Research Article
BibTex RIS Cite

A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina

Year 2025, Volume: 11 Issue: 2, 224 - 233, 26.06.2025
https://doi.org/10.58626/memba.1648019

Abstract

Spirulina (Arthrospira platensis) is a microalga with a high value due to the bioactive compounds it possesses. Spirulina is considered to be the super food and food of the future. It has many applications in various industries such as food, pharmaceuticals and dye industries. Replacing the standard growth medium for Spirulina with a more cost-effective alternative would offer a more sustainable production of microalgae. That is why in this study, there different growth media [standard Zarrouk’s medium (ZM), Low Medium (LM) and Modified Low medium (MLM)] were tested in 5L bioreactors and bioactive compounds (chlorophyll a, chlorophyll b, total chlorophyll, carotenoid and phycocyanin) in Spirulina were measured. Elemental analysis of the biomass was carried out by ICP-OES, and antibacterial activity of Spirulina extracts were analyzed. The results showed that the bioactive compound contents in Spirulina were elevated upon cultivation in MLM, which increased the antibacterial activity of the extracts. Lack of chelator in MLM significantly decreased the cost of the medium. Moreover, higher production of pigments suggested that there was no need to use high-cost micronutrient solution for the aim of pigment production, which definitely lowered the cost of medium. As a result, enhanced bioactive compound production on MLM compared to ZM and LM increases the economic value of the microalgae. Both reduced costs and increased bioactive compound contents make MLM a better choice for Spirulina production

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Abdel-Daim, M. M., Farouk, S. M., Madkour, F. F., & Azab, S. S. (2015). Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacology and Immunotoxicology, 37(2), 126–139. https://doi.org/10.3109/08923973.2014.998368
  • Adiloğlu, S. (2021). Relation of chelated iron (EDDHA-Fe) applications with iron accumulation and some plant nutrient elements in basil (Ocimum basilicum L.). Polish Journal of Environmental Studies, 30(4), 3471–3479. https://doi.org/10.15244/pjoes/128736
  • Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056–1063. https://doi.org/10.1016/J.FOODCHEM.2015.08.133
  • Bennett, A., & Bogobad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/JCB.58.2.419
  • Chethana, S., Nayak, C. A., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2015). Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. Journal of Food Science and Technology, 52(4), 2415–2421. https://doi.org/10.1007/S13197-014-1287-9
  • Claude, S., Oscar, W. F., Laure, N. N. P., Rodrigue, M. P. F., Lucinda, M. N. M., Kennedy, T. D., Emile, M., & Gustave, L. L. (2023). Enhanced Spirulina platensis growth for photosynthetic pigments production in oil palm empty fruit bunch medium. International Journal of Sustainable Agricultural Research, 10(2), 52–63. https://doi.org/10.18488/ijsar.v10i2.3364
  • EUCAST. (2019). The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0.
  • Girden, E. R. (1992). ANOVA: Repeated measures. In ANOVA: Repeated measures. Sage Publications, Inc.
  • Gross, J. (2012). Pigments in Vegetables: Chlorophylls and Carotenoids. Springer.
  • Kacar, B., & İnal, A. (2010). Plant Analyses. Nobel Akademik Yayıncılık.
  • Kirsten. H, & Roge. H. (2015). Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In S.-K. Kim (Ed.), Handbook of Marine Microalgae. Biotechnology Advances. Academic Press. http://www.sciencedirect.com:5070/book/9780128007761/handbook-of-marine-microalgae
  • Lafarga, T., Fernández-Sevilla, J. M., González-López, C., & Acién-Fernández, F. G. (2020). Spirulina for the food and functional food industries. Food Research International, 137, 109356. https://doi.org/10.1016/J.FOODRES.2020.109356
  • Lim, H. R., Khoo, K. S., Chew, K. W., Chang, C. K., Munawaroh, H. S. H., Kumar, P. S., Huy, N. D., & Show, P. L. (2021). Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environmental Pollution, 284, 117492. https://doi.org/10.1016/J.ENVPOL.2021.117492
  • Liu, Z., Chen, B., Wang, L. ao, Urbanovich, O., Nagorskaya, L., Li, X., & Tang, L. (2020). A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 400, 123138. https://doi.org/10.1016/J.JHAZMAT.2020.123138
  • Masojídek, J., Torzillo, G., & Koblízek, M. (2013). Photosynthesis in Microalgae. In A. Richmond & Q. Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology: Second Edition (pp. 21–36). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118567166.CH2
  • Mohamed, S. A., Osman, A., Abo Eita, A., & Sitohy, M. Z. (2018). Estimation of antibacterial and antioxidant activities of phycocyanin isolated from Spirulina. Zagazig Journal of Agricultural Research, 45(2), 657–666. https://doi.org/10.21608/ZJAR.2018.49187
  • Nabti, B., Bammoune, N., Meliani, H., & Stambouli, B. (2023). Antioxidant and antimicrobial activities of Spirulina from the region of Tamanrasset, Algeria. Journal of Herbal Medicine, 41, 100748. https://doi.org/10.1016/J.HERMED.2023.100748
  • Nethravathy, M. U., Mehar, J. G., Mudliar, S. N., & Shekh, A. Y. (2019). Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1882–1897. https://doi.org/10.1111/1541-4337.12500
  • Ozturk, I. I., Sirinkaya, E. T., Cakmak, M., Gürgan, M., Ceyhan, D., Panagiotou, N., & Tasiopoulos, A. J. (2021). Structural and biological features of bismuth(III) halide complexes with heterocyclic thioamides. Journal of Molecular Structure, 1227, 129730. https://doi.org/https://doi.org/10.1016/j.molstruc.2020.129730
  • Ozturk, I. I., Yarar, S., Gürgan, M., Ceyhan, D., Banti, C. N., Hadjikakou, S. K., Manoli, M., Moushi, E., & Tasiopoulos, A. J. (2019). Synthesis, characterization and biological evaluation of novel antimony(III) iodide complexes with tetramethylthiourea and N-ethylthiourea. Inorganica Chimica Acta, 491. https://doi.org/10.1016/j.ica.2019.03.020
  • Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G., & Ahn, M. J. (2018). Two Classes of Pigments, Carotenoids and C-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(8). https://doi.org/10.3390/MOLECULES23082065
  • Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Ntan, C. T., Chau, H. T. B., Anwar, C., Wani, H. M. ud din, Pal, A., Saini, R., Ha, L. H., Senthilkumar, B., Tsang, Y. S., Chen, C. W., Dong, C. Di, & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology, 351. https://doi.org/10.1016/J.BIORTECH.2022.126910
  • Pohland, A. C., & Schneider, D. (2019). Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import. Biological Chemistry, 400(10), 1289–1301. https://doi.org/10.1515/HSZ-2018-0476/MACHINEREADABLECITATION/RIS
  • Ragaza, J. A., Hossain, M. S., Meiler, K. A., Velasquez, S. F., & Kumar, V. (2020). A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, 12(4), 2371–2395. https://doi.org/10.1111/RAQ.12439
  • Rahim, A., Çakir, C., Ozturk, M., Şahin, B., Soulaimani, A., Sibaoueih, M., Nasser, B., Eddoha, R., Essamadi, A., & El Amiri, B. (2021). Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South African Journal of Botany, 141, 235–242. https://doi.org/10.1016/J.SAJB.2021.05.006
  • Rahman, M. A., Aziz, M. A., Al-khulaidi, R. A., Sakib, N., & Islam, M. (2017). Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable. Journal of Radiation Research and Applied Sciences, 10(2), 140–147. https://doi.org/10.1016/J.JRRAS.2017.02.004
  • Romay, Ch., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4(3), 207–216. https://doi.org/10.2174/1389203033487216
  • Sahil, S., Bodh, S., & Verma, P. (2024). Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential. Journal of Cellular Biotechnology, 10(2), 159–172. https://doi.org/10.3233/JCB-240151
  • Singh, S. (2021). Spirulina Market Research Report Information by Type (Arthrospira platensis, Arthrospira maxima), By Application (Food & Beverage, Dietary Supplements, Cosmetics and Personal Care), And By Region (North America, Europe, Asia-Pasific, And Rest Of The World)-Market Forecast Till 2030.
  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171. https://doi.org/10.1016/J.TIFS.2017.09.010
  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327–336. https://doi.org/10.1016/J.EGYR.2019.02.009
  • Sumanta, N., Imranul Haque, C., Nishika, J., & Suprakash, R. (2014). Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. In Research Journal of Chemical Sciences (Vol. 4, Issue 9).
  • Sun, H., Wang, Y., He, Y., Liu, B., Mou, H., Chen, F., & Yang, S. (2023). Microalgae-Derived Pigments for the Food Industry. Marine Drugs, 21(2), 82. https://doi.org/10.3390/MD21020082
  • Tapiero, H., Townsend, D. M., & Tew, K. D. (2004). The role of carotenoids in the prevention of human pathologies. Biomedicine and Pharmacotherapy, 58(2), 100–110. https://doi.org/10.1016/j.biopha.2003.12.006
  • Uba, K. I. N., Gaid, G. D., Perales, J. M. L., Bongga, F. C., & Gaid, R. D. (2024). From Laboratory to Production: Innovating the Small-scale Mass Production of Spirulina (Arthrospira platensis) with an Alternative Culture Medium and Refined Culture Conditions. Agricultural Research, 13(3), 465–476. https://doi.org/10.1007/S40003-024-00709-7/TABLES/3
  • Vo, T.-S., Ngo, D.-H., & Kim, S.-K. (2015). Nutritional and Pharmaceutical Properties of Microalgal Spirulina. In S.-K. Kim (Ed.), Handbook of Marine Microalgae: Biotechnology Advances (pp. 299–308). Academic Press.
  • Vonshak, A. (1997). Spirulina: Growth, Physiology and Biochemistry. In A. Vonshak (Ed.), Spirulina Platensis Arthrospira (pp. 1–252). CRC Press. https://doi.org/10.1201/9781482272970/SPIRULINA-PLATENSIS-ARTHROSPIRA-AVIGAD-VONSHAK
  • Yap, P. Y., Jain, A., & Trau, D. (2018). Determination of Biomass in Spirulina Cultures by Photopette. www.tipbiosystems.com
  • Zhang, S., Zhang, L., Xu, G., Li, F., & Li, X. (2022). A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Frontiers in Microbiology, 13, 970028. https://doi.org/10.3389/FMICB.2022.970028/BIBTEX

standart besiyerine alternatif uygun maliyetli besiyeri Spirulinanın pigment üretimini ve antibakteriyel etkisini artıkmaktadır.

Year 2025, Volume: 11 Issue: 2, 224 - 233, 26.06.2025
https://doi.org/10.58626/memba.1648019

Abstract

Spirulina (Arthrospira platensis), sahip olduğu biyoaktif bileşikler nedeniyle yüksek katma değere sahip bir mikro algdir. Spirulina süper gıda ve geleceğin gıdası olarak kabul edilmektedir. Gıda, ilaç ve boya endüstrileri gibi çeşitli sektörlerde birçok uygulama alanına sahiptir. Spirulina için standart büyüme ortamının daha uygun maliyetli bir alternatifle değiştirilmesi, daha sürdürülebilir bir mikroalg üretimi sağlayacaktır. Bu nedenle bu çalışmada, farklı büyüme ortamları [standart Zarrouk ortamı (ZM), Low Medium (LM) ve Modified Low medium (MLM)] 5L biyoreaktörlerde test edilmiş ve Spirulina'daki biyoaktif bileşikler (klorofil a, klorofil b, toplam klorofil, karotenoid ve fikosiyanin) ölçülmüştür. Biyokütlenin element analizi ICP-OES ile gerçekleştirilmiş ve Spirulina ekstraktlarının antibakteriyel aktivitesi analiz edilmiştir. Sonuçlar, Spirulina'daki biyoaktif bileşik içeriklerinin MLM'de yetiştirildiğinde arttığını ve bunun da ekstraktların antibakteriyel aktivitesini artırdığını göstermiştir. MLM'de şelatör bulunmaması ortamın maliyetini önemli ölçüde azaltmıştır. Ayrıca, daha yüksek pigment üretimi, pigment üretimi amacıyla yüksek maliyetli mikro besin çözeltisi kullanılmasına gerek olmadığını göstermiş ve bu da ortam maliyetini ciddi anlamda düşürmüştür. Sonuç olarak, MLM'de ZM ve LM'ye kıyasla daha fazla biyoaktif bileşik üretimi mikroalglerin ekonomik değerini artırmaktadır. Hem azalan maliyetler hem de artan biyoaktif bileşik içerikleri MLM'yi Spirulina üretimi için daha iyi bir seçim haline getirmektedir.

Project Number

-

References

  • Abdel-Daim, M. M., Farouk, S. M., Madkour, F. F., & Azab, S. S. (2015). Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacology and Immunotoxicology, 37(2), 126–139. https://doi.org/10.3109/08923973.2014.998368
  • Adiloğlu, S. (2021). Relation of chelated iron (EDDHA-Fe) applications with iron accumulation and some plant nutrient elements in basil (Ocimum basilicum L.). Polish Journal of Environmental Studies, 30(4), 3471–3479. https://doi.org/10.15244/pjoes/128736
  • Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056–1063. https://doi.org/10.1016/J.FOODCHEM.2015.08.133
  • Bennett, A., & Bogobad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419–435. https://doi.org/10.1083/JCB.58.2.419
  • Chethana, S., Nayak, C. A., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2015). Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. Journal of Food Science and Technology, 52(4), 2415–2421. https://doi.org/10.1007/S13197-014-1287-9
  • Claude, S., Oscar, W. F., Laure, N. N. P., Rodrigue, M. P. F., Lucinda, M. N. M., Kennedy, T. D., Emile, M., & Gustave, L. L. (2023). Enhanced Spirulina platensis growth for photosynthetic pigments production in oil palm empty fruit bunch medium. International Journal of Sustainable Agricultural Research, 10(2), 52–63. https://doi.org/10.18488/ijsar.v10i2.3364
  • EUCAST. (2019). The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0.
  • Girden, E. R. (1992). ANOVA: Repeated measures. In ANOVA: Repeated measures. Sage Publications, Inc.
  • Gross, J. (2012). Pigments in Vegetables: Chlorophylls and Carotenoids. Springer.
  • Kacar, B., & İnal, A. (2010). Plant Analyses. Nobel Akademik Yayıncılık.
  • Kirsten. H, & Roge. H. (2015). Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In S.-K. Kim (Ed.), Handbook of Marine Microalgae. Biotechnology Advances. Academic Press. http://www.sciencedirect.com:5070/book/9780128007761/handbook-of-marine-microalgae
  • Lafarga, T., Fernández-Sevilla, J. M., González-López, C., & Acién-Fernández, F. G. (2020). Spirulina for the food and functional food industries. Food Research International, 137, 109356. https://doi.org/10.1016/J.FOODRES.2020.109356
  • Lim, H. R., Khoo, K. S., Chew, K. W., Chang, C. K., Munawaroh, H. S. H., Kumar, P. S., Huy, N. D., & Show, P. L. (2021). Perspective of Spirulina culture with wastewater into a sustainable circular bioeconomy. Environmental Pollution, 284, 117492. https://doi.org/10.1016/J.ENVPOL.2021.117492
  • Liu, Z., Chen, B., Wang, L. ao, Urbanovich, O., Nagorskaya, L., Li, X., & Tang, L. (2020). A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials, 400, 123138. https://doi.org/10.1016/J.JHAZMAT.2020.123138
  • Masojídek, J., Torzillo, G., & Koblízek, M. (2013). Photosynthesis in Microalgae. In A. Richmond & Q. Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology: Second Edition (pp. 21–36). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118567166.CH2
  • Mohamed, S. A., Osman, A., Abo Eita, A., & Sitohy, M. Z. (2018). Estimation of antibacterial and antioxidant activities of phycocyanin isolated from Spirulina. Zagazig Journal of Agricultural Research, 45(2), 657–666. https://doi.org/10.21608/ZJAR.2018.49187
  • Nabti, B., Bammoune, N., Meliani, H., & Stambouli, B. (2023). Antioxidant and antimicrobial activities of Spirulina from the region of Tamanrasset, Algeria. Journal of Herbal Medicine, 41, 100748. https://doi.org/10.1016/J.HERMED.2023.100748
  • Nethravathy, M. U., Mehar, J. G., Mudliar, S. N., & Shekh, A. Y. (2019). Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1882–1897. https://doi.org/10.1111/1541-4337.12500
  • Ozturk, I. I., Sirinkaya, E. T., Cakmak, M., Gürgan, M., Ceyhan, D., Panagiotou, N., & Tasiopoulos, A. J. (2021). Structural and biological features of bismuth(III) halide complexes with heterocyclic thioamides. Journal of Molecular Structure, 1227, 129730. https://doi.org/https://doi.org/10.1016/j.molstruc.2020.129730
  • Ozturk, I. I., Yarar, S., Gürgan, M., Ceyhan, D., Banti, C. N., Hadjikakou, S. K., Manoli, M., Moushi, E., & Tasiopoulos, A. J. (2019). Synthesis, characterization and biological evaluation of novel antimony(III) iodide complexes with tetramethylthiourea and N-ethylthiourea. Inorganica Chimica Acta, 491. https://doi.org/10.1016/j.ica.2019.03.020
  • Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G., & Ahn, M. J. (2018). Two Classes of Pigments, Carotenoids and C-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(8). https://doi.org/10.3390/MOLECULES23082065
  • Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Ntan, C. T., Chau, H. T. B., Anwar, C., Wani, H. M. ud din, Pal, A., Saini, R., Ha, L. H., Senthilkumar, B., Tsang, Y. S., Chen, C. W., Dong, C. Di, & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology, 351. https://doi.org/10.1016/J.BIORTECH.2022.126910
  • Pohland, A. C., & Schneider, D. (2019). Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import. Biological Chemistry, 400(10), 1289–1301. https://doi.org/10.1515/HSZ-2018-0476/MACHINEREADABLECITATION/RIS
  • Ragaza, J. A., Hossain, M. S., Meiler, K. A., Velasquez, S. F., & Kumar, V. (2020). A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, 12(4), 2371–2395. https://doi.org/10.1111/RAQ.12439
  • Rahim, A., Çakir, C., Ozturk, M., Şahin, B., Soulaimani, A., Sibaoueih, M., Nasser, B., Eddoha, R., Essamadi, A., & El Amiri, B. (2021). Chemical characterization and nutritional value of Spirulina platensis cultivated in natural conditions of Chichaoua region (Morocco). South African Journal of Botany, 141, 235–242. https://doi.org/10.1016/J.SAJB.2021.05.006
  • Rahman, M. A., Aziz, M. A., Al-khulaidi, R. A., Sakib, N., & Islam, M. (2017). Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable. Journal of Radiation Research and Applied Sciences, 10(2), 140–147. https://doi.org/10.1016/J.JRRAS.2017.02.004
  • Romay, Ch., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4(3), 207–216. https://doi.org/10.2174/1389203033487216
  • Sahil, S., Bodh, S., & Verma, P. (2024). Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential. Journal of Cellular Biotechnology, 10(2), 159–172. https://doi.org/10.3233/JCB-240151
  • Singh, S. (2021). Spirulina Market Research Report Information by Type (Arthrospira platensis, Arthrospira maxima), By Application (Food & Beverage, Dietary Supplements, Cosmetics and Personal Care), And By Region (North America, Europe, Asia-Pasific, And Rest Of The World)-Market Forecast Till 2030.
  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171. https://doi.org/10.1016/J.TIFS.2017.09.010
  • Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327–336. https://doi.org/10.1016/J.EGYR.2019.02.009
  • Sumanta, N., Imranul Haque, C., Nishika, J., & Suprakash, R. (2014). Spectrophotometric Analysis of Chlorophylls and Carotenoids from Commonly Grown Fern Species by Using Various Extracting Solvents. In Research Journal of Chemical Sciences (Vol. 4, Issue 9).
  • Sun, H., Wang, Y., He, Y., Liu, B., Mou, H., Chen, F., & Yang, S. (2023). Microalgae-Derived Pigments for the Food Industry. Marine Drugs, 21(2), 82. https://doi.org/10.3390/MD21020082
  • Tapiero, H., Townsend, D. M., & Tew, K. D. (2004). The role of carotenoids in the prevention of human pathologies. Biomedicine and Pharmacotherapy, 58(2), 100–110. https://doi.org/10.1016/j.biopha.2003.12.006
  • Uba, K. I. N., Gaid, G. D., Perales, J. M. L., Bongga, F. C., & Gaid, R. D. (2024). From Laboratory to Production: Innovating the Small-scale Mass Production of Spirulina (Arthrospira platensis) with an Alternative Culture Medium and Refined Culture Conditions. Agricultural Research, 13(3), 465–476. https://doi.org/10.1007/S40003-024-00709-7/TABLES/3
  • Vo, T.-S., Ngo, D.-H., & Kim, S.-K. (2015). Nutritional and Pharmaceutical Properties of Microalgal Spirulina. In S.-K. Kim (Ed.), Handbook of Marine Microalgae: Biotechnology Advances (pp. 299–308). Academic Press.
  • Vonshak, A. (1997). Spirulina: Growth, Physiology and Biochemistry. In A. Vonshak (Ed.), Spirulina Platensis Arthrospira (pp. 1–252). CRC Press. https://doi.org/10.1201/9781482272970/SPIRULINA-PLATENSIS-ARTHROSPIRA-AVIGAD-VONSHAK
  • Yap, P. Y., Jain, A., & Trau, D. (2018). Determination of Biomass in Spirulina Cultures by Photopette. www.tipbiosystems.com
  • Zhang, S., Zhang, L., Xu, G., Li, F., & Li, X. (2022). A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Frontiers in Microbiology, 13, 970028. https://doi.org/10.3389/FMICB.2022.970028/BIBTEX
There are 39 citations in total.

Details

Primary Language English
Subjects Hydrobiology, Food Sciences (Other)
Journal Section Research Articles
Authors

Muazzez Gürgan Eser 0000-0002-2966-1510

Çetin Yağcılar 0000-0002-4683-820X

Aslı Mutluç 0000-0003-3042-6398

Project Number -
Publication Date June 26, 2025
Submission Date February 27, 2025
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Gürgan Eser, M., Yağcılar, Ç., & Mutluç, A. (2025). A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina. MEMBA Su Bilimleri Dergisi, 11(2), 224-233. https://doi.org/10.58626/memba.1648019
AMA Gürgan Eser M, Yağcılar Ç, Mutluç A. A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina. MEMBA Su Bilimleri Dergisi. June 2025;11(2):224-233. doi:10.58626/memba.1648019
Chicago Gürgan Eser, Muazzez, Çetin Yağcılar, and Aslı Mutluç. “A Cost-Effective Alternative to Standard Medium Enhances the Pigment Production and Antibacterial Activity of Spirulina”. MEMBA Su Bilimleri Dergisi 11, no. 2 (June 2025): 224-33. https://doi.org/10.58626/memba.1648019.
EndNote Gürgan Eser M, Yağcılar Ç, Mutluç A (June 1, 2025) A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina. MEMBA Su Bilimleri Dergisi 11 2 224–233.
IEEE M. Gürgan Eser, Ç. Yağcılar, and A. Mutluç, “A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina”, MEMBA Su Bilimleri Dergisi, vol. 11, no. 2, pp. 224–233, 2025, doi: 10.58626/memba.1648019.
ISNAD Gürgan Eser, Muazzez et al. “A Cost-Effective Alternative to Standard Medium Enhances the Pigment Production and Antibacterial Activity of Spirulina”. MEMBA Su Bilimleri Dergisi 11/2 (June 2025), 224-233. https://doi.org/10.58626/memba.1648019.
JAMA Gürgan Eser M, Yağcılar Ç, Mutluç A. A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina. MEMBA Su Bilimleri Dergisi. 2025;11:224–233.
MLA Gürgan Eser, Muazzez et al. “A Cost-Effective Alternative to Standard Medium Enhances the Pigment Production and Antibacterial Activity of Spirulina”. MEMBA Su Bilimleri Dergisi, vol. 11, no. 2, 2025, pp. 224-33, doi:10.58626/memba.1648019.
Vancouver Gürgan Eser M, Yağcılar Ç, Mutluç A. A cost-effective alternative to standard medium enhances the pigment production and antibacterial activity of Spirulina. MEMBA Su Bilimleri Dergisi. 2025;11(2):224-33.

Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi olarak 2013'te kurulan dergimiz,
MEMBA Su Bilimleri Dergisi olarak yayın hayatına devam etmektedir.
-----------
Su bilimleri alanında biyoloji, ekoloji, içsular, balık besleme, balık avcılığı, balıkçılık teknolojisi, balıkçılık ekonomisi ve yönetimi, su ürünleri işleme teknolojileri, su kimyası, mikrobiyoloji, alg biyoteknolojisi, denizel organizmaların korunması, acısu ve tatlı su habitatları ve kirlilik, ekotoksikoloji, tarımsal ve çevresel sürdürülebilirlik, iklim ve bitki büyüme modelleri, iklim değişikliği, doğal afetler, hidrometeorolojik afetler, uzaktan algılama, coğrafi bilgi teknolojileri, kıyısal alanlar, kurak ve yarıkurak topografyalar, mekansal analiz ve modelleme, biyocoğrafya, fiziki coğrafya, beşeri ve ekonomik coğrafya, jeomorfoloji, çevresel sorunlar, hayvansal ve bitkisel biyoteknoloji, hayvansal ve bitkisel üretim alanlarında İngilizce ve Türkçe orjinal makaleler, kısa notlar, teknik notlar, raporlar ve derlemeleri yılda dört sayı (Mart, Haziran, Eylül, Aralık) olarak yayınlanan online, açık erişimli, uluslararası hakemli dergidir.

MEMBA Su Bilimleri Dergisi
TRDizin, SOBIAD, ASCI, CAB Direct, Google Scholar, Paperity, Asosindex, Academic Journal Index, CNKI Scholar
dizinlerinde taranmaktadır.
----------
Dergimize makale yükleme sırasında intihal benzerlik raporu yüklemek zorunlu ve bu raporun intihal benzerlik oranının % 30'un altında olması gerekmektedir. Bu raporu yazarlar makale yükleme sırasında göndermelidir.
Dergimize yüklenen Türkçe ve İngilizce makalelerde Türkçe ve İngilizce özetlerin bulunması zorunludur.