-138. https://doi.org/10.1016/j.cis.2017.10.005
  • Kosmulski, M. (2021). The pH dependent surface charging and points of zero charge. IX. Update. Advances in Colloid and Interface Science, 296, 102519. https://doi.org/10.1016/j.cis.2021.102519
  • Kosmulski, M. (2023). The pH dependent surface charging and points of zero charge. X. Update. Advances in Colloid and Interface Science, 319, 102973. https://doi.org/10.1016/j.cis.2023.102973
  • Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015) The power of databases: the RRUFF project. In Armbruster, T., & Danisi, R. M. (Eds.) Highlights in Mineralogical Crystallography Berlin, Germany, W. De Gruyter, pp 1-30.
  • Louis, V., Besseau, L., & Lartaud, F. (2022). Step in time: biomineralisation of Bivalve’s shell. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.906085
  • Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NIO. Industrial & Engineering Chemistry Research, 50(17), 10017-10023. https://doi.org/10.1021/ie200271d
  • Mititelu, M.; Stanciu, G.; Drăgănescu, D.; Ioniță, A.C.; Neacșu, S.M.; Dinu, M.; Stefan-van Staden, R.-I.; Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Mar. Drugs, 20, 25. https://doi.org/10.3390/md20010025
  • Monroy, L. H., Tavares, J. R., & Dumont, M. J. (2025). Photodegradation of ciprofloxacin using an alginate/TiO2 hydrogel for water remediation. Journal of Environmental Chemical Engineering, 13(2), 115868. https://doi.org/10.1016/j.jece.2025.115868
  • Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Musa Chiroma, S., Bin Abdul Rahim, E., Aris Mohd Moklas, M., & Abu Bakar Zakaria, Z. (2019). Cockle shell-derived calcium carbonate (aragonite) nanoparticles: A dynamite to nanomedicine. Applied Sciences, 9(14), 2897. https://doi.org/10.3390/app9142897
  • Qin, K., Zheng, Z., Wang, J., Pan, H., & Tang, R. (2024). Biomineralization strategy: from material manufacturing to biological regulation. Giant, 19, 100317. https://doi.org/10.1016/j.giant.2024.100317
  • Reddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb.2013.00314
  • Tan, W., Lu, S., Liu, F., Feng, X., He, J., & Koopal, L. K. (2008). Determınatıon of The Poınt-Of-Zero charge of manganese oxıdes wıth different methods including an improved salt titration method. Soil Science, 173(4), 277-286. https://doi.org/10.1097/ss.0b013e31816d1f12
  • Zuyi, T., & Taiwei, C. (2003). Points of Zero Charge and potentiometric titrations. Adsorption Science & Technology, 21(6), 607-616. https://doi.org/10.1260/026361703771953622

Biogenic Structure of Seashells: Mineralogical and Surface Properties of Flexopecten glaber (Linnaeus, 1758) Collected from Bandırma Bay, the Sea of Marmara

Year 2025, Volume: 7 Issue: 1, 29 - 36, 30.06.2025
https://doi.org/10.51756/marlife.1714618

Abstract

This study was conducted to determine the mineralogical structure and surface characteristics of marine shells belonging to the species Flexopecten glaber (Linnaeus, 1758). In the study, characterization was performed using PZC (point of zero charge), XRD (X-ray diffraction), SEM-EDS (Scanning Electron Microscopy – Energy Dispersive Spectroscopy), and FT-IR (Fourier Transform Infrared Spectroscopy) techniques. As a result of the PZC analysis, the zero point charge of the shell surface was determined to be at pH 8.33, indicating that the surface carries a positive charge below pH 8.33 and a negative charge above this value. This suggests that the shell surface may exhibit significant differences in electrostatic behavior in response to environmental pH changes. XRD analyses revealed that the crystal structure of the shells was predominantly showed as calcium carbonate (CaCO₃) form. EDS results showed that the shell composition contains 54.9% carbon, 7.5% calcium, and 6.1% nitrogen. Additionally, trace amounts of sodium (0.2%), magnesium (0.1%), and sulfur (0.1%) were detected. These data indicate that the shell structure is a complex biomaterial composed of both inorganic and organic components. The results provide important data for understanding the sensitivity of Flexopecten glaber shells to environmental factors and the responses of marine organisms to environmental changes. This study offers significant scientific contributions for understanding environmental adaptation mechanisms and the sustainable management of marine resources.

Project Number

113O381

References

  • Alkhaldi, H., Alharthi, S., Alharthi, S., AlGhamdi, H. A., AlZahrani, Y. M., Mahmoud, S. A., Amin, L. G., AlShaalan, N. H., Boraie, W. E., Attia, M. S., Al-Gahtany, S. A., Aldaleeli, N., Ghobashy, M. M., Sharshir, A. I., Madani, M., Darwesh, R., & Abazal, S. F. (2024). Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: A review. RSC Advances, 14, 33143-33190. https://doi.org/10.1039/D4RA05269B
  • Al-Maliky, E. A., Gzar, H. A., & Al-Azawy, M. G. (2021). Determination of point of zero charge (PZC) of concrete particles adsorbents. IOP Conference Series Materials Science and Engineering, 1184(1), 012004. https://doi.org/10.1088/1757-899x/1184/1/012004
  • Bakatula, E. N., Richard, D., Neculita, C. M., & Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25(8), 7823-7833. https://doi.org/10.1007/s11356-017-1115-7
  • Bayraklı, B., Yildiz, H., Bektaş, S., & Kizilkaya, B. (2024). Reassessment of Rapa whelk shells and an innovative roadmap for industrial applications: Reassessment of Rapa whelk shells. Marine Reports, 3(1), 21-31. https://doi.org/10.5281/zenodo.12354616
  • Bayram, O., Özkan, U., Şahin, H. T., & Göde, F. (2023). Malachite green (cationic dye) removal with modified Pinus brutia biochar. International Journal of Phytoremediation, 26(3), 416-426. https://doi.org/10.1080/15226514.2023.2246573
  • Chakraborty, A., Parveen, S., Chanda, D. K., & Aditya, G. (2020). An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Advances, 10(49), 29543-29554. https://doi.org/10.1039/d0ra04271d
  • Chen, Y., Feng, Y., Deveaux, J. G., Masoud, M. A., Chandra, F. S., Chen, H., Zhang, D., & Feng, L. (2019). Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals, 9(2), 68. https://doi.org/10.3390/min9020068
  • Cristiano, E., Hu, Y., Sigfried, M., Kaplan, D., & Nitsche, H. (2011). A comparison of point of zero charge measurement methodology. Clays and Clay Minerals, 59(2), 107-115. https://doi.org/10.1346/ccmn.2011.0590201
  • de Moura, A. A., Straioto, H., Martins, W. M., de Araújo, T. P., Diório, A., Gil, G. A., Moisés, M. P., Dornellas Barros, M. A. S. (2023). Eco-friendly synthesis of a novel adsorbent from sugarcane and high-pressure boiler water. Environmental Technology, 45(18), 3621-3634. https://doi.org/10.1080/09593330.2023.2224064
  • Faizal, A. N. M., Putra, N. R., & Zaini, M. A. A. (2022). Insight into the adsorptive mechanisms of methyl violet and reactive orange from water-a short review. Particulate Science and Technology, 41(5), 730-739. https://doi.org/10.1080/02726351.2022.2140462
  • Fallah, N., Bloise, E., Santoro, D., & Mele, G. (2023). State of art and perspectives in catalytic ozonation for removal of organic pollutants in water: Influence of process and operational parameters. Catalysts, 13(2), 324. https://doi.org/10.3390/catal13020324
  • Fiol, N., & Villaescusa, I. (2008). Determination of sorbent point zero charge: Usefulness in sorption studies. Environmental Chemistry Letters, 7(1), 79-84. https://doi.org/10.1007/s10311-008-0139-0
  • Ghaedi, S., Rajabi, H., Mosleh, M. H., Babakhani, P., & Sedighi, M. (2024). UiO-67 metal-organic framework loaded on hardwood biochar for sustainable management of environmental boron contaminations. Journal of Environmental Chemical Engineering, 12(6), 114511. https://doi.org/10.1016/j.jece.2024.114511
  • Hamester, M. R. R.; Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Materials Research, 15(2), 204-208. https://doi.org/10.1590/S1516-14392012005000014
  • Hossain, M. S., & Ahmed, S. (2023). Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement. Journal of Saudi Chemical Society, 27(3), 101649. https://doi.org/10.1016/j.jscs.2023.101649
  • Ituen, E. U. (2015). Mechanical and chemical properties of selected mullusc shells in Nigeria. International Journal of Agricultural Policy and Research, 3(1), 53-59. https://doi.org/10.15739/IJAPR.026
  • Khan, F., Naeem, A., Din, I. U., Saeed, T., Alotaibi, M. A., Alharthi, A. I., Habib, A., & Malik, T. (2021). Synthesis, characterization and adsorption studies of h-BN crystal for efficient removal of Cd²⁺ from aqueous solution. Ceramics International, 47(4), 4749-4757. https://doi.org/10.1016/j.ceramint.2020.10.044
  • Kızılkaya, B., Yıldız, H., & Vural, P. (2024a). Shell composition analysis of european flat oyster (Ostrea edulis, Linnaeus 1758) From Marmara Sea, Türkiye: insights into chemical properties. Marine Science and Technology Bulletin, 13(2), 142-150. https://doi.org/10.33714/masteb.1493896
  • Kızılkaya, B., Yıldız, H., Acarlı, S., & Vural, P. (2024b). Investigation of the chemical composition of the shell structure of Mytilus galloprovincialis mussel from Kefken, Türkiye. Acta Natura et Scientia, 5(1), 57-68. https://doi.org/10.61326/actanatsci.v5i1.7
  • Kosmulski, M. (2002). The significance of the difference in the point of zero charge between rutile and anatase. Advances in Colloid and Interface Science, 99(3), 255-264. https://doi.org/10.1016/s0001-8686(02)00080-5
  • Kosmulski, M. (2018). The pH dependent surface charging and points of zero charge. VII. Update. Advances in Colloid and Interface Science, 251, 115-138. https://doi.org/10.1016/j.cis.2017.10.005
  • Kosmulski, M. (2021). The pH dependent surface charging and points of zero charge. IX. Update. Advances in Colloid and Interface Science, 296, 102519. https://doi.org/10.1016/j.cis.2021.102519
  • Kosmulski, M. (2023). The pH dependent surface charging and points of zero charge. X. Update. Advances in Colloid and Interface Science, 319, 102973. https://doi.org/10.1016/j.cis.2023.102973
  • Lafuente, B., Downs, R. T., Yang, H., & Stone, N. (2015) The power of databases: the RRUFF project. In Armbruster, T., & Danisi, R. M. (Eds.) Highlights in Mineralogical Crystallography Berlin, Germany, W. De Gruyter, pp 1-30.
  • Louis, V., Besseau, L., & Lartaud, F. (2022). Step in time: biomineralisation of Bivalve’s shell. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.906085
  • Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NIO. Industrial & Engineering Chemistry Research, 50(17), 10017-10023. https://doi.org/10.1021/ie200271d
  • Mititelu, M.; Stanciu, G.; Drăgănescu, D.; Ioniță, A.C.; Neacșu, S.M.; Dinu, M.; Stefan-van Staden, R.-I.; Moroșan, E. (2022). Mussel shells, a valuable calcium resource for the pharmaceutical industry. Mar. Drugs, 20, 25. https://doi.org/10.3390/md20010025
  • Monroy, L. H., Tavares, J. R., & Dumont, M. J. (2025). Photodegradation of ciprofloxacin using an alginate/TiO2 hydrogel for water remediation. Journal of Environmental Chemical Engineering, 13(2), 115868. https://doi.org/10.1016/j.jece.2025.115868
  • Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Musa Chiroma, S., Bin Abdul Rahim, E., Aris Mohd Moklas, M., & Abu Bakar Zakaria, Z. (2019). Cockle shell-derived calcium carbonate (aragonite) nanoparticles: A dynamite to nanomedicine. Applied Sciences, 9(14), 2897. https://doi.org/10.3390/app9142897
  • Qin, K., Zheng, Z., Wang, J., Pan, H., & Tang, R. (2024). Biomineralization strategy: from material manufacturing to biological regulation. Giant, 19, 100317. https://doi.org/10.1016/j.giant.2024.100317
  • Reddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb.2013.00314
  • Tan, W., Lu, S., Liu, F., Feng, X., He, J., & Koopal, L. K. (2008). Determınatıon of The Poınt-Of-Zero charge of manganese oxıdes wıth different methods including an improved salt titration method. Soil Science, 173(4), 277-286. https://doi.org/10.1097/ss.0b013e31816d1f12
  • Zuyi, T., & Taiwei, C. (2003). Points of Zero Charge and potentiometric titrations. Adsorption Science & Technology, 21(6), 607-616. https://doi.org/10.1260/026361703771953622
There are 33 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Harun Yıldız 0000-0002-8229-6903

Bayram Kızılkaya 0000-0002-3916-3734

Project Number 113O381
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date June 4, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Yıldız, H., & Kızılkaya, B. (2025). Biogenic Structure of Seashells: Mineralogical and Surface Properties of Flexopecten glaber (Linnaeus, 1758) Collected from Bandırma Bay, the Sea of Marmara. Marine and Life Sciences, 7(1), 29-36. https://doi.org/10.51756/marlife.1714618

Flag Counter