Research Article
BibTex RIS Cite
Year 2019, Volume: 20 Issue: 1, 28 - 33, 30.04.2019
https://doi.org/10.4274/meandros.galenos.2018.86548

Abstract

References

  • 1. Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 2013; 17: 227-35.
  • 2. Dentsply (2011) SDR Scientific Compendium. Retrieved online August 1, 2016 from: [http://www.dentsply.de/bausteine.net/f/8883/SCSDRDeTrey110815E.pdf?fd=2](http://www.dentsply.de/bausteine.net/f/8883/SCSDRDeTrey110815E.pdf?fd=2).
  • 3. Ivoclar Vivadent (2013) Tetric EvoCeram Bulk Fill Scientific Documentation. Retrieved online August 1, 2016 from: [http://www.ivoclarvivadent.us/en-us/composites/restorativematerials/tetric-evoceram-bulk](http://www.ivoclarvivadent.us/en-us/composites/restorativematerials/tetric-evoceram-bulk) fill.
  • 4. Ilie N, Bucuta S, Draenert M. Bulk fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013; 38: 618-25.
  • 5. VOCO GmbH (2013) x-tra base. Retrieved online August 1, 2016 from [http://www.voco.com/en/product/x-tra\_base/index.html](http://www.voco.com/en/product/x-tra_base/index.html).
  • 6. 3M ESPE (2012) Filtek Bulk Fill Flowable Restorative Technical Product Profile. Retrieved online August 1, 2016 from: [http://multimedia.3m.com/mws/media/792321O/filtek-bulk](http://multimedia.3m.com/mws/media/792321O/filtek-bulk) fill-flowable-restorative-technical-product-profile.pdf.
  • 7. Söderholm KJ, Mukherjee R, Longmate J. Filler leachability of composites stored in distilled water or artificial saliva. J Dent Res 1996; 75: 1692-9.
  • 8. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997; 13: 258-69.
  • 9. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003; 24: 655-65.
  • 10. Kwon Y, Ferracane J, Lee IB. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent Mater 2012; 28: 801-9.
  • 11. Abbas G, Fleming GJP, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent 2003; 31: 437-44.
  • 12. Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005; 21: 9-20.
  • 13. Al-Ahdal K, Ilie N, Silikas N, Watts DC. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk fill resin-composite at clinically relevant depth. Dent Mater 2015; 31: 1207-13.
  • 14. Han SH, Sadr A, Tagami J, Park SH. Internal adaptation of resin composites at two configurations: Influence of polymerization shrinkage and stress. Dent Mater 2016; 32: 1085-94.
  • 15. Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 2016; 32: 998-1006.
  • 16. International Standard ISO 4049:2009. Dentistry – polymer-based restorative materials.
  • 17. Feilzer AJ, de Gee AJ, Davidson CL. Relaxation of polymerization contraction shear stress by hygroscopic expansion. J Dent Res 1990; 69: 36-9.
  • 18. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006; 22: 211-22.
  • 19. Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater 1990; 6: 282-7.
  • 20. Zhang Y, Xu J. Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J Mater Sci Mater Med 2008; 19: 2477-83.
  • 21. Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk fill and conventional resin-composites in water and artificial saliva. J Dent 2015; 43: 1511-8.
  • 22. Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res 1986; 65: 1315-8.
  • 23. Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater 2006; 22: 1143-9.
  • 24. Fabre HS, Fabre S, Cefaly DF, de Oliveira Carrilho MR, Garcia FC, Wang L. Water sorption and solubility of dentin bonding agents light-cured with different light sources. J Dent 2007; 35: 253-8.
  • 25. Al Sunbul H, Silikas N, Watts DC. Resin-based composites show similar kinetic profiles for dimensional change and recovery with solvent storage. Dent Mater 2015; 31: e201-17.
  • 26. Yap AU, Lye KW, Sau CW. Surface characteristics of tooth-colored restoratives polished utilizing different polishing systems. Oper Dent 1997; 22: 260–5.
  • 27. Ozel E, Korkmaz Y, Attar N, Karabulut E. Effect of one-step polishing systems on surface roughness of different flowable restorative materials. Dent Mater J 2008; 27: 755-64.
  • 28. Jung M, Eichelberger K, Klimek J. Surface geometry of four nanofiller and one hybrid composite after one step and multiple step polishing. Oper Dent 2007; 32: 347-55.
  • 29. Janus J, Fauxpoint G, Arntz Y, Pelletier H, Etienne O. Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach. Dent Mater 2010; 26: 416-25.
  • 30. Venturini D, Cenci MS, Demarco FF, Camacho GB, Powers JM. Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations. Oper Dent 2006; 31: 11-7.
  • 31. Gönülol N, Yilmaz F. The effects of finishing and polishing techniques on surface roughness and color stability of nanocomposites. J Dent 2012; 40 Suppl 2: e64-70.

Evaluation of Water Sorption-solubility and Surface Roughness of Different Bulk Fill Composite Resins

Year 2019, Volume: 20 Issue: 1, 28 - 33, 30.04.2019
https://doi.org/10.4274/meandros.galenos.2018.86548

Abstract

Objective: This study aimed to investigate and compare the water sorption (WS), solubility (SO) and surface roughness (SR) of four bulk fill resin-based composites (RBCs), a conventional flowable RBC and a conventional hybrid RBC.
Materials and Methods: Disc-shaped specimens of 3 low-viscosity bulk fill RBCs (SureFil SDR flow, X-tra base, Filtek Bulk Fill flow), 1 high-viscosity bulk fill RBC (Tetric EvoCream Bulk Fill), 1 conventional low-viscosity flowable RBC (Filtek Ultimate flow) and 1 conventional hybrid RBC (Filtek Z250) (n=10) were prepared and immersed in distilled water for 28 days. Upon removal, specimens were weighed using an electronic scale to determine WS and SO based on weight gain/loss, and surface profilometry was performed to determine SR. Data were analyzed using one-way ANOVA and Tukey’s post-hoc tests (p=0.05).
Results: WS and SO showed significant, positive correlations (r=0.612; p<0.001), and both varied significantly among the materials, with WS and SO values of both high-filled and low-filled bulk fill RBCs lower than their conventional counterparts. Moreover, SR values of both bulk and conventional flowable low-fill RBCs were significantly lower in comparison to the high-fill RBCs (p<0.05).
Conclusion: WS, SO and SR of RBCs are material-dependent and highly affected by filler loading and resin matrix composition. Bulk fill RBCs can be used in a large variety of clinical situations in line with the manufacturers’ recommendations.

References

  • 1. Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 2013; 17: 227-35.
  • 2. Dentsply (2011) SDR Scientific Compendium. Retrieved online August 1, 2016 from: [http://www.dentsply.de/bausteine.net/f/8883/SCSDRDeTrey110815E.pdf?fd=2](http://www.dentsply.de/bausteine.net/f/8883/SCSDRDeTrey110815E.pdf?fd=2).
  • 3. Ivoclar Vivadent (2013) Tetric EvoCeram Bulk Fill Scientific Documentation. Retrieved online August 1, 2016 from: [http://www.ivoclarvivadent.us/en-us/composites/restorativematerials/tetric-evoceram-bulk](http://www.ivoclarvivadent.us/en-us/composites/restorativematerials/tetric-evoceram-bulk) fill.
  • 4. Ilie N, Bucuta S, Draenert M. Bulk fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013; 38: 618-25.
  • 5. VOCO GmbH (2013) x-tra base. Retrieved online August 1, 2016 from [http://www.voco.com/en/product/x-tra\_base/index.html](http://www.voco.com/en/product/x-tra_base/index.html).
  • 6. 3M ESPE (2012) Filtek Bulk Fill Flowable Restorative Technical Product Profile. Retrieved online August 1, 2016 from: [http://multimedia.3m.com/mws/media/792321O/filtek-bulk](http://multimedia.3m.com/mws/media/792321O/filtek-bulk) fill-flowable-restorative-technical-product-profile.pdf.
  • 7. Söderholm KJ, Mukherjee R, Longmate J. Filler leachability of composites stored in distilled water or artificial saliva. J Dent Res 1996; 75: 1692-9.
  • 8. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997; 13: 258-69.
  • 9. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003; 24: 655-65.
  • 10. Kwon Y, Ferracane J, Lee IB. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent Mater 2012; 28: 801-9.
  • 11. Abbas G, Fleming GJP, Harrington E, Shortall AC, Burke FJ. Cuspal movement and microleakage in premolar teeth restored with a packable composite cured in bulk or in increments. J Dent 2003; 31: 437-44.
  • 12. Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005; 21: 9-20.
  • 13. Al-Ahdal K, Ilie N, Silikas N, Watts DC. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk fill resin-composite at clinically relevant depth. Dent Mater 2015; 31: 1207-13.
  • 14. Han SH, Sadr A, Tagami J, Park SH. Internal adaptation of resin composites at two configurations: Influence of polymerization shrinkage and stress. Dent Mater 2016; 32: 1085-94.
  • 15. Al Sunbul H, Silikas N, Watts DC. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites. Dent Mater 2016; 32: 998-1006.
  • 16. International Standard ISO 4049:2009. Dentistry – polymer-based restorative materials.
  • 17. Feilzer AJ, de Gee AJ, Davidson CL. Relaxation of polymerization contraction shear stress by hygroscopic expansion. J Dent Res 1990; 69: 36-9.
  • 18. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 2006; 22: 211-22.
  • 19. Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater 1990; 6: 282-7.
  • 20. Zhang Y, Xu J. Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J Mater Sci Mater Med 2008; 19: 2477-83.
  • 21. Alshali RZ, Salim NA, Satterthwaite JD, Silikas N. Long-term sorption and solubility of bulk fill and conventional resin-composites in water and artificial saliva. J Dent 2015; 43: 1511-8.
  • 22. Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res 1986; 65: 1315-8.
  • 23. Floyd CJ, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater 2006; 22: 1143-9.
  • 24. Fabre HS, Fabre S, Cefaly DF, de Oliveira Carrilho MR, Garcia FC, Wang L. Water sorption and solubility of dentin bonding agents light-cured with different light sources. J Dent 2007; 35: 253-8.
  • 25. Al Sunbul H, Silikas N, Watts DC. Resin-based composites show similar kinetic profiles for dimensional change and recovery with solvent storage. Dent Mater 2015; 31: e201-17.
  • 26. Yap AU, Lye KW, Sau CW. Surface characteristics of tooth-colored restoratives polished utilizing different polishing systems. Oper Dent 1997; 22: 260–5.
  • 27. Ozel E, Korkmaz Y, Attar N, Karabulut E. Effect of one-step polishing systems on surface roughness of different flowable restorative materials. Dent Mater J 2008; 27: 755-64.
  • 28. Jung M, Eichelberger K, Klimek J. Surface geometry of four nanofiller and one hybrid composite after one step and multiple step polishing. Oper Dent 2007; 32: 347-55.
  • 29. Janus J, Fauxpoint G, Arntz Y, Pelletier H, Etienne O. Surface roughness and morphology of three nanocomposites after two different polishing treatments by a multitechnique approach. Dent Mater 2010; 26: 416-25.
  • 30. Venturini D, Cenci MS, Demarco FF, Camacho GB, Powers JM. Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations. Oper Dent 2006; 31: 11-7.
  • 31. Gönülol N, Yilmaz F. The effects of finishing and polishing techniques on surface roughness and color stability of nanocomposites. J Dent 2012; 40 Suppl 2: e64-70.
There are 31 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Research Article
Authors

Nihan Gönülol

Emine Şen Tunç

Sezin Özer

Kemal Yıldızlı

Publication Date April 30, 2019
Published in Issue Year 2019 Volume: 20 Issue: 1

Cite

EndNote Gönülol N, Tunç EŞ, Özer S, Yıldızlı K (April 1, 2019) Evaluation of Water Sorption-solubility and Surface Roughness of Different Bulk Fill Composite Resins. Meandros Medical And Dental Journal 20 1 28–33.