Research Article
BibTex RIS Cite
Year 2025, Volume: 38 Issue: 2, 158 - 170, 30.05.2025
https://doi.org/10.5472/marumj.1708769

Abstract

References

  • Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015;15:545-58. doi:10.1038/nri3871.
  • Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023;186:1309-27. doi:10.1016/j.cell.2023.03.008.
  • Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2010;9:520-32. doi:10.1016/s1474-4422(10)70064-8.
  • Walton C. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler 2020;26:1816-9. doi:10.1177/135.245.8520970841.
  • Sorensen PS. The apparently milder course of multiple sclerosis: changes in the diagnostic criteria, therapy and natural history. Brain 2020;143:2296-308. doi:10.1093/brain/ awaa145.
  • Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 2015;127-8: doi:10.1016/j.pneurobio.2015.02.003.
  • Franklin RJM, Ffrench-Constant C. Regenerating CNS myelin – from mechanisms to experimental medicines. Nat Rev Neurosci 2017;18:753-69.
  • Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 2001;11:107-16.
  • Carlton WW. Response of mice to the chelating agents sodium diethyldithiocarbamate, alpha-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharmacol 1966;8:512-21.
  • Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 1998;92:38-49.
  • Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022;17:34.
  • Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. doi:10.5142/ jgr.2012.36.4.342.
  • Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:759-61.
  • Kaneko H, Nakanishi K. Proof of the mysterious efficacy of ginseng: basic and clinical trials: clinical effects of medical ginseng, Korean red ginseng: specifically, its anti-stress action for prevention of disease. J Pharmacol Sci 2004;95:158-62.
  • Karmazyn M, Moey M, Gan XT. Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs 2011;71:1989-2008.
  • Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in the central nervous system. J Ginseng Res 2013;37:8-29.
  • Jang M, Lee MJ, Kim CS, Cho IH. Korean red ginseng extract attenuates 3-nitropropionic acid-induced Huntington’slike symptoms. Evid Based Complement Alternat Med 2013;2013:237207.
  • Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011;138:169-78.
  • Lee MJ, Choi JH, Kwon TW, et al. Korean red ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023;47:672-80. doi:10.1016/j.jgr.2023.05.001.
  • Kwon OW, Kim D, Koh E, Yang HJ. Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination. J Ginseng Res 2023;47:319-28. doi:10.1016/j. jgr.2023.09.005.
  • Hochstrasser T, Exner GL, Nyamoya S, et al. Cuprizonecontaining pellets are less potent to ınduce consistent demyelination in the corpus callosum of C57BL/6 mice. J Mol Neurosci 2017;61:617-24. https://doi.org/10.1007/ s12031.017.0903-3
  • Zhu JD, Wang JJ, Zhang XH, Yu Y, Kang ZS. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion. Neural Regen Res 2018;13:664-72. doi:10.4103/1673-5374.230292.
  • Lubrich C, Giesler P, Kipp M, et al. Motor behavioral deficits in the cuprizone model: validity of the rotarod test paradigm. Int J Mol Sci 2022;23:11342. https://doi.org/10.3390/ ijms231911342
  • Madadi S, Pasbakhsh P, Tahmasebi F, Mortezaee K, Khanehzad M, Boroujeni FB, et al. Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab Brain Dis 2019;34:593-603. https://doi.org/10.1007/s11011.019.0385-9
  • Ledwozyw A, Michalak J, Stepień A, et al. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986;155:275-83. doi:10.1016/0009- 8981(86)90247-0
  • Beutler E. Red cell metabolism: A manual of biochemical methods. Orlando, FL: Grune & Stratton, 1984.
  • Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol 1981;77:398- 405. doi: 10.1016/S0076-6879(81)77053-8
  • Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte SOD activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82: 512-20.
  • Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3-4):145-55. doi:10.1016/s0753-3322(03)00043-x.
  • Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJM. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 2003;13:329- 39.
  • Torkildsen O, Brunborg LA, Myhr KM, Bø L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72-6. doi:10.1111/j.1600-0404.2008.01036.x.
  • Zhang L, Xu S, Huang Q, Xu H. N-acetylcysteine attenuates the cuprizone-induced behavioral changes and oligodendrocyte loss in male C57BL/7 mice via its anti-inflammation actions. J Neurosci Res 2018;96:803-16.
  • Yang Q, Lin J, Zhang H, et al. Ginsenoside compound k regulates amyloid β via the Nrf2/keap1 signaling pathway in mice with scopolamine hydrobromide-ınduced memory ımpairments. J Mol Neurosci 2019;67:62-71. doi: 10.1007/ s12031.018.1210-3
  • Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of ginsenosides on the Nrf2 signaling pathway. Adv Exp Med Biol 2021;1328:307- 22. doi:10.1007/978-3-030-73234-9_20.
  • Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim) 2018;12:88-93.
  • Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2013;37:386-94.
  • Nguyen CT, Kim EH. Neuroprotective effects of ginseng on neurological disorders. J Ginseng Res 2021;45:362-71.
  • Cagnacci A, Gazzo I, Stigliani S, et al. Oxidative stress: The role of estrogen and progesterone. J Clin Med 2023;12:7304. doi:10.3390/jcm12237304
  • Stepniak J, Karbownik-Lewinska M. 17β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary. Syst Biol Reprod Med 2016;62:17-21. doi:10.3109/19396.368.2015.1101510
  • Galiano MR, Andrieux A, Deloulme JC, Bosc C, Schweitzer A, Job D, et al. Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes. J Neurosci Res 2006;84:534-41. doi:10.1002/jnr.20960.
  • Naeem AG, El-Naga RN, Michel HE. Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology. 2022;30:2197-209. doi:10.1007/ s10787.022.01045-4.
  • Taylor LC, Gilmore W, Ting JP, Matsushima GK. Cuprizone intoxication induces cell intrinsic alterations in oligodendrocyte progenitor cells that precede demyelination. Glia. 2009;57:882-901.
  • Hibbits N, Pannu R, Wu TJ, Armstrong RC. Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination. ASN Neuro 2009;1:e00013. doi:10.1042/ AN20090032
  • Ghaiad N, Nooh M M, El-Sawalhi M M, Shaheen A A, El-Sherbiny NM. Resveratrol promotes remyelination in cuprizone-induced demyelination model of multiple sclerosis: Modulation of SIRT1, NRF2, and NF-κB signaling pathways. J Neuroimmunol 2017;305, 3-10. doi: 10.1016/j. jneuroim.2017.01.003
  • Motavaf M, Sadeghizadeh M, Babashah S, Zare L, Javan M. Protective effects of a nano-formulation of curcumin against cuprizone-induced demyelination in the mouse corpus callosum. Iran J Pharm Res 2020;19:310-20. doi:10.22037/ ijpr.2020.112.952.14033.
  • Abo Taleb H A, Alghamdi B S. Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J Mol Neurosci 2020;70:386-402. doi: 10.1007/s12031.019.01425-6

Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis

Year 2025, Volume: 38 Issue: 2, 158 - 170, 30.05.2025
https://doi.org/10.5472/marumj.1708769

Abstract

Objective: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterised by demyelination.
The aim of this study was to evaluate the neuroprotective effects of Korean ginseng root extract (KGE) using a cuprizone-induced
demyelination model.
Materials and Methods: C57BL/6 mice were divided into control, demyelination and remyelination groups and each group was
treated with KGE. Demyelination was induced with 0.2% cuprizone in the diet for four weeks. KGE (100 mg/kg) was administered
by gavage during or after the cuprizone exposure. Body weight, food and water intake, and motor performance parameters were
investigated. In addition, glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) malondialdehyde (MDA),
oligodendrocyte transcription factor-2 (OLIG2) and myelin basic protein (MBP) levels were measured in brain samples, while MBP
and glial fibrillary acidic protein (GFAP) expression was assessed by immunohistochemistry and myelin status was examined using
Luxol Fast Blue staining.
Results: Korean ginseng root extract prevented myelin loss, promoted remyelination, and improved motor performance. It reduced
oxidative stress by increasing GSH, GST, and SOD levels while decreasing MDA. KGE also suppressed demyelination by reducing
astrogliosis and restoring OLIG2 and MBP levels.
Conclusion: Korean ginseng root extract exhibits neuroprotective properties during demyelination and promotes remyelination,
highlighting its therapeutic potential for MS.

References

  • Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015;15:545-58. doi:10.1038/nri3871.
  • Charabati M, Wheeler MA, Weiner HL, Quintana FJ. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023;186:1309-27. doi:10.1016/j.cell.2023.03.008.
  • Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2010;9:520-32. doi:10.1016/s1474-4422(10)70064-8.
  • Walton C. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler 2020;26:1816-9. doi:10.1177/135.245.8520970841.
  • Sorensen PS. The apparently milder course of multiple sclerosis: changes in the diagnostic criteria, therapy and natural history. Brain 2020;143:2296-308. doi:10.1093/brain/ awaa145.
  • Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 2015;127-8: doi:10.1016/j.pneurobio.2015.02.003.
  • Franklin RJM, Ffrench-Constant C. Regenerating CNS myelin – from mechanisms to experimental medicines. Nat Rev Neurosci 2017;18:753-69.
  • Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 2001;11:107-16.
  • Carlton WW. Response of mice to the chelating agents sodium diethyldithiocarbamate, alpha-benzoinoxime, and biscyclohexanone oxaldihydrazone. Toxicol Appl Pharmacol 1966;8:512-21.
  • Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, Matsushima GK. Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol 1998;92:38-49.
  • Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022;17:34.
  • Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. doi:10.5142/ jgr.2012.36.4.342.
  • Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:759-61.
  • Kaneko H, Nakanishi K. Proof of the mysterious efficacy of ginseng: basic and clinical trials: clinical effects of medical ginseng, Korean red ginseng: specifically, its anti-stress action for prevention of disease. J Pharmacol Sci 2004;95:158-62.
  • Karmazyn M, Moey M, Gan XT. Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs 2011;71:1989-2008.
  • Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in the central nervous system. J Ginseng Res 2013;37:8-29.
  • Jang M, Lee MJ, Kim CS, Cho IH. Korean red ginseng extract attenuates 3-nitropropionic acid-induced Huntington’slike symptoms. Evid Based Complement Alternat Med 2013;2013:237207.
  • Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011;138:169-78.
  • Lee MJ, Choi JH, Kwon TW, et al. Korean red ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023;47:672-80. doi:10.1016/j.jgr.2023.05.001.
  • Kwon OW, Kim D, Koh E, Yang HJ. Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination. J Ginseng Res 2023;47:319-28. doi:10.1016/j. jgr.2023.09.005.
  • Hochstrasser T, Exner GL, Nyamoya S, et al. Cuprizonecontaining pellets are less potent to ınduce consistent demyelination in the corpus callosum of C57BL/6 mice. J Mol Neurosci 2017;61:617-24. https://doi.org/10.1007/ s12031.017.0903-3
  • Zhu JD, Wang JJ, Zhang XH, Yu Y, Kang ZS. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion. Neural Regen Res 2018;13:664-72. doi:10.4103/1673-5374.230292.
  • Lubrich C, Giesler P, Kipp M, et al. Motor behavioral deficits in the cuprizone model: validity of the rotarod test paradigm. Int J Mol Sci 2022;23:11342. https://doi.org/10.3390/ ijms231911342
  • Madadi S, Pasbakhsh P, Tahmasebi F, Mortezaee K, Khanehzad M, Boroujeni FB, et al. Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab Brain Dis 2019;34:593-603. https://doi.org/10.1007/s11011.019.0385-9
  • Ledwozyw A, Michalak J, Stepień A, et al. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986;155:275-83. doi:10.1016/0009- 8981(86)90247-0
  • Beutler E. Red cell metabolism: A manual of biochemical methods. Orlando, FL: Grune & Stratton, 1984.
  • Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol 1981;77:398- 405. doi: 10.1016/S0076-6879(81)77053-8
  • Mylorie AA, Collins H, Umbles C, Kyle J. Erythrocyte SOD activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 1986; 82: 512-20.
  • Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3-4):145-55. doi:10.1016/s0753-3322(03)00043-x.
  • Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJM. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 2003;13:329- 39.
  • Torkildsen O, Brunborg LA, Myhr KM, Bø L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72-6. doi:10.1111/j.1600-0404.2008.01036.x.
  • Zhang L, Xu S, Huang Q, Xu H. N-acetylcysteine attenuates the cuprizone-induced behavioral changes and oligodendrocyte loss in male C57BL/7 mice via its anti-inflammation actions. J Neurosci Res 2018;96:803-16.
  • Yang Q, Lin J, Zhang H, et al. Ginsenoside compound k regulates amyloid β via the Nrf2/keap1 signaling pathway in mice with scopolamine hydrobromide-ınduced memory ımpairments. J Mol Neurosci 2019;67:62-71. doi: 10.1007/ s12031.018.1210-3
  • Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of ginsenosides on the Nrf2 signaling pathway. Adv Exp Med Biol 2021;1328:307- 22. doi:10.1007/978-3-030-73234-9_20.
  • Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim) 2018;12:88-93.
  • Kim JH, Yi YS, Kim MY, Cho JY. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res 2013;37:386-94.
  • Nguyen CT, Kim EH. Neuroprotective effects of ginseng on neurological disorders. J Ginseng Res 2021;45:362-71.
  • Cagnacci A, Gazzo I, Stigliani S, et al. Oxidative stress: The role of estrogen and progesterone. J Clin Med 2023;12:7304. doi:10.3390/jcm12237304
  • Stepniak J, Karbownik-Lewinska M. 17β-estradiol prevents experimentally-induced oxidative damage to membrane lipids and nuclear DNA in porcine ovary. Syst Biol Reprod Med 2016;62:17-21. doi:10.3109/19396.368.2015.1101510
  • Galiano MR, Andrieux A, Deloulme JC, Bosc C, Schweitzer A, Job D, et al. Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes. J Neurosci Res 2006;84:534-41. doi:10.1002/jnr.20960.
  • Naeem AG, El-Naga RN, Michel HE. Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology. 2022;30:2197-209. doi:10.1007/ s10787.022.01045-4.
  • Taylor LC, Gilmore W, Ting JP, Matsushima GK. Cuprizone intoxication induces cell intrinsic alterations in oligodendrocyte progenitor cells that precede demyelination. Glia. 2009;57:882-901.
  • Hibbits N, Pannu R, Wu TJ, Armstrong RC. Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination. ASN Neuro 2009;1:e00013. doi:10.1042/ AN20090032
  • Ghaiad N, Nooh M M, El-Sawalhi M M, Shaheen A A, El-Sherbiny NM. Resveratrol promotes remyelination in cuprizone-induced demyelination model of multiple sclerosis: Modulation of SIRT1, NRF2, and NF-κB signaling pathways. J Neuroimmunol 2017;305, 3-10. doi: 10.1016/j. jneuroim.2017.01.003
  • Motavaf M, Sadeghizadeh M, Babashah S, Zare L, Javan M. Protective effects of a nano-formulation of curcumin against cuprizone-induced demyelination in the mouse corpus callosum. Iran J Pharm Res 2020;19:310-20. doi:10.22037/ ijpr.2020.112.952.14033.
  • Abo Taleb H A, Alghamdi B S. Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J Mol Neurosci 2020;70:386-402. doi: 10.1007/s12031.019.01425-6
There are 46 citations in total.

Details

Primary Language English
Subjects Surgery (Other)
Journal Section Original Research
Authors

Muhammet Oguzhan Dönmez 0000-0003-0304-3981

Göksel Şener 0000-0001-7444-6193

Tuğba Tunalı-akbay 0000-0002-2091-9298

Güzin Göksun Sivas 0000-0001-7347-490X

Dilek Akakın 0000-0002-1781-3708

Hilal Ünlü 0009-0001-2937-4685

Zafer Gören 0000-0002-8800-4043

Publication Date May 30, 2025
Submission Date February 15, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 38 Issue: 2

Cite

APA Dönmez, M. O., Şener, G., Tunalı-akbay, T., Sivas, G. G., et al. (2025). Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis. Marmara Medical Journal, 38(2), 158-170. https://doi.org/10.5472/marumj.1708769
AMA Dönmez MO, Şener G, Tunalı-akbay T, Sivas GG, Akakın D, Ünlü H, Gören Z. Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis. Marmara Med J. May 2025;38(2):158-170. doi:10.5472/marumj.1708769
Chicago Dönmez, Muhammet Oguzhan, Göksel Şener, Tuğba Tunalı-akbay, Güzin Göksun Sivas, Dilek Akakın, Hilal Ünlü, and Zafer Gören. “Evaluation of the Neuroprotective Effects of Korean Ginseng Root Extract in an Experimental Model of Multiple Sclerosis”. Marmara Medical Journal 38, no. 2 (May 2025): 158-70. https://doi.org/10.5472/marumj.1708769.
EndNote Dönmez MO, Şener G, Tunalı-akbay T, Sivas GG, Akakın D, Ünlü H, Gören Z (May 1, 2025) Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis. Marmara Medical Journal 38 2 158–170.
IEEE M. O. Dönmez, G. Şener, T. Tunalı-akbay, G. G. Sivas, D. Akakın, H. Ünlü, and Z. Gören, “Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis”, Marmara Med J, vol. 38, no. 2, pp. 158–170, 2025, doi: 10.5472/marumj.1708769.
ISNAD Dönmez, Muhammet Oguzhan et al. “Evaluation of the Neuroprotective Effects of Korean Ginseng Root Extract in an Experimental Model of Multiple Sclerosis”. Marmara Medical Journal 38/2 (May 2025), 158-170. https://doi.org/10.5472/marumj.1708769.
JAMA Dönmez MO, Şener G, Tunalı-akbay T, Sivas GG, Akakın D, Ünlü H, Gören Z. Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis. Marmara Med J. 2025;38:158–170.
MLA Dönmez, Muhammet Oguzhan et al. “Evaluation of the Neuroprotective Effects of Korean Ginseng Root Extract in an Experimental Model of Multiple Sclerosis”. Marmara Medical Journal, vol. 38, no. 2, 2025, pp. 158-70, doi:10.5472/marumj.1708769.
Vancouver Dönmez MO, Şener G, Tunalı-akbay T, Sivas GG, Akakın D, Ünlü H, Gören Z. Evaluation of the neuroprotective effects of Korean Ginseng root extract in an experimental model of multiple sclerosis. Marmara Med J. 2025;38(2):158-70.