Year 2019,
Volume: 7 Issue: 1, 94 - 101, 30.04.2019
Jean Jacques Ferdinand Randriamiarampanahy
Harinaivo Andriatahiny
Toussaint Joseph Rabeherimanana
References
- [1] Adams, W. and Loustaunau, P., An Introduction to Groebner Bases, American Mathematical Society, Vol.3,
1994.
- [2] Borges-quintana, M., Borges-Trenard, M., Fitzpatrick P. and Martinez-Moro E., Groebner bases and combinatorics
for binary codes, Applicable Algebra in Engineering Communication and Computing - AAECC 19(2008),
393-411.
- [3] Buchberger, B., An Algorithm for Finding the Basis Elements of the Residue Class Ring Modulo a Zero
Dimensional Polynomial Ideal, PhD thesis, University of Innsbruck, 1965.
- [4] Cooper, A., Towards a new method of decoding Algebraic codes using Groebner bases, Transactions 10th Army
Conf. Appl. Math. Comp. 93(1992), 293-297.
- [5] Cox, D., Little J. and O’Shea D., Ideals, Varieties, and Algorithms, Springer, 1996.
- [6] Cox, D., Little J. and O’Shea D., Using Algebraic Geometry, Springer, 1998.
- [7] Drton, M., Sturmfels B., Sullivan S., Lectures on Algebraic Statistics, Birkhäuser, Basel, 2009.
- [8] Dück, N. and Zimmermann, K.H., Gröbner bases for perfect binary linear codes, International Journal of Pure
and Applied Mathematics 91(2014), no.2, 155-167.
- [9] Dück, N. and Zimmermann, K.H., Standard Bases for binary Linear Codes, International Journal of Pure and
Applied Mathematics 80(2012), no.3, 315-329.
- [10] Dück, N. and Zimmermann, K.H., Universal Groebner bases for Binary Linear Code, International Journal of
Pure and Applied Mathematics 86(2013), no.2, 345-358.
- [11] Greuel, G.M. and Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, Berlin, 2002.
- [12] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math.
79(1964), 109-326.
- [13] Mora, T., Pfister, G. and Traverso, C., An introduction to the tangent cone algorithm, Advances in Computing
Research 6(1992), 199-270.
- [14] Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso, C., Groebner Bases, Coding, and Cryptography, Springer,
Berlin 2009.
- [15] Saleemi, M. and Zimmermann, K.H., Groebner Bases for Linear Codes, International Journal of Pure and Applied
Mathematics 62(2010), no.4, 481-491.
- [16] Saleemi, M. and Zimmermann, K.H., Linear Codes as Binomial Ideals, International Journal of Pure and Applied
Mathematics 61(2010), no.2, 147-156.
Standard Bases for Linear Codes over Prime Fields
Year 2019,
Volume: 7 Issue: 1, 94 - 101, 30.04.2019
Jean Jacques Ferdinand Randriamiarampanahy
Harinaivo Andriatahiny
Toussaint Joseph Rabeherimanana
Abstract
It is known that a linear code can be represented by a binomial ideal. In this paper, we give standard
bases for the ideals in a localization of the multivariate polynomial ring in the case of the linear codes
over prime fields.
References
- [1] Adams, W. and Loustaunau, P., An Introduction to Groebner Bases, American Mathematical Society, Vol.3,
1994.
- [2] Borges-quintana, M., Borges-Trenard, M., Fitzpatrick P. and Martinez-Moro E., Groebner bases and combinatorics
for binary codes, Applicable Algebra in Engineering Communication and Computing - AAECC 19(2008),
393-411.
- [3] Buchberger, B., An Algorithm for Finding the Basis Elements of the Residue Class Ring Modulo a Zero
Dimensional Polynomial Ideal, PhD thesis, University of Innsbruck, 1965.
- [4] Cooper, A., Towards a new method of decoding Algebraic codes using Groebner bases, Transactions 10th Army
Conf. Appl. Math. Comp. 93(1992), 293-297.
- [5] Cox, D., Little J. and O’Shea D., Ideals, Varieties, and Algorithms, Springer, 1996.
- [6] Cox, D., Little J. and O’Shea D., Using Algebraic Geometry, Springer, 1998.
- [7] Drton, M., Sturmfels B., Sullivan S., Lectures on Algebraic Statistics, Birkhäuser, Basel, 2009.
- [8] Dück, N. and Zimmermann, K.H., Gröbner bases for perfect binary linear codes, International Journal of Pure
and Applied Mathematics 91(2014), no.2, 155-167.
- [9] Dück, N. and Zimmermann, K.H., Standard Bases for binary Linear Codes, International Journal of Pure and
Applied Mathematics 80(2012), no.3, 315-329.
- [10] Dück, N. and Zimmermann, K.H., Universal Groebner bases for Binary Linear Code, International Journal of
Pure and Applied Mathematics 86(2013), no.2, 345-358.
- [11] Greuel, G.M. and Pfister, G., A Singular Introduction to Commutative Algebra, Springer-Verlag, Berlin, 2002.
- [12] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math.
79(1964), 109-326.
- [13] Mora, T., Pfister, G. and Traverso, C., An introduction to the tangent cone algorithm, Advances in Computing
Research 6(1992), 199-270.
- [14] Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso, C., Groebner Bases, Coding, and Cryptography, Springer,
Berlin 2009.
- [15] Saleemi, M. and Zimmermann, K.H., Groebner Bases for Linear Codes, International Journal of Pure and Applied
Mathematics 62(2010), no.4, 481-491.
- [16] Saleemi, M. and Zimmermann, K.H., Linear Codes as Binomial Ideals, International Journal of Pure and Applied
Mathematics 61(2010), no.2, 147-156.