[1] A. Mir and B. Dar., Some inequalities concerning the polar derivative of a polynomial-II, Anal. Theory Appl., 29
(2013), 384-389.
[2] A. Aziz and Q. M. Dawood., Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988),
306-313.
[3] A. Aziz and N. A. Rather., Some Zygmund type Lq−inequalities for polynomials, J. Math. Anal. Appl., 289
(2004), 14-29.
[4] A.Aziz and N.A.Rather., Inequalities for the polar derivative of a polynomial with restricted zeros, Math. Balk.,
17 (2003), 15-28.
[5] A. Aziz and N. A. Rather., A refinement of a theorem of Paul Turan concerning polynomials, Math. Ineq. Appl.,
1(1998), 231-238.
[6] A. Aziz and W. M. Shah., An integral mean estimate for polynomials, Indian J. Pure Appl. Math., 28 (1997),
1413-1419.
[7] S. Bernstein., Lecons Sur Les Proprietes extremals et la meilleure approximation des fonctions analytiques
d’une fonctions reelle, Gauthier-villars (Paris 1926).
[8] K. K. Dewan, N. Singh and R. Lal., Inequalities for the polar derivative of a polynomial, Int. J. Pure. Appl. Math.,
33 (2006), 109-117.
[9] K. K. Dewan, N. Singh and A. Mir., Extensions of some polynomial inequalities to the polar derivative, J. Math.
Anal. Appl., 352 (2009), 807-815.
[10] K. K. Dewan, A. Mir and R. S. Yadav., Integral mean estimates for polynomials whose zeros are with in a circle,
IJMMS, 4 (2001), 231-235.
[11] K. K. Dewan, N. Singh, A. Mir and A. Bhat., Some inequalities for the polar derivative of a polynomial, Southeast
Asain Bull. Math., 34 (2010), 69-77.
[12] N. K. Govil., Some inequalities for derivative of polynomials, J.Approx. Theory, 66 (1991), 29-35.
[13] N. K. Govil, Q. I. Rahman and G. Schemeisser., On the derivative of a polynomial, Illinois J. Math., 23 (1979),
319-330.
[14] E. Hille, Ananlytic function theory, Vol II, Ginn and Company, New York, Toranto, 1962.
[15] M. A. Malik., On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[16] M. Riesz., Eine trigonometrische interpolationsformel und einige Ungleichungen für Polynome, Jahresbericht
der Deutschen Mathematiker-Vereinigung, 23 (1914), 354-368.
[17] P. Turán., Über die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.
On Polynomials and Their Polar Derivative
Year 2016,
Volume: 4 Issue: 2, 110 - 120, 30.10.2016
[1] A. Mir and B. Dar., Some inequalities concerning the polar derivative of a polynomial-II, Anal. Theory Appl., 29
(2013), 384-389.
[2] A. Aziz and Q. M. Dawood., Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988),
306-313.
[3] A. Aziz and N. A. Rather., Some Zygmund type Lq−inequalities for polynomials, J. Math. Anal. Appl., 289
(2004), 14-29.
[4] A.Aziz and N.A.Rather., Inequalities for the polar derivative of a polynomial with restricted zeros, Math. Balk.,
17 (2003), 15-28.
[5] A. Aziz and N. A. Rather., A refinement of a theorem of Paul Turan concerning polynomials, Math. Ineq. Appl.,
1(1998), 231-238.
[6] A. Aziz and W. M. Shah., An integral mean estimate for polynomials, Indian J. Pure Appl. Math., 28 (1997),
1413-1419.
[7] S. Bernstein., Lecons Sur Les Proprietes extremals et la meilleure approximation des fonctions analytiques
d’une fonctions reelle, Gauthier-villars (Paris 1926).
[8] K. K. Dewan, N. Singh and R. Lal., Inequalities for the polar derivative of a polynomial, Int. J. Pure. Appl. Math.,
33 (2006), 109-117.
[9] K. K. Dewan, N. Singh and A. Mir., Extensions of some polynomial inequalities to the polar derivative, J. Math.
Anal. Appl., 352 (2009), 807-815.
[10] K. K. Dewan, A. Mir and R. S. Yadav., Integral mean estimates for polynomials whose zeros are with in a circle,
IJMMS, 4 (2001), 231-235.
[11] K. K. Dewan, N. Singh, A. Mir and A. Bhat., Some inequalities for the polar derivative of a polynomial, Southeast
Asain Bull. Math., 34 (2010), 69-77.
[12] N. K. Govil., Some inequalities for derivative of polynomials, J.Approx. Theory, 66 (1991), 29-35.
[13] N. K. Govil, Q. I. Rahman and G. Schemeisser., On the derivative of a polynomial, Illinois J. Math., 23 (1979),
319-330.
[14] E. Hille, Ananlytic function theory, Vol II, Ginn and Company, New York, Toranto, 1962.
[15] M. A. Malik., On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[16] M. Riesz., Eine trigonometrische interpolationsformel und einige Ungleichungen für Polynome, Jahresbericht
der Deutschen Mathematiker-Vereinigung, 23 (1914), 354-368.
[17] P. Turán., Über die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.
Mir, A. (2016). On Polynomials and Their Polar Derivative. Mathematical Sciences and Applications E-Notes, 4(2), 110-120. https://doi.org/10.36753/mathenot.421464
AMA
Mir A. On Polynomials and Their Polar Derivative. Math. Sci. Appl. E-Notes. October 2016;4(2):110-120. doi:10.36753/mathenot.421464
Chicago
Mir, Abdullah. “On Polynomials and Their Polar Derivative”. Mathematical Sciences and Applications E-Notes 4, no. 2 (October 2016): 110-20. https://doi.org/10.36753/mathenot.421464.
EndNote
Mir A (October 1, 2016) On Polynomials and Their Polar Derivative. Mathematical Sciences and Applications E-Notes 4 2 110–120.
IEEE
A. Mir, “On Polynomials and Their Polar Derivative”, Math. Sci. Appl. E-Notes, vol. 4, no. 2, pp. 110–120, 2016, doi: 10.36753/mathenot.421464.
ISNAD
Mir, Abdullah. “On Polynomials and Their Polar Derivative”. Mathematical Sciences and Applications E-Notes 4/2 (October 2016), 110-120. https://doi.org/10.36753/mathenot.421464.
JAMA
Mir A. On Polynomials and Their Polar Derivative. Math. Sci. Appl. E-Notes. 2016;4:110–120.
MLA
Mir, Abdullah. “On Polynomials and Their Polar Derivative”. Mathematical Sciences and Applications E-Notes, vol. 4, no. 2, 2016, pp. 110-2, doi:10.36753/mathenot.421464.
Vancouver
Mir A. On Polynomials and Their Polar Derivative. Math. Sci. Appl. E-Notes. 2016;4(2):110-2.