Year 2025,
Volume: 13 Issue: 2, 106 - 115, 26.06.2025
Prasenjit Bal
,
Bikram Sutradhar
,
Gourab Pal
References
- [1] Yildirim, E. N.: Statistical convergence of matrix sequences. Konuralp Journal of Mathematics. 12(1), 74-79 (2024).
- [2] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).
- [3] Schoenberg, I. J.: The integrability of certain functions and related summability methods. American Mathematical Monthly. 66, 361-375 (1959).
- [4] Datta, T., Bal, P., Rakshit, D.: Restricting statistical-star-γ covers up-to order α (0 < α < 1). Journal of the Indian
Mathematical Society. 92(2), 320–328 (2025).
- [5] Bal, P., Rakshit, D., Sarkar, S.: On star statistical compactness. Afrika Matematika. 36(1), 1-7 (2025).
- [6] Bal, P., Das, P.: Bi statistical γ-covers controled by a pair of weight functions in topology. Pan-American Journal of Mathematics. 4 (3), 7 pages (2025).
- [7] Das, P., Bal, P.: Statistical convergence restricted by weight functions and its application in the variation of γ-covers. Rendiconti dell’Istituto di Matematica dell’Università di Trieste. 56 (11), 13 pages (2024).
- [8] Fridy, J. A.: On statistical convergence. Analysis. 5, 301-313 (1985).
- [9] Salát, T.: On statistically convergent sequences of real numbers. Mathematica Slovaca. 30, 139-150 (1980).
- [10] Connor, J.: The statistical and strong p-Cesàro convergence of sequences. Analysis. 8, 46-63 (1988).
- [11] Das, P., Sarkar, S., Bal, P.: Statistical convergence in topological space controlled by modulus function. Ural Mathematical Journal. 10(2), 49–59 (2024).
- [12] Yalvaç, ¸S.: Lacunary invariant statistical convergence in fuzzy normed spaces. Universal Journal of Mathematics and Applications. 7(2), 76-82 (2024).
- [13] Gadjiev, A. D., Orhan C.: Some approximation theorems via statistical convergence. Rocky Mountain Journal of Mathematics. 32(1), 129-138 (2002).
- [14] Engelking, R.: General topology. Sigma Series in Pure Mathematics. 6, (1989).
- [15] Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloquium Mathematicum. 2, 73-74 (1951).
- [16] Miller, H. I.: A measure theoretical subsequence characterization of statistical convergence. Transactions of the American Mathematical Society. 347, 1811-1819 (1995).
- [17] Pehlivan, S., Mamedov, M. A.: Statistical cluster points and turnpiker. Optimization. 48, 93-106 (2000).
Statistical Convergence of Matrix Sequences and Eigenvalue Influences
Year 2025,
Volume: 13 Issue: 2, 106 - 115, 26.06.2025
Prasenjit Bal
,
Bikram Sutradhar
,
Gourab Pal
Abstract
This paper delves into the statistical convergence of sequences of square matrices with entries in the real or complex domain. Matrix sequence convergence is traditionally examined through two distinct lenses: element-wise convergence and norm convergence. We explore both paradigms, unraveling their interconnections through illustrative examples. Furthermore, we shed light on the intrinsic nature of matrix sequence convergence, emphasizing its intricate dependence on the eigenvalues of the matrices involved.
References
- [1] Yildirim, E. N.: Statistical convergence of matrix sequences. Konuralp Journal of Mathematics. 12(1), 74-79 (2024).
- [2] Fast, H.: Sur la convergence statistique. Colloquium Mathematicum. 2, 241-244 (1951).
- [3] Schoenberg, I. J.: The integrability of certain functions and related summability methods. American Mathematical Monthly. 66, 361-375 (1959).
- [4] Datta, T., Bal, P., Rakshit, D.: Restricting statistical-star-γ covers up-to order α (0 < α < 1). Journal of the Indian
Mathematical Society. 92(2), 320–328 (2025).
- [5] Bal, P., Rakshit, D., Sarkar, S.: On star statistical compactness. Afrika Matematika. 36(1), 1-7 (2025).
- [6] Bal, P., Das, P.: Bi statistical γ-covers controled by a pair of weight functions in topology. Pan-American Journal of Mathematics. 4 (3), 7 pages (2025).
- [7] Das, P., Bal, P.: Statistical convergence restricted by weight functions and its application in the variation of γ-covers. Rendiconti dell’Istituto di Matematica dell’Università di Trieste. 56 (11), 13 pages (2024).
- [8] Fridy, J. A.: On statistical convergence. Analysis. 5, 301-313 (1985).
- [9] Salát, T.: On statistically convergent sequences of real numbers. Mathematica Slovaca. 30, 139-150 (1980).
- [10] Connor, J.: The statistical and strong p-Cesàro convergence of sequences. Analysis. 8, 46-63 (1988).
- [11] Das, P., Sarkar, S., Bal, P.: Statistical convergence in topological space controlled by modulus function. Ural Mathematical Journal. 10(2), 49–59 (2024).
- [12] Yalvaç, ¸S.: Lacunary invariant statistical convergence in fuzzy normed spaces. Universal Journal of Mathematics and Applications. 7(2), 76-82 (2024).
- [13] Gadjiev, A. D., Orhan C.: Some approximation theorems via statistical convergence. Rocky Mountain Journal of Mathematics. 32(1), 129-138 (2002).
- [14] Engelking, R.: General topology. Sigma Series in Pure Mathematics. 6, (1989).
- [15] Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloquium Mathematicum. 2, 73-74 (1951).
- [16] Miller, H. I.: A measure theoretical subsequence characterization of statistical convergence. Transactions of the American Mathematical Society. 347, 1811-1819 (1995).
- [17] Pehlivan, S., Mamedov, M. A.: Statistical cluster points and turnpiker. Optimization. 48, 93-106 (2000).