Research Article
BibTex RIS Cite
Year 2025, , 72 - 83, 26.06.2025
https://doi.org/10.36753/mathenot.1592896

Abstract

References

  • [1] Ma, W. C., Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Proceedings of the Conference on Complex Analysis. Tianjin, China, 157-169 (19–23 June 1992).
  • [2] Sharma, P., Raina, R. K., Sokół, J.: Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region. Analysis and Mathematical Physics. 9, 1–17 (2019).
  • [3] Wani, L. A., Swaminathan, A.: Starlike and convex functions associated with a Nephroid domain. Bulletin of the Malaysian Mathematical Sciences Society. 44, 79–104 (2021).
  • [4] Kumar, S. S., Kamaljeet, G.: A cardioid domain and starlike functions. Analysis and Mathematical Physics. 11, 54 (2021).
  • [5] Malik, S. N, Raza, M., Xin, Q., Sokol, J., Manzoor, R., Zainab, S. : On convex functions associated with symmetric cardioid domain. Symmetry. 13(12), 2321 (2021).
  • [6] Mandal S, Ahamed MB: Second Hankel determinant of logarithmic coefficients for starlike and convex functions associated with lune. arXiv preprint, arXiv:2307.02741.(2023).
  • [7] Duren, P. L., Leung, Y. J.: Logarithmic coefficients of univalent functions. Journal d’Analyse Mathématique. 36(1), 36-43(1979).
  • [8] Cho, N. E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: On the third logarithmic coefficient in some subclasses of close-to-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114(2), 1-14 (2020).
  • [9] Thomas, D. K.: On logarithmic coefficients of close to convex functions. Proceedings of the American Mathematical Society. 144, 1681-1687 (2016).
  • [10] Zaprawa, P.: Initial logarithmic coefficients for functions starlike with respect to symmetric points. Boletin De La Sociedad Matematica Mexicana. 27(3), 1-13 (2021).
  • [11] Fekete, M., Szegö, G.: Eine Bemerkung Über ungerade schlichte Funktionen. Journal of the London Mathematical Society. 8, 85–89 (1933).
  • [12] Cho, N. E., Kowalczyk, B., Kwon, O. S., Lecko, A., Sim, Y. J.: Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. Journal of Mathematical Inequalities. 11(2), 429-439 (2017).
  • [13] Deniz, E., Özkan, Y., Kazımoglu, S.: Logarithmic coefficients for starlike functions associated with generalized telephone numbers. Filomat. 38(20), 7041-7050 (2024).
  • [14] Deniz, E., Budak, L.: Second Hankel determinant for certain analytic functions satisfying subordinate condition. Mathematica Slovaca. 68(2), 463-471(2018).
  • [15] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions. International Journal of Mathematical Analysis. 1(1), 619-625 (2007).
  • [16] Kazımoglu, S., Deniz, E., Srivastava, H. M.: Sharp coefficients bounds for starlike functions associated with Gregory coefficients. Complex Analysis and Operator Theory. 18(1), 6 (2024).
  • [17] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound for the Hankel determinant of the third kind for convex functions. Bulletin of the Australian Mathematical Society. 97, 435-445 (2018).
  • [18] Krishna, D. V., Ramreddy, T.: Hankel determinant for starlike and convex functions of order alpha. Tbilisi Mathematical Journal. 5(1), 65-76 (2012).
  • [19] Lee, S. K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. Journal of Inequalities and Applications. 281, (2013).
  • [20] Shi, L., Srivastava, H. M., Arif, M., Hussain, S., Khan, H.: An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry. 11, 1-14 (2019).
  • [21] Sim, Y.J., Lecko, A., Thomas, D. K.: The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Annals of Mathematics. 200, 2515-2533 (2021).
  • [22] Sokol, J., Thomas, D. K.: The second Hankel determinant for alpha-convex functions. Lithuanian Mathematical Journal. 58(2), 212-218 (2018).
  • [23] Srivastava, H. M., Ahmad, Q. Z., Darus, M., Khan, N., Khan, B., Zaman, N., Shah, H. H.: Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli. Mathematics. 7, 1-10 (2019).
  • [24] Girela, D.: Logarithmic coefficients of univalent functions. Annales Academiæ Scientiarum Fennicæ Mathematica. 25 (2), 337–350 (2000).
  • [25] Obradovic, M., Ponnusamy, S., Wirths, K. J.: Logarithmic coefficients and a coefficient conjecture for univalent functions. Monatshefte für Mathematik. 185, 489-501 (2018).
  • [26] Ponnusamy, S., Sharma, N. L., Wirths, K. J.: Logarithmic coefficients problems in families related to starlike and convex functions. The Journal of the Australian Mathematical Society. 109(2), 230-249, (2020).
  • [27] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bulletin of the Australian Mathematical Society. 105(3), 458-467 (2022).
  • [28] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bulletin of the Malaysian Mathematical Sciences Society. 45, 727-740 (2022).
  • [29] Sümer Eker S., Şeker B., Çekiç B., Acu M.: Sharp bounds for the second Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex functions. Axioms, 11(8), 369 (2022).
  • [30] Srivastava H. M., Sümer Eker S., Şeker B., Çekiç B.: Second Hankel determinant of logarithmic coefficients for a subclass of univalent functions. Miskolc Mathematical Notes. 25, 479-488 (2024).
  • [31] Sümer Eker S., Lecko A., Çekiç B., Şeker B.: The second Hankel determinant of logarithmic coefficients for strongly Ozaki close-to-convex functions. Bulletin of the Malaysian Mathematical Sciences Society. 46(6), 183, (2023).
  • [32] Shi, L., Arif, M., Iqbal, J., Ullah, K., Ghufran, S.M.: Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal and Fractional. 6 (11), 645 (2022).
  • [33] Cho, N., Kowalczyk, B., Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bulletin of the Australian Mathematical Society. 100(1), 86-96 (2019).
  • [34] Pommerenke, C.: Univalent Functions. Vanderhoeck, Ruprecht, Gottingen, Germany, (1975).
  • [35] Keogh, F. R., Merkes, E. P.: A coefficient inequality for certain classes of analytic functions. Proceedings of the American Mathematical Society. 20, 8–12 (1969).
  • [36] Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H.: Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Mathematics. 17, 1615–1630 (2019).
  • [37] Choi, J.H., Kim, Y.C., Sugawa, T.: A general approach to the Fekete-Szegö problem. The Journal of the Mathematical Society of Japan. 59, 707-727 (2007).

Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain

Year 2025, , 72 - 83, 26.06.2025
https://doi.org/10.36753/mathenot.1592896

Abstract

In this paper, we first obtained some initial logarithmic coefficient bounds on a subclass of bounded turning functions $\mathcal{R}_{\mathcal{L}}$ related to a lune domain. For functions belonging to this class, we determined the sharp bounds for the second Hankel determinant of logarithmic coefficients $H_{2,1}\left( F_{f}/2\right) $ of bounded turning functions related to a lune domain. Finally, we calculated the bounds of third Hankel determinant of logarithmic coefficients $H_{3,1}\left( F_{f}/2\right)$ of bounded turning functions associated with a lune domain.

References

  • [1] Ma, W. C., Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Proceedings of the Conference on Complex Analysis. Tianjin, China, 157-169 (19–23 June 1992).
  • [2] Sharma, P., Raina, R. K., Sokół, J.: Certain Ma–Minda type classes of analytic functions associated with the crescent-shaped region. Analysis and Mathematical Physics. 9, 1–17 (2019).
  • [3] Wani, L. A., Swaminathan, A.: Starlike and convex functions associated with a Nephroid domain. Bulletin of the Malaysian Mathematical Sciences Society. 44, 79–104 (2021).
  • [4] Kumar, S. S., Kamaljeet, G.: A cardioid domain and starlike functions. Analysis and Mathematical Physics. 11, 54 (2021).
  • [5] Malik, S. N, Raza, M., Xin, Q., Sokol, J., Manzoor, R., Zainab, S. : On convex functions associated with symmetric cardioid domain. Symmetry. 13(12), 2321 (2021).
  • [6] Mandal S, Ahamed MB: Second Hankel determinant of logarithmic coefficients for starlike and convex functions associated with lune. arXiv preprint, arXiv:2307.02741.(2023).
  • [7] Duren, P. L., Leung, Y. J.: Logarithmic coefficients of univalent functions. Journal d’Analyse Mathématique. 36(1), 36-43(1979).
  • [8] Cho, N. E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: On the third logarithmic coefficient in some subclasses of close-to-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114(2), 1-14 (2020).
  • [9] Thomas, D. K.: On logarithmic coefficients of close to convex functions. Proceedings of the American Mathematical Society. 144, 1681-1687 (2016).
  • [10] Zaprawa, P.: Initial logarithmic coefficients for functions starlike with respect to symmetric points. Boletin De La Sociedad Matematica Mexicana. 27(3), 1-13 (2021).
  • [11] Fekete, M., Szegö, G.: Eine Bemerkung Über ungerade schlichte Funktionen. Journal of the London Mathematical Society. 8, 85–89 (1933).
  • [12] Cho, N. E., Kowalczyk, B., Kwon, O. S., Lecko, A., Sim, Y. J.: Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. Journal of Mathematical Inequalities. 11(2), 429-439 (2017).
  • [13] Deniz, E., Özkan, Y., Kazımoglu, S.: Logarithmic coefficients for starlike functions associated with generalized telephone numbers. Filomat. 38(20), 7041-7050 (2024).
  • [14] Deniz, E., Budak, L.: Second Hankel determinant for certain analytic functions satisfying subordinate condition. Mathematica Slovaca. 68(2), 463-471(2018).
  • [15] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions. International Journal of Mathematical Analysis. 1(1), 619-625 (2007).
  • [16] Kazımoglu, S., Deniz, E., Srivastava, H. M.: Sharp coefficients bounds for starlike functions associated with Gregory coefficients. Complex Analysis and Operator Theory. 18(1), 6 (2024).
  • [17] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound for the Hankel determinant of the third kind for convex functions. Bulletin of the Australian Mathematical Society. 97, 435-445 (2018).
  • [18] Krishna, D. V., Ramreddy, T.: Hankel determinant for starlike and convex functions of order alpha. Tbilisi Mathematical Journal. 5(1), 65-76 (2012).
  • [19] Lee, S. K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. Journal of Inequalities and Applications. 281, (2013).
  • [20] Shi, L., Srivastava, H. M., Arif, M., Hussain, S., Khan, H.: An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry. 11, 1-14 (2019).
  • [21] Sim, Y.J., Lecko, A., Thomas, D. K.: The second Hankel determinant for strongly convex and Ozaki close-to-convex functions. Annals of Mathematics. 200, 2515-2533 (2021).
  • [22] Sokol, J., Thomas, D. K.: The second Hankel determinant for alpha-convex functions. Lithuanian Mathematical Journal. 58(2), 212-218 (2018).
  • [23] Srivastava, H. M., Ahmad, Q. Z., Darus, M., Khan, N., Khan, B., Zaman, N., Shah, H. H.: Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli. Mathematics. 7, 1-10 (2019).
  • [24] Girela, D.: Logarithmic coefficients of univalent functions. Annales Academiæ Scientiarum Fennicæ Mathematica. 25 (2), 337–350 (2000).
  • [25] Obradovic, M., Ponnusamy, S., Wirths, K. J.: Logarithmic coefficients and a coefficient conjecture for univalent functions. Monatshefte für Mathematik. 185, 489-501 (2018).
  • [26] Ponnusamy, S., Sharma, N. L., Wirths, K. J.: Logarithmic coefficients problems in families related to starlike and convex functions. The Journal of the Australian Mathematical Society. 109(2), 230-249, (2020).
  • [27] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bulletin of the Australian Mathematical Society. 105(3), 458-467 (2022).
  • [28] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bulletin of the Malaysian Mathematical Sciences Society. 45, 727-740 (2022).
  • [29] Sümer Eker S., Şeker B., Çekiç B., Acu M.: Sharp bounds for the second Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex functions. Axioms, 11(8), 369 (2022).
  • [30] Srivastava H. M., Sümer Eker S., Şeker B., Çekiç B.: Second Hankel determinant of logarithmic coefficients for a subclass of univalent functions. Miskolc Mathematical Notes. 25, 479-488 (2024).
  • [31] Sümer Eker S., Lecko A., Çekiç B., Şeker B.: The second Hankel determinant of logarithmic coefficients for strongly Ozaki close-to-convex functions. Bulletin of the Malaysian Mathematical Sciences Society. 46(6), 183, (2023).
  • [32] Shi, L., Arif, M., Iqbal, J., Ullah, K., Ghufran, S.M.: Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal and Fractional. 6 (11), 645 (2022).
  • [33] Cho, N., Kowalczyk, B., Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bulletin of the Australian Mathematical Society. 100(1), 86-96 (2019).
  • [34] Pommerenke, C.: Univalent Functions. Vanderhoeck, Ruprecht, Gottingen, Germany, (1975).
  • [35] Keogh, F. R., Merkes, E. P.: A coefficient inequality for certain classes of analytic functions. Proceedings of the American Mathematical Society. 20, 8–12 (1969).
  • [36] Arif, M., Raza, M., Tang, H., Hussain, S., Khan, H.: Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Mathematics. 17, 1615–1630 (2019).
  • [37] Choi, J.H., Kim, Y.C., Sugawa, T.: A general approach to the Fekete-Szegö problem. The Journal of the Mathematical Society of Japan. 59, 707-727 (2007).
There are 37 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Bilal Şeker 0000-0003-1777-8145

Bilal Çekiç 0000-0002-6408-0455

Sevtap Sümer 0000-0002-2573-0726

Onur Akçiçek 0009-0008-9721-5345

Early Pub Date May 19, 2025
Publication Date June 26, 2025
Submission Date November 29, 2024
Acceptance Date May 4, 2025
Published in Issue Year 2025

Cite

APA Şeker, B., Çekiç, B., Sümer, S., Akçiçek, O. (2025). Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain. Mathematical Sciences and Applications E-Notes, 13(2), 72-83. https://doi.org/10.36753/mathenot.1592896
AMA Şeker B, Çekiç B, Sümer S, Akçiçek O. Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain. Math. Sci. Appl. E-Notes. June 2025;13(2):72-83. doi:10.36753/mathenot.1592896
Chicago Şeker, Bilal, Bilal Çekiç, Sevtap Sümer, and Onur Akçiçek. “Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated With Lune Domain”. Mathematical Sciences and Applications E-Notes 13, no. 2 (June 2025): 72-83. https://doi.org/10.36753/mathenot.1592896.
EndNote Şeker B, Çekiç B, Sümer S, Akçiçek O (June 1, 2025) Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain. Mathematical Sciences and Applications E-Notes 13 2 72–83.
IEEE B. Şeker, B. Çekiç, S. Sümer, and O. Akçiçek, “Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain”, Math. Sci. Appl. E-Notes, vol. 13, no. 2, pp. 72–83, 2025, doi: 10.36753/mathenot.1592896.
ISNAD Şeker, Bilal et al. “Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated With Lune Domain”. Mathematical Sciences and Applications E-Notes 13/2 (June 2025), 72-83. https://doi.org/10.36753/mathenot.1592896.
JAMA Şeker B, Çekiç B, Sümer S, Akçiçek O. Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain. Math. Sci. Appl. E-Notes. 2025;13:72–83.
MLA Şeker, Bilal et al. “Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated With Lune Domain”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 2, 2025, pp. 72-83, doi:10.36753/mathenot.1592896.
Vancouver Şeker B, Çekiç B, Sümer S, Akçiçek O. Hankel Determinants of Logarithmic Coefficients for the Class of Bounded Turning Functions Associated with Lune Domain. Math. Sci. Appl. E-Notes. 2025;13(2):72-83.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.