Research Article
BibTex RIS Cite
Year 2025, Volume: 13 Issue: 2, 92 - 105, 26.06.2025
https://doi.org/10.36753/mathenot.1658156

Abstract

References

  • [1] Bishop, R.L.: There is more than one way to frame a curve. The American Mathematical Monthly. 82(3), 246-251 (1975).
  • [2] Choi, J.H., Kim, Y.H.: Associated curves of a Frenet curve and their applications. Applied Mathematics and Computation. 218(18), 9116-9124 (2012).
  • [3] Arslan, K., Hacısalihoğlu, H.H.: On harmonic curvatures of a Frenet curve. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics Journal. 49, 015-023 (2000).
  • [4] Romero-Fuster, M.C., Sanabria-Codesal, E.: Generalized helices, twistings and flattenings of curves in n-space. Matemática Contemporânea. 17, 267-280 (1999).
  • [5] Deshmukh, S., Chen, B.Y., Alshamari, S.: On rectifying curves in Euclidean 3-space. Turkish Journal of Mathematics. 42, 609-620 (2018).
  • [6] Fukunaga, T., Takahashi, M.: Existence conditions of framed curves for smooth curves. Journal of Geometry. 108, 763-774 (2017).
  • [7] Fukunaga, T., Takahashi, M.: Framed curves in the Euclidean space. Advances in Geometry. 16, 265-276 (2016).
  • [8] Doğan Yazıcı, B., İşbilir, Z., Tosun, M.: Spinor representation of framed Mannheim curves . Turkish Journal of Mathematics. 46, 2690-2700 (2022).
  • [9] İşbilir, Z., Doğan Yazıcı, B., Tosun, M.: The Spinor representations of framed Bertrand curves. Filomat. 37(9), 2831-2843 (2023).
  • [10] Doğan Yazıcı, B., Okuyucu, O. Z., Tosun, M.: On special singular curve couples of framed curves in 3D Lie groups. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. 72(3), 710–720 (2023).
  • [11] Yıldız, Ö. G., Akyiğit, M., Tosun, M.: On the trajectory ruled surfaces of framed base curves in the Euclidean space. Mathematical Methods in the Applied Sciences. 44(9), 7463–7470 (2020).
  • [12] Doğan Yazıcı, B., Özkaldı Karakuş, S., Tosun, M.: Framed normal curves in Euclidean space. Tbilisimathematics, Sciendo. 27-37 (2020).
  • [13] Okuyucu, O. Z., Canbirdi, C.: Framed slant helices in Euclidean 3-space. Advances in Difference Equations. 2021 (504), 1-14 (2021).
  • [14] Doğan Yazıcı, B., Özkaldı Karaku¸s, S., Tosun, M.: Characterizations of framed curves in four-dimensional Euclidean space. Universal Journal of Mathematics and Applications. 4(4), 125-131 (2021).
  • [15] Akyiğit M., Yıldız Ö. G.: On the framed normal curves in Euclidean 4-space. Fundamental Journal of Mathematics and Applications. 4(4), 258-263 (2021).
  • [16] Bharathi, K., Nagaraj, M.: Quaternion valued function of a real variable Serret-Frenet formula. Indian Journal of Pure and Applied Mathematics. 18(6), 507-511 (1987).
  • [17] Tuna, A.: Yarı Öklid uzayındaki kuaterniyonik eğriler için Serret-Frenet formülleri [Ph D Thesis]. Süleyman Demirel Üniversitesi, Isparta, 2002.
  • [18] Güngör, M.A., Tosun, M.: Some characterizations of quaternionic rectifying curves. Differential Geometry-Dynamical Systems. 13, 89-100 (2011).
  • [19] Soyfidan, T., Güngör, M. A.: On the quaternionic curves in the semi-Euclidean space E_2^4 . Caspian Journal of Mathematical Sciences. 7(1), 36-45 (2018).
  • [20] Hacısalihoğlu, H. H.: Differential Geometry I. Ankara University, Ankara, 2000.
  • [21] Kahraman Aksoyak, F.: A new type quaternionic frame in R4. International Journal of Geometric Methods in Modern Physics. 16(6), 1950084 (2019).
  • [22] Çöken Ceylan, A., Tuna, A.: On the quaternionic inclined curves in the semi-Euclidean space E_2^4 . Applied Mathematics and Computation. 155(2), 373–389 (2004).
  • [23] Cansu, G., Yaylı, Y., Gök, .I.: A new quaternion valued frame of curves with an Application. Filomat. 35(1), 315–330 (2021).
  • [24] Gök, İ., Okuyucu, O. Z., Kahraman, F., Hacısalihoğlu, H. H.: On the quaternionic B2 slant helices in Euclidean 4-space E4. Advances in Applied Clifford Algebras. 21, 707–719 (2011).
  • [25] Kahraman, F., Gök, İ., Hacısalihoğlu, H.H.: On the quaternionic B2 slant helices in the semi-Euclidean space E_2^4. Applied Mathematics and Computation. 218(11), 6391-6400 (2012).

Serret-Frenet Formula of Quaternionic Framed Curves

Year 2025, Volume: 13 Issue: 2, 92 - 105, 26.06.2025
https://doi.org/10.36753/mathenot.1658156

Abstract

In this study, we present an approach by introducing the quaternionic structure of framed curves. Furthermore, we derive Serret-Frenet formulas and give specific results for quaternionic framed curves. Initially, we focus on the moving frame and its curvatures corresponding to the frame $ T,N,B $ along the quaternionic framed base curve in three-dimensional Euclidean space ${\mathbb{R}^3}$. Then, we establish the Serret-Frenet type formulas of quaternionic framed curves. We then generalize these formulas and the definition of quaternionic framed curves to four-dimensional Euclidean space, highlighting the relationship between the curvatures in both 3-dimensional and four-dimensional Euclidean spaces. In addition, the theorems are supported by examples, demonstrating the applicability of the proposed results.

Thanks

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

References

  • [1] Bishop, R.L.: There is more than one way to frame a curve. The American Mathematical Monthly. 82(3), 246-251 (1975).
  • [2] Choi, J.H., Kim, Y.H.: Associated curves of a Frenet curve and their applications. Applied Mathematics and Computation. 218(18), 9116-9124 (2012).
  • [3] Arslan, K., Hacısalihoğlu, H.H.: On harmonic curvatures of a Frenet curve. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics Journal. 49, 015-023 (2000).
  • [4] Romero-Fuster, M.C., Sanabria-Codesal, E.: Generalized helices, twistings and flattenings of curves in n-space. Matemática Contemporânea. 17, 267-280 (1999).
  • [5] Deshmukh, S., Chen, B.Y., Alshamari, S.: On rectifying curves in Euclidean 3-space. Turkish Journal of Mathematics. 42, 609-620 (2018).
  • [6] Fukunaga, T., Takahashi, M.: Existence conditions of framed curves for smooth curves. Journal of Geometry. 108, 763-774 (2017).
  • [7] Fukunaga, T., Takahashi, M.: Framed curves in the Euclidean space. Advances in Geometry. 16, 265-276 (2016).
  • [8] Doğan Yazıcı, B., İşbilir, Z., Tosun, M.: Spinor representation of framed Mannheim curves . Turkish Journal of Mathematics. 46, 2690-2700 (2022).
  • [9] İşbilir, Z., Doğan Yazıcı, B., Tosun, M.: The Spinor representations of framed Bertrand curves. Filomat. 37(9), 2831-2843 (2023).
  • [10] Doğan Yazıcı, B., Okuyucu, O. Z., Tosun, M.: On special singular curve couples of framed curves in 3D Lie groups. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. 72(3), 710–720 (2023).
  • [11] Yıldız, Ö. G., Akyiğit, M., Tosun, M.: On the trajectory ruled surfaces of framed base curves in the Euclidean space. Mathematical Methods in the Applied Sciences. 44(9), 7463–7470 (2020).
  • [12] Doğan Yazıcı, B., Özkaldı Karakuş, S., Tosun, M.: Framed normal curves in Euclidean space. Tbilisimathematics, Sciendo. 27-37 (2020).
  • [13] Okuyucu, O. Z., Canbirdi, C.: Framed slant helices in Euclidean 3-space. Advances in Difference Equations. 2021 (504), 1-14 (2021).
  • [14] Doğan Yazıcı, B., Özkaldı Karaku¸s, S., Tosun, M.: Characterizations of framed curves in four-dimensional Euclidean space. Universal Journal of Mathematics and Applications. 4(4), 125-131 (2021).
  • [15] Akyiğit M., Yıldız Ö. G.: On the framed normal curves in Euclidean 4-space. Fundamental Journal of Mathematics and Applications. 4(4), 258-263 (2021).
  • [16] Bharathi, K., Nagaraj, M.: Quaternion valued function of a real variable Serret-Frenet formula. Indian Journal of Pure and Applied Mathematics. 18(6), 507-511 (1987).
  • [17] Tuna, A.: Yarı Öklid uzayındaki kuaterniyonik eğriler için Serret-Frenet formülleri [Ph D Thesis]. Süleyman Demirel Üniversitesi, Isparta, 2002.
  • [18] Güngör, M.A., Tosun, M.: Some characterizations of quaternionic rectifying curves. Differential Geometry-Dynamical Systems. 13, 89-100 (2011).
  • [19] Soyfidan, T., Güngör, M. A.: On the quaternionic curves in the semi-Euclidean space E_2^4 . Caspian Journal of Mathematical Sciences. 7(1), 36-45 (2018).
  • [20] Hacısalihoğlu, H. H.: Differential Geometry I. Ankara University, Ankara, 2000.
  • [21] Kahraman Aksoyak, F.: A new type quaternionic frame in R4. International Journal of Geometric Methods in Modern Physics. 16(6), 1950084 (2019).
  • [22] Çöken Ceylan, A., Tuna, A.: On the quaternionic inclined curves in the semi-Euclidean space E_2^4 . Applied Mathematics and Computation. 155(2), 373–389 (2004).
  • [23] Cansu, G., Yaylı, Y., Gök, .I.: A new quaternion valued frame of curves with an Application. Filomat. 35(1), 315–330 (2021).
  • [24] Gök, İ., Okuyucu, O. Z., Kahraman, F., Hacısalihoğlu, H. H.: On the quaternionic B2 slant helices in Euclidean 4-space E4. Advances in Applied Clifford Algebras. 21, 707–719 (2011).
  • [25] Kahraman, F., Gök, İ., Hacısalihoğlu, H.H.: On the quaternionic B2 slant helices in the semi-Euclidean space E_2^4. Applied Mathematics and Computation. 218(11), 6391-6400 (2012).
There are 25 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Zülal Derin Yaqub 0000-0001-9712-0428

Mehmet Ali Güngör 0000-0003-1863-3183

Early Pub Date June 20, 2025
Publication Date June 26, 2025
Submission Date March 14, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Derin Yaqub, Z., & Güngör, M. A. (2025). Serret-Frenet Formula of Quaternionic Framed Curves. Mathematical Sciences and Applications E-Notes, 13(2), 92-105. https://doi.org/10.36753/mathenot.1658156
AMA Derin Yaqub Z, Güngör MA. Serret-Frenet Formula of Quaternionic Framed Curves. Math. Sci. Appl. E-Notes. June 2025;13(2):92-105. doi:10.36753/mathenot.1658156
Chicago Derin Yaqub, Zülal, and Mehmet Ali Güngör. “Serret-Frenet Formula of Quaternionic Framed Curves”. Mathematical Sciences and Applications E-Notes 13, no. 2 (June 2025): 92-105. https://doi.org/10.36753/mathenot.1658156.
EndNote Derin Yaqub Z, Güngör MA (June 1, 2025) Serret-Frenet Formula of Quaternionic Framed Curves. Mathematical Sciences and Applications E-Notes 13 2 92–105.
IEEE Z. Derin Yaqub and M. A. Güngör, “Serret-Frenet Formula of Quaternionic Framed Curves”, Math. Sci. Appl. E-Notes, vol. 13, no. 2, pp. 92–105, 2025, doi: 10.36753/mathenot.1658156.
ISNAD Derin Yaqub, Zülal - Güngör, Mehmet Ali. “Serret-Frenet Formula of Quaternionic Framed Curves”. Mathematical Sciences and Applications E-Notes 13/2 (June 2025), 92-105. https://doi.org/10.36753/mathenot.1658156.
JAMA Derin Yaqub Z, Güngör MA. Serret-Frenet Formula of Quaternionic Framed Curves. Math. Sci. Appl. E-Notes. 2025;13:92–105.
MLA Derin Yaqub, Zülal and Mehmet Ali Güngör. “Serret-Frenet Formula of Quaternionic Framed Curves”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 2, 2025, pp. 92-105, doi:10.36753/mathenot.1658156.
Vancouver Derin Yaqub Z, Güngör MA. Serret-Frenet Formula of Quaternionic Framed Curves. Math. Sci. Appl. E-Notes. 2025;13(2):92-105.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.