Research Article
BibTex RIS Cite

Temperature Change in the Pulp Chamber Induced by Different Light Curing Units In Simulated Deep Cavities

Year 2025, Volume: 26 Issue: 2, 219 - 225, 23.06.2025
https://doi.org/10.69601/meandrosmdj.1630501

Abstract

Objective: The objective of this study was to evaluate the effect of various types of photopolymerization devices on the temperature of the pulp chamber during the adhesive bonding phase.
Materials and Methods: To this purpose, cavities with a mesiodistal diameter of 5 mm, a buccolingual diameter of 3.5 mm, and a residual dentin thickness of 1.2 mm at the cavity base were prepared. Polymerization lights were applied for 20 seconds using three different devices. The temperature change within the pulp chamber was quantified using a thermocouple, with data collected at 10 and 20 seconds utilized for assessment. The mean intra-pulp temperature in the O-Light, Deepcure-L, and Valo groups at the 10th second was 39.9°C, 41.1°C, and 38.7°C and at the 20th second, had temperatures of 42.4°C, 44.3°C, and 40.4°C, respectively.
Result:A statistically significant difference was observed between the Deepcure-L and Valo groups (p < .01) in terms of maximum temperature, increase in pulp chamber temperature, and temperature at the 10th and 20th seconds. The observed changes in pulp chamber temperature between the groups, irrespective of light transmission type, are consistent with the power output of the devices, expressed in mW/cm². All the groups yielded a temperature increase above the limit which has been described critical.
Conclusion: During adhesive bonding phase, lower mW/cm² devices could be preferred in cases where the remaining dentin thickness is reduced.

Ethical Statement

Approval for this study was obtained from the IKCU Health Research Ethics Committee (SAE_206)

Supporting Institution

There is no supporting institution

References

  • 1. Ozturk B, Ozturk AN, Usumez A, Usumez S, Özer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent. 2004;29: 325-32
  • 2. McCabe JF. Cure performance of light-activated composites by differential thermal analysis (DTA). Dent Mater. 1985;1: 231–4.
  • 3. Lloyd CH, Joshi A, McGlynn E. Temperature rises produced by light sources and composites during curing. Dent Mater. 1986;2: 170-4.
  • 4. Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light-activated composite resins. Dent Mater. 1988;4: 174-8.
  • 5. Smail SRJ, Patterson CJW, Mclundie AC, Strang R. In vitro temperature rises during visible‐light curing of a lining material and a posterior composite. J Oral Rehabil. 1988;15: 361-6.
  • 6. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19: 515-30.
  • 7. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: A preliminary study. J Oral Rehabil. 1997;24: 791-801.
  • 8. Balestrino A, Veríssimo C, Tantbirojn D, García-Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: Effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016;29: 234-40.
  • 9. Ratih DN, Palamara JEA, Messer HH. Temperature change, dentinal fluid flow and cuspal displacement during resin composite restoration. J Oral Rehabil. 2007;34: 693-701.
  • 10. Miletic V, Ivanovic V, Dzeletovic B, Lezaja M. Temperature changes in silorane-, ormocer-, and dimethacrylate-based composites and pulp chamber roof during light-curing. J Esthet Restor Dent. 2009;21: 122-31.
  • 11. Rahiotis C, Patsouri K, Silikas N, Kakaboura A. Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci. 2010;52: 187-195.
  • 12. Flury S, Lussi A, Hickel R, Ilie N. Light curing through glass ceramics with a second- and a third-generation LED curing unit: Effect of curing mode on the degree of conversion of dual-curing resin cements. Clin Oral Investig. 2013;17: 2127-37
  • 13. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;6: 605-617.
  • 14. Udomthanaporn B, Nisalak P, Sawaengkit P. Shear bond strength of orthodontic bonding materials polymerized by high-intensity LEDs at different intensities and curing times. Key Eng Mater. 2017;723: 376-81.
  • 15. Öztürk B, Üşümez A, Öztürk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosth Dent. 2004;9: 436-440.
  • 16. Sato K. Relation between acid dissolution and histological alteration of heated tooth enamel. Caries Res. 1983;17: 490-5.
  • 17. Schuchard A. A histologic assessment of low-torque, ultrahigh-speed cutting technique. J Prosthet Dent. 1975;34: 644-51.
  • 18. Demirci M, Hiller KA, Bosl C, Galler K, Schmalz G, Schweikl H. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent Mater. 2008;24: 362-371.
  • 19. Schmalz, G., Arenholt-Bindslev, D. Biocompatibility of dental materials. Vol 1. Berlin: Springer; 2009
  • 20. Murray PE, About I, Lumley PJ, Smith G, Franquin JC, Smith AJ. Postoperative pulpal and repair responses. J Am Dent Assoc. 2000;131: 321-29.
  • 21. Lin M, Xu F, Lu TJ, Bai BF. A review of heat transfer in human tooth-Experimental characterization and mathematical modeling. Dent Mater. 2010;26: 501-513.
  • 22. Singh R, Tripathi A, Dhiman RK, Kumar D. Intrapulpal thermal changes during direct provisionalization using various autopolymerizing resins: Ex-vivo study. Med J Armed Forces India. 2015;71: 313-20.
  • 23. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater. 2007;23: 1283-8.
  • 24. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater. 1999; 15: 275-81.
  • 25. Wang WJ, Grymak A, Waddell JN, Choi JJE. The effect of light curing intensity on bulk-fill composite resins: heat generation and chemomechanical properties. Biomater Investig Dent. 2021;8: 137-151.
  • 26. Xu X, Sandras DA, Burgess JO. Shear bond strength with increasing light-guide distance from dentin. J Esthet and Restor Dent. 2006;18: 19-27.
  • 27. Torres, C. Modern operative dentistry: Principles for clinical practice. Springer Nature; 2019
  • 28. AlQahtani MQ, AlShaafi MM, Price RB. Effects of single-peak vs polywave light-emitting diode curing lights on the polymerization of resin cement. J Adhes Dent. 2013;15: 547-51.
  • 29. Maghaireh GA, Price RB, Abdo N, Taha NA, Alzraikat H. Effect of thickness on light transmission and vickers hardness of five bulk-fill resin-based composites using polywave and single-peak light-emitting diode curing lights. Oper Dent. 2019;44: 96-107.
  • 30. De Oliveira DCRS, Rocha MG, Correr AB, Ferracane JL, Sinhoreti MAC. Effect of beam profiles from different light emission tip types of multiwave light-emitting diodes on the curing profile of resin-based composites. Oper Dent. 2019;44: 365-78.
  • 31. Sahadi BO, Price RB, André CB, Sebold M, Bermejo GN, Dibb RGP, et al. Multiple-peak and single-peak dental curing lights comparison on the wear resistance of bulk-fill composites. Braz Oral Res. 2018;32: 122.
  • 32. N. Thompson, A. Puckett, S. Phillips and G. Reeves, Potential hazards associated with photocuring dentin bonding agents. Fourteenth Southern Biomedical Engineering Conference, 1995; LA, USA

Simüle Edilmiş Derin Kavite Modellerinde Farklı Işıkla Kürleme Ünitelerinin Pulpa Odasında Oluşturduğu Sıcaklık Değişimi

Year 2025, Volume: 26 Issue: 2, 219 - 225, 23.06.2025
https://doi.org/10.69601/meandrosmdj.1630501

Abstract

Amaç: Bu çalışmanın amacı, adeziv uygulama aşamasında farklı tipteki fotopolimerizasyon cihazlarının pulpa odası sıcaklığı üzerindeki etkisini değerlendirmektir.
Materyal ve Metot: Meziodistal çapı 5 mm, bukkolingual çapı 3.5 mm ve kavite tabanında kalan dentin kalınlığı 1.2 mm olan kaviteler hazırlandı. Polimerizasyon ışıkları üç farklı cihaz kullanılarak 20 saniye süreyle uygulandı. Pulpa odası içindeki sıcaklık değişimi bir termal sensör kullanılarak ölçüldü, 10 ve 20. saniyelerde toplanan veriler değerlendirme için kullanıldı.
Bulgular: Pulpa içi ortalama sıcaklık 10. saniyede O-Light, Deepcure-L ve Valo grupları için sırasıyla 39,9°C, 41,1°C ve 38,7°C, 20. saniyede ise 42,4°C, 44,3°C ve 40,4°C bulundu. Deepcure-L ve Valo grupları arasında maksimum sıcaklık, pulpa odası sıcaklığındaki artış ve 10. ve 20. saniyelerdeki sıcaklık açısından istatistiksel olarak anlamlı bir fark gözlendi (p<.01).
Sonuç: Gruplar arasında gözlenen pulpa odası sıcaklığı değişiklikleri, ışık iletim türünden bağımsız olarak, cihazların mW/cm² cinsinden ifade edilen gücü ile tutarlıdır.

References

  • 1. Ozturk B, Ozturk AN, Usumez A, Usumez S, Özer F. Temperature rise during adhesive and resin composite polymerization with various light curing sources. Oper Dent. 2004;29: 325-32
  • 2. McCabe JF. Cure performance of light-activated composites by differential thermal analysis (DTA). Dent Mater. 1985;1: 231–4.
  • 3. Lloyd CH, Joshi A, McGlynn E. Temperature rises produced by light sources and composites during curing. Dent Mater. 1986;2: 170-4.
  • 4. Masutani S, Setcos JC, Schnell RJ, Phillips RW. Temperature rise during polymerization of visible light-activated composite resins. Dent Mater. 1988;4: 174-8.
  • 5. Smail SRJ, Patterson CJW, Mclundie AC, Strang R. In vitro temperature rises during visible‐light curing of a lining material and a posterior composite. J Oral Rehabil. 1988;15: 361-6.
  • 6. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19: 515-30.
  • 7. Baldissara P, Catapano S, Scotti R. Clinical and histological evaluation of thermal injury thresholds in human teeth: A preliminary study. J Oral Rehabil. 1997;24: 791-801.
  • 8. Balestrino A, Veríssimo C, Tantbirojn D, García-Godoy F, Soares CJ, Versluis A. Heat generated during light-curing of restorative composites: Effect of curing light, exotherm, and experiment substrate. Am J Dent. 2016;29: 234-40.
  • 9. Ratih DN, Palamara JEA, Messer HH. Temperature change, dentinal fluid flow and cuspal displacement during resin composite restoration. J Oral Rehabil. 2007;34: 693-701.
  • 10. Miletic V, Ivanovic V, Dzeletovic B, Lezaja M. Temperature changes in silorane-, ormocer-, and dimethacrylate-based composites and pulp chamber roof during light-curing. J Esthet Restor Dent. 2009;21: 122-31.
  • 11. Rahiotis C, Patsouri K, Silikas N, Kakaboura A. Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci. 2010;52: 187-195.
  • 12. Flury S, Lussi A, Hickel R, Ilie N. Light curing through glass ceramics with a second- and a third-generation LED curing unit: Effect of curing mode on the degree of conversion of dual-curing resin cements. Clin Oral Investig. 2013;17: 2127-37
  • 13. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;6: 605-617.
  • 14. Udomthanaporn B, Nisalak P, Sawaengkit P. Shear bond strength of orthodontic bonding materials polymerized by high-intensity LEDs at different intensities and curing times. Key Eng Mater. 2017;723: 376-81.
  • 15. Öztürk B, Üşümez A, Öztürk AN, Ozer F. In vitro assessment of temperature change in the pulp chamber during cavity preparation. J Prosth Dent. 2004;9: 436-440.
  • 16. Sato K. Relation between acid dissolution and histological alteration of heated tooth enamel. Caries Res. 1983;17: 490-5.
  • 17. Schuchard A. A histologic assessment of low-torque, ultrahigh-speed cutting technique. J Prosthet Dent. 1975;34: 644-51.
  • 18. Demirci M, Hiller KA, Bosl C, Galler K, Schmalz G, Schweikl H. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent Mater. 2008;24: 362-371.
  • 19. Schmalz, G., Arenholt-Bindslev, D. Biocompatibility of dental materials. Vol 1. Berlin: Springer; 2009
  • 20. Murray PE, About I, Lumley PJ, Smith G, Franquin JC, Smith AJ. Postoperative pulpal and repair responses. J Am Dent Assoc. 2000;131: 321-29.
  • 21. Lin M, Xu F, Lu TJ, Bai BF. A review of heat transfer in human tooth-Experimental characterization and mathematical modeling. Dent Mater. 2010;26: 501-513.
  • 22. Singh R, Tripathi A, Dhiman RK, Kumar D. Intrapulpal thermal changes during direct provisionalization using various autopolymerizing resins: Ex-vivo study. Med J Armed Forces India. 2015;71: 313-20.
  • 23. Daronch M, Rueggeberg FA, Hall G, De Goes MF. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent Mater. 2007;23: 1283-8.
  • 24. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater. 1999; 15: 275-81.
  • 25. Wang WJ, Grymak A, Waddell JN, Choi JJE. The effect of light curing intensity on bulk-fill composite resins: heat generation and chemomechanical properties. Biomater Investig Dent. 2021;8: 137-151.
  • 26. Xu X, Sandras DA, Burgess JO. Shear bond strength with increasing light-guide distance from dentin. J Esthet and Restor Dent. 2006;18: 19-27.
  • 27. Torres, C. Modern operative dentistry: Principles for clinical practice. Springer Nature; 2019
  • 28. AlQahtani MQ, AlShaafi MM, Price RB. Effects of single-peak vs polywave light-emitting diode curing lights on the polymerization of resin cement. J Adhes Dent. 2013;15: 547-51.
  • 29. Maghaireh GA, Price RB, Abdo N, Taha NA, Alzraikat H. Effect of thickness on light transmission and vickers hardness of five bulk-fill resin-based composites using polywave and single-peak light-emitting diode curing lights. Oper Dent. 2019;44: 96-107.
  • 30. De Oliveira DCRS, Rocha MG, Correr AB, Ferracane JL, Sinhoreti MAC. Effect of beam profiles from different light emission tip types of multiwave light-emitting diodes on the curing profile of resin-based composites. Oper Dent. 2019;44: 365-78.
  • 31. Sahadi BO, Price RB, André CB, Sebold M, Bermejo GN, Dibb RGP, et al. Multiple-peak and single-peak dental curing lights comparison on the wear resistance of bulk-fill composites. Braz Oral Res. 2018;32: 122.
  • 32. N. Thompson, A. Puckett, S. Phillips and G. Reeves, Potential hazards associated with photocuring dentin bonding agents. Fourteenth Southern Biomedical Engineering Conference, 1995; LA, USA
There are 32 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Research Article
Authors

Yağmur Kılıç 0000-0002-1938-6041

Mustafa Mert Tulgar 0000-0002-0372-9062

Early Pub Date June 22, 2025
Publication Date June 23, 2025
Submission Date January 31, 2025
Acceptance Date April 21, 2025
Published in Issue Year 2025 Volume: 26 Issue: 2

Cite

EndNote Kılıç Y, Tulgar MM (June 1, 2025) Temperature Change in the Pulp Chamber Induced by Different Light Curing Units In Simulated Deep Cavities. Meandros Medical And Dental Journal 26 2 219–225.