[1] Bergman, G. M., The Diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.
[2] Bokut, L. A., Unsolvability of the word problem and subalgebras of finitely presented Lie algebras, Izv. Akad.
Nauk. SSSR Ser. Math. 36 (1972), 1173-1219.
[3] Bokut, L. A., Embeddings into simple associative algebras, Algebrai Logika 15 (1976), 117-142.
[4] Bokut, L. A., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, (1994).
[5] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from incipient to nowadays, Proceedings of the POMI 272
(1994), 26-67.
[6] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116, 1
(2003), 2894-2916.
[7] Bokut, L. A., Chen, Y., Gröbner-Shirshov bases: some new results, Proc. Second Int. Congress in Algebra and
Combinatorics,World Scientific, (2008), 35-56.
[8] Buchberger, B., An algorithm for finding a basis for the residue class Ring of a zero-dimensional polynomial
ideal, Phd. thesis, Univ. of Innsbruck, Austria, (1965).
[9] Buchberger, B., An algorithmical criteria for the solvability of algebraic system of equations, Aequationes Math.,
4 (1970), 374- 383.
[10] Drensky, V., Defining relations of noncommutative algebras, Institue of Mathematics and Informatics Bulgarian
Academy of Sciences.
[11] Shirshov, A.I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296; English translation
in SIGSAM Bull, 33(2) (1999), 3-6.
[12] Smel’kin, A. L., Free polynilpotent groups
I. Soviet Math. Dokl. 4 (1963), 950-953.
II. Izvest. Akad. Nauk S.S.S.R. Ser. Mat. 28(1964), 91-122.
III. Dokl. Akad. Nauk. S.S.S.R. 169 (1966), 1024-1025.
A Presentation of The Frege Lie Algebra F/γ3 (F)'
Year 2016,
Volume: 4 Issue: 1, 24 - 30, 15.04.2016
[1] Bergman, G. M., The Diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218.
[2] Bokut, L. A., Unsolvability of the word problem and subalgebras of finitely presented Lie algebras, Izv. Akad.
Nauk. SSSR Ser. Math. 36 (1972), 1173-1219.
[3] Bokut, L. A., Embeddings into simple associative algebras, Algebrai Logika 15 (1976), 117-142.
[4] Bokut, L. A., Algorithmic and Combinatorial Algebra, Kluwer, Dordrecht, (1994).
[5] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from incipient to nowadays, Proceedings of the POMI 272
(1994), 26-67.
[6] Bokut, L. A., Kolesnikov, P., Gröbner-Shirshov bases: from their incipiency to the present, J. Math. Sci. 116, 1
(2003), 2894-2916.
[7] Bokut, L. A., Chen, Y., Gröbner-Shirshov bases: some new results, Proc. Second Int. Congress in Algebra and
Combinatorics,World Scientific, (2008), 35-56.
[8] Buchberger, B., An algorithm for finding a basis for the residue class Ring of a zero-dimensional polynomial
ideal, Phd. thesis, Univ. of Innsbruck, Austria, (1965).
[9] Buchberger, B., An algorithmical criteria for the solvability of algebraic system of equations, Aequationes Math.,
4 (1970), 374- 383.
[10] Drensky, V., Defining relations of noncommutative algebras, Institue of Mathematics and Informatics Bulgarian
Academy of Sciences.
[11] Shirshov, A.I., Some algorithmic problems for Lie algebras, Sibirsk. Mat. Z. 3 (1962) 292-296; English translation
in SIGSAM Bull, 33(2) (1999), 3-6.
[12] Smel’kin, A. L., Free polynilpotent groups
I. Soviet Math. Dokl. 4 (1963), 950-953.
II. Izvest. Akad. Nauk S.S.S.R. Ser. Mat. 28(1964), 91-122.
III. Dokl. Akad. Nauk. S.S.S.R. 169 (1966), 1024-1025.
Gök, G. K. (2016). A Presentation of The Frege Lie Algebra F/γ3 (F)’. Mathematical Sciences and Applications E-Notes, 4(1), 24-30. https://doi.org/10.36753/mathenot.421354
AMA
Gök GK. A Presentation of The Frege Lie Algebra F/γ3 (F)’. Math. Sci. Appl. E-Notes. April 2016;4(1):24-30. doi:10.36753/mathenot.421354
Chicago
Gök, Gülistan Kaya. “A Presentation of The Frege Lie Algebra F/γ3 (F)’”. Mathematical Sciences and Applications E-Notes 4, no. 1 (April 2016): 24-30. https://doi.org/10.36753/mathenot.421354.
EndNote
Gök GK (April 1, 2016) A Presentation of The Frege Lie Algebra F/γ3 (F)’. Mathematical Sciences and Applications E-Notes 4 1 24–30.
IEEE
G. K. Gök, “A Presentation of The Frege Lie Algebra F/γ3 (F)’”, Math. Sci. Appl. E-Notes, vol. 4, no. 1, pp. 24–30, 2016, doi: 10.36753/mathenot.421354.
ISNAD
Gök, Gülistan Kaya. “A Presentation of The Frege Lie Algebra F/γ3 (F)’”. Mathematical Sciences and Applications E-Notes 4/1 (April 2016), 24-30. https://doi.org/10.36753/mathenot.421354.
JAMA
Gök GK. A Presentation of The Frege Lie Algebra F/γ3 (F)’. Math. Sci. Appl. E-Notes. 2016;4:24–30.
MLA
Gök, Gülistan Kaya. “A Presentation of The Frege Lie Algebra F/γ3 (F)’”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 1, 2016, pp. 24-30, doi:10.36753/mathenot.421354.
Vancouver
Gök GK. A Presentation of The Frege Lie Algebra F/γ3 (F)’. Math. Sci. Appl. E-Notes. 2016;4(1):24-30.