Research Article
BibTex RIS Cite

Kültür Balıkçılığında Faj Terapisi Uygulamaları ve Karşılaşılan Zorluklar

Year 2025, Volume: 11 Issue: 2, 182 - 200, 26.06.2025
https://doi.org/10.58626/memba.1728310

Abstract

Kültür balıkçılığı ve su ürünleri yetiştiriciliği son yıllarda en hızlı büyüyen gıda sektörlerinden biridir. Ancak, kültür balıkçılığı ve su ürünleri yetiştiriciliğinde antibiyotiklerin bilinçsiz kullanımı, antibiyotik direncinin gelişimine ve yayılmasına neden olmaktadır. Bu bağlamda, faj terapisi kültür balıkçılığında ekonomik kayıplara yol açan patojenlerin kontrol altına alınmasında alternatif, sürdürülebilir ve çevre dostu bir çözüm sunmaktadır. Kültür balıkçılığında faj terapisi uygulamaları, son yıllarda giderek yaygınlaşmaktadır. Faj terapisi, Vibrio, Aeromonas ve Flavobacterium gibi patojenlerin kontrol altına alınmasında umut vadeden sonuçlar göstermiştir. Bu yöntem, balık sağlığının iyileştirilmesi, antibiyotik kullanımının azaltılması ve fajların özgüllüğü sayesinde mikrobiyal dengenin korunması açısından etkili olabilmektedir. Ancak, fajların çevresel faktörlere duyarlılığı, bakterilerin fajlara direnç geliştirme potansiyeli, etkin faj formülasyonlarının oluşturulmasındaki güçlükler ve faj terapisindeki bilimsel eksiklikler, bu yöntemin etkinliği ve başarısını etkileyen önemli zorluklardır. Bu çözüm bekleyen konulardan, fajların etkinliğini artırılması ve çevresel faktörlere karşı dayanıklılığının sağlaması amacıyla biyoteknolojik ve nanoteknolojik yöntemlerden yararlanılmaktadır. CRISPR-Cas9 gibi yenilikçi teknolojiler, fajların hedef patojenlere olan spesifikliğini artırarak mikrobiyal dengeyi desteklemekte, mikroenkapsülasyon yöntemleri ise fajların stabilitesini güçlendirmektedir. Bununla birlikte, faj terapisinin geniş ölçekte uygulanabilirliğini sağlamak için yasal düzenlemelerin oluşturulması ve ekonomik sürdürülebilirliğin sağlanması gereklidir. Bu çalışmada, kültür balıkçılığında hastalıkların kontrol altına alınmasında ve çevre dostu, sürdürülebilir üretim uygulamalarında önemli potansiyele sahip olan fajların uygulamaları, etkinlikleri, formülasyonlarında kullanılan ileri düzey teknikler, faj terapisinde karşılaşılan zorluklar ve bilimsel eksiklikler ayrıntılı bir şekilde değerlendirilmiştir. Elde edilen bilgilerin, kültür balıkçılığında faj terapisi uygulamalarının artmasına, bu alanda farkındalık yaratarak antibiyotik kullanımının azalmasına ve sürdürülebilir üretimin sağlanmasına önemli katkılar sağlayacağı düşünülmektedir.

References

  • Abedon, S. T., & Yin, J. (2009). Bacteriophage plaques: theory and analysis. In Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 161-174). Totowa, NJ: Humana Press.
  • Abedon, S. T. (2016). Phage therapy dosing: The problem(s) with multiplicity of infection (MOI). https://doi.org/10.1080/21597081.2016.1220348
  • Álvarez, B., & Biosca, E. G. (2025). Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. https://doi.org/10.20944/preprints202501.2210.v1
  • Ansari, F., & Nagar, V. (2024). Aeromonas Biocontrol Using Bacteriophages: A Promising Strategy.
  • Aquaculture and Aquaculture Drugs Basics. (2020). https://www.fda.gov/animal-veterinary/animal-health-literacy/aquaculture-and-aquaculture-drugs-basics
  • Aziz, N. S., Ibrahim, S., Zaharinie, T., & Tang, S.-S. (2024). Bacteriophage encapsulation – Trends and potential applications in aquaculture. Aquaculture, 594, 741398. https://doi.org/10.1016/j.aquaculture.2024.741398
  • Batchelder, J. I., Hare, P. J., & Mok, W. W. K. (2023). Resistance-resistant antibacterial treatment strategies. Frontiers in Antibiotics, 2. https://doi.org/10.3389/frabi.2023.1093156
  • Baytaroglu, E. S., & Kucukkagnici, O. (2025). Screening of Aeromonas spp. and their antimicrobial resistance profiles in wild fish and seawater from the Gulf of Antalya, Mediterranean Sea. Eurasian Journal of Veterinary Sciences, 41.
  • Çağatay, T., İ. (2023). Bacteriophage applications in aquaculture. Israeli Journal of Aquaculture-Bamidgeh, 75(2).
  • Cao, Z., Liu, X., & Zhang, Y. (2020). Environmental factors influencing bacteriophage stability and efficacy in aquaculture. Environmental Science & Technology 22(3):187–194.
  • Castillo, D., & Middelboe, M. (2016). Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Microbiology Letters, 363(24), fnw272.
  • Chen, D., Wang, Z., Li, X., Du, H., Zhang, K., Cao, S., et al. (2024). Biological properties of Vibrio parahaemolyticus lytic phages and transcriptome analysis of their interactions with the host. Aquaculture Reports 39:102450.
  • Choudhury, T. G., Nandi, S. P., & Saikia, B. (2019). Influence of some environmental variables and addition of r-lysozyme on efficacy of Vibrio harveyi phage for therapy. Journal of Biosciences, 44(1), 8. https://doi.org/10.1007/s12038-018-9830-x
  • Christiansen, R. H., Dalsgaard, I., Middelboe, M., Lauritsen, A. H., & Madsen, L. (2014). Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: implications for disease control in aquaculture. Applied and Environmental Microbiology, 80(24), 7683-7693.
  • Colavecchio, A., Cadieux, B., Lo, A., & Goodridge, L. (2017). Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family – A Review Frontiers in Microbiology, 8. Frontiers Media. https://doi.org/10.3389/fmicb.2017.01108
  • Culot, A., Grosset, N., & Gautier, M. L. (2019). Overcoming the challenges of phage therapy for industrial aquaculture: A review [Review of Overcoming the challenges of phage therapy for industrial aquaculture: A review]. Aquaculture, 513, 734423. https://doi.org/10.1016/j.aquaculture.2019.734423
  • Dai, L., Wu, J., Chen, R., Zhang, R., Zhang, Y., & Wei, W. (2024). Isolation and characterization of a novel bacteriophage against Vibrio alginolyticus from coastal waters and its environmental tolerance. Virology 600:110219.
  • Dang, W., Wu, J., & Chen, L. (2021). Bacteriophage cocktails: Development and applications in aquaculture. Journal of Marine Biotechnology 28(7):789–804.
  • Ding, T., Sun, H., Pan, Q., Zhao, F., Zhang, Z., & Ren, H. (2020). Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Research 286:198080. https://doi.org/10.1016/j.virusres.2020.198080. PMID: 32615132.
  • Donati, V., Dalsgaard, I., Sundell, K., Castillo, D., Er-Rafik, M., Clark, J., Wiklund, T., Middelboe, M., & Madsen, L. (2021). Phage-mediated control of Flavobacterium psychrophilum in aquaculture: In vivo experiments to compare delivery methods. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.628309.
  • Droubogiannis, S., Pavlidi, L., Skliros, D., Flemetakis, E., & Katharios, P. (2023). Comprehensive characterization of a novel bacteriophage, vB_VhaS_MAG7 against a fish pathogenic strain of Vibrio harveyi and its in vivo efficacy in phage therapy trials. International Journal of Molecular Sciences 24(9):8200. https://doi.org/10.3390/ijms24098200.
  • Eroğlu, A. E. E., & Yaşa, İ. (2025). Genomic overview of the N4-like TEMp-D1 phage and the efficacy of antibiotic-phage synergy for the biocontrol of Photobacterium damselae subsp. damselae. Aquaculture International 33(1):1–19. https://doi.org/10.1007/s10499-024-01234-9.
  • European Medicines Agency. (2022). Guideline on Quality, Safety and Efficacy of Veterinary Medicinal Products Specifically Designed for Phage Therapy, 13 October 2023, EMA/CVMP/NTWP/32862/2022.
  • Fabrega, J., & Carapeto, R. (2020). Regulatory review of the environmental risk assessment of veterinary medicinal products in the European Union, with particular focus on the centralised authorisation procedure. Environmental Sciences Europe, 32(1). https://doi.org/10.1186/s12302-020-00374-x
  • Fazzino, L., Anisman, J., Chacón, J. M., & Harcombe, W. R. (2020). Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microbial Biotechnology. https://doi.org/10.1111/1751-7915.13650
  • Feng, Y., Cao, S., Qin, Z., Ouyang, P., Chen, D., Guo, H., Fang, J., Deng, H., Li, W., & Geng, Y. (2022). Comparative analysis of sturgeon- and catfish-derived Yersinia ruckeri reveals the genetic variation and the risk of heavy antibiotic resistance. Aquaculture Reports. https://doi.org/10.1016/j.aqrep.2022.101231.
  • Forti, F., Roach, D. R., Cafora, M., Pasini, M. E., Horner, D. S., Fiscarelli, E., Rossitto, M., Cariani, L., Briani, F., Debarbieux, L., & Ghisotti, D. (2018). Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.02573-17.
  • Gao, Z., Piao, Y., Hu, B., Yang, C., Zhang, X., Zheng, Q., & Cao, J. (2023). Investigation of antibiotic resistance genotypic and phenotypic characteristics of marine aquaculture fish carried in the Dalian area of China. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2023.1222847.
  • Geetha, P., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: a crisis for concern. Biologia, 75(9), 1497. https://doi.org/10.2478/s11756-020-00456-4.
  • Hietala, V., Horsma‐Heikkinen, J., Carron, A., Skurnik, M., & Kiljunen, S. (2019). The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01674
  • Gholami, A., Dowling, J., & Laure, E. (2015, July 20). A security framework for population-scale genomics analysis. International Conference on High Performance Computing and Simulation. https://doi.org/10.1109/HPCSIM.2015.7237028
  • González-Gómez, J. P., Soto-Rodriguez, S. A., Gomez-Gil, B., Serrano-Hernández, J. M., Lozano-Olvera, R., López-Cuevas, O., ... & Chaidez, C. (2023). Effect of phage therapy on survival, histopathology, and water microbiota of Penaeus vannamei challenged with Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND). Aquaculture, 576, 739851.
  • Hodgson, K. (2013). Bacteriophage therapy. In Microbiology Australia, 28-31.
  • Hossain, M. M. M., Tanni, L. N., Rahman, M. A., Farjana, N., Moon, R. S., Tonni, N. Z., et al. (2024). Bacteriophage and non-pathogenic Vibrio to control diseases in shrimp aquaculture. Comparative Immunology Reports 6:200126. https://doi.org/10.1016/j.cir.2023.200126.
  • Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., & Sullivan, M. B. (2017). Lysogeny in nature: mechanisms, impact and ecology of temperate phages. The ISME Journal. https://doi.org/10.1038/ISMEJ.2017.16
  • Huang, K., & Nitin, N. (2019). Edible bacteriophage-based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 502:18–25. https://doi.org/10.1016/j.aquaculture.2019.01.041.
  • Imbeault, S., Tremblay, D., & Moineau, S. (2006). Bacteriophage therapy: Mechanisms of action and applications. Bacteriophage Research 7(1):45–57.
  • Islam, G. S., Wang, Q., & Sabour, P. M. (2017). Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application. Methods in Molecular Biology, 71. https://doi.org/10.1007/978-1-4939-7343-9_6
  • Jassim, S., & Limoges, R. G. (2014). Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’ [Review of Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’]. World Journal of Microbiology and Biotechnology, 30(8), 2153. Springer Science+Business Media. https://doi.org/10.1007/s11274-014-1655-7
  • Jo, A., Ding, T., & Ahn, J. (2016). Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Science and Biotechnology. https://doi.org/10.1007/S10068-016-0153-0
  • Joy, J. P. (2021). Exploring the lytic and lysogenic life cycles of bacteriophages. Current Science. https://doi.org/10.24918/CS.2021.6.
  • Kalatzis, P. G., Castillo, D., Katharios, P., & Middelboe, M. (2018). Review Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy
  • Kaur, S., Kaur, H., Kaur, B., Kumar, B. N., Tyagi, A., Singh, P., et al. (2024). Isolating pathogenic multidrug-resistant Aeromonas hydrophila from diseased fish and assessing the effectiveness of a novel lytic Aeromonas veronii bacteriophage (AVP3) for biocontrol. Microbial Pathogenesis 196:106914. https://doi.org/10.1016/j.micpath.2023.106914.
  • Kazimierczak, M., Cao, Z., & Hassan, R. (2018). Innovations in aquaculture disease management: The role of phage therapy. Journal of Aquatic Biotechnology 24(8):523–534. https://doi.org/10.1016/j.jab.2018.06.003.
  • Kumari, M., Singh, R., & Verma, R. (2023). Evaluation of phage therapy against Aeromonas hydrophila infection in Pangasius buchanani. Frontiers in Aquaculture 2:1201466. https://doi.org/10.3389/faquc.2023.1201466.
  • Kunttu, P., Sundell, K., & Wiklund, T. (2021). Antimicrobial strategies in aquaculture: Challenges and solutions. Pathogens 10(2):99–115. https://doi.org/10.3390/pathogens10020099.
  • Kusunur, A. B., Mogilipuri, S. S., Moturu, D., Benala, M., Vaiyapuri, M., Panda, S. K., et al. (2023). Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. Journal of Applied Microbiology. https://doi.org/10.1093/jambio/lxad060.
  • Laanto E, Bamford JK, Ravantti JJ, Sundberg LR. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front Microbiol. 2015 Aug 19;6:829. doi: 10.3389/fmicb.2015.00829. PMID: 26347722; PMCID: PMC4541368.
  • Le, S. T., & Kurtböke, İ. 2019. Bacteriophages as biocontrol agents in aquaculture. Microbiology Australia. https://doi.org/10.1071/MA19003.
  • Liang, J., Wang, Z., & Chen, Y. (2023). Antibiotic resistance genes in aquaculture environments: Occurrence, transfer, and implications. Environmental Microbiology. https://doi.org/10.1111/1462-2920.16345.
  • Liang, S., Liang, R., Raza, S. H. A., Huang, Q., Li, T., Bai, H., et al. (2025). Biological analysis of phage vB_AhaP_PT2 and treatment rescued crucian carp infected with Aeromonas hydrophila. Aquaculture 595:741654.
  • Linares, R., Arnaud, C.-A., Degroux, S., Schoehn, G., & Breyton, C. (2020). Structure, function and assembly of the long, flexible tail of siphophages. Current Opinion in Virology. https://doi.org/10.1016/J.COVIRO.2020.06.010.
  • Liu, R., Han, G., Zong, L., Cun, S., Hao, B., Zhang, J., & Liu, X. (2022). Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiologica, 67(4), 573. Springer Science+Business Media. https://doi.org/10.1007/s12223-022-00965-6
  • Liu, X., Ming, Z., Ding, Y., Guan, P., Shao, Y., Wang, L., & Wang, X. (2025). Characterization of a novel phage SPX1 and biological control for biofilm of Shewanella in shrimp and food contact surfaces. International Journal of Food Microbiology 426:110911. https://doi.org/10.1016/j.ijfoodmicro.2024.110911.
  • Lomelí-Ortega, C. O., Barajas-Sandoval, D., Ramírez-Sánchez, I., Martínez-Villalobos, J. M., Leptihn, S., & Quiroz-Guzmán, E. (2025). Complete genome sequence of Vibrio diabolicus bacteriophage vB_Vc_SrVc2 and its efficacy as prophylactic phage therapy. Virology 602:110322.
  • Los, M. (2020). Strategies of phage contamination prevention in industry. Open Journal of Biology: https://doi.org/10.17352/OJB.000014.
  • Ly-Chatain, M. H. (2014). The factors affecting effectiveness of treatment in phage therapy. Frontiers in Microbiology. https://doi.org/10.3389/FMICB.2014.00051.
  • Mateus, L., Costa, L., Silva, Y. J., et al. (2014). Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture, 424–425, 167–173. https://doi.org/10.1016/j.aquaculture.2013.12.033.
  • Misol Jr, G. N., Kokkari, C., & Katharios, P. (2020). Biological and genomic characterization of a novel jumbo bacteriophage, vB_VhaM_pir03 with broad host lytic activity against Vibrio harveyi. Pathogens 9(12):1051. https://doi.org/10.3390/pathogens9121051.
  • Möller, J., Emge, P., Avalos Vizcarra, I., Kollmannsberger, P., & Vogel, V. (2013). Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces. New Journal of Physics. https://doi.org/10.1088/1367-2630/15/12/125016.
  • Morrison, S., & Rainnie, D. J. (2004). Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture?
  • Muramatsu, H., Lam, K., Bajusz, C., Laczkó, D., Karikó, K., Schreiner, P., Martin, A., Lutwyche, P., Heyes, J., & Pardi, N. (2022). Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Molecular Therapy, 30(5), 1941. https://doi.org/10.1016/j.ymthe.2022.02.001
  • Nguyen, C. D., Amoroso, G., Ventura, T., & Elizur, A. (2020). Assessing the pyloric caeca and distal gut microbiota correlation with flesh color in Atlantic salmon (Salmo salar L., 1758). Microorganisms 8(8):1244. https://doi.org/10.3390/microorganisms8081244.
  • Ninawe, A. S., Sivasankari, S., Ramasamy, P., Kiran, G. S., & Selvin, J. (2020). Bacteriophages for aquaculture disease control. Aquaculture International 28:1925–1938. https://doi.org/10.1007/s10499-020-00555-3.
  • Nokhwal, A., Anand, T., Ravikant, & Vaid, R. K. (2023). Bacteriophage therapy: an emerging paradigm in fish disease management. Aquaculture International, 31(2), 777-805.
  • Oliveira, J. M. M., Castilho, F., Cunha, Â., & Pereira, M. J. (2012). Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquaculture International, 20(5), 879. https://doi.org/10.1007/s10499-012-9515-7
  • Opperman, C., Sundell, K., & Wiklund, T. (2022). Treating bacterial infections with bacteriophages in the 21st century: Opportunities and challenges. Frontiers in Microbiology 13:654120. https://doi.org/10.3389/fmicb.2022.654120.
  • Orndorff, P. E. (2016). Use of bacteriophage to target bacterial surface structures required for virulence: A systematic search for antibiotic alternatives. Current Genetics. https://doi.org/10.1007/S00294-016-0603-5.
  • Park, S. C., & Nakai, T. (2003). Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Diseases of Aquatic Organisms 53(1):33–39. https://doi.org/10.3354/dao053033.
  • Peña-Rodríguez, A., Ramírez-Sánchez, I., Leptihn, S., & Quiroz-Guzmán, E. (2025). A novel vibriophage vB_Vp_PvVp04 against pathogenic Vibrio parahaemolyticus and its formulation for inclusion in shrimp feed. Aquaculture International 33(1):117. https://doi.org/10.1007/s10499-024-01012-4.
  • Pereira, A., Silva, J., & Gomes, D. (2022). Advances in aquaculture: Emerging technologies and sustainable practices. Aquaculture Journal 15(3):123–135. https://doi.org/10.1007/s10499-022-01002-7.
  • Pereira, C., Silva, Y. J., Santos, A. L., Cunha, A., Gomes, N. C. M., & Almeida, A. (2011). Bacteriophages with potential for inactivation of fish pathogenic bacteria: Survival, host specificity and effect on bacterial community structure. Marine Drugs. https://doi.org/10.3390/MD9112236.
  • Pirnay, J.-P., Blasdel, B. G., Bretaudeau, L., Buckling, A., Chanishvili, N., Clark, J. R., Côrte-Real Sofia, V., Debarbieux, L., Dublanchet, A., De Vos, D., Gabard, J., Garcia, M., Goderdzishvili, M., Górski, A., Górski, A., Hardcastle, J., Huys, I., Kutter, E., Lavigne, R., … Van den Eede, G. (2015). Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharmaceutical Research. https://doi.org/10.1007/S11095-014-1617-7
  • Platt, R. (2000). Bacteriophage therapy: a novel method of lytic phage delivery. https://doi.org/10.31274/RTD-180813-15276
  • Rai, S., Kaur, B., Singh, P., Singh, A., Benjakul, S., Reddy, S., Nagar, V., & Tyagi, A. (2023). Perspectives on phage therapy for health management in aquaculture. Aquaculture International, 32(2), 1349. https://doi.org/10.1007/s10499-023-01220-6
  • Ramírez, C., & Romero, J. (2024). Unveiling hidden allies: In silico discovery of prophages in Tenacibaculum species. Antibiotics 13(12):1184. https://doi.org/10.3390/antibiotics13121184.
  • Ren, H., Li, Z., Xu, Y., Wang, L., & Li, X. (2019). Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicus. Aquaculture. https://doi.org/10.1016/J.AQUACULTURE.2019.01.006
  • Richards, G. P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage, 4(4). Taylor & Francis. https://doi.org/10.4161/21597081.2014.975540.
  • Rocha, C., Cabral, H. N., Marques, J. C., & Gonçalves, A. M. M. (2022). A global overview of aquaculture food production with a focus on the activity’s development in transitional systems—The case study of a South European country (Portugal). Journal of Marine Science and Engineering. https://doi.org/10.3390/jmse10030417.
  • Romero, J., Alvial, A., Duran-Avelar, M. de J., Rivas, A., & Bastías, R. (2024). Lysin and lytic phages reduce Vibrio counts in live feed and fish larvae. Microorganisms, 12(4), 831. https://doi.org/10.3390/microorganisms12040831.
  • Royam, M. M., & Nachimuthu, R. (2020). Isolation, characterization, and efficacy of bacteriophages isolated against Citrobacter spp.: An in vivo approach in a zebrafish model (Danio rerio). Research in Microbiology 171(8):341–350. https://doi.org/10.1016/j.resmic.2020.06.002.
  • Scarano, C., Piras, F., Virdis, S. G., Ziino, G., Nuvoloni, R., Dalmasso, A., De Santis, E. P. L., & Spanu, C. (2018). Antibiotic resistance of Aeromonas spp. strains isolated from Sparus aurata reared in Italian mariculture farms. International Journal of Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2018.07.033.
  • Schulz, P., Pajdak, J., & Siwicki, A. K. (2022). In Vivo Bacteriophages’ Application for the Prevention and Therapy of Aquaculture Animals–Chosen Aspects [Review of In Vivo Bacteriophages’ Application for the Prevention and Therapy of Aquaculture Animals–Chosen Aspects]. Animals, 12(10), 1233. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ani12101233.
  • Sieiro, C., Areal-Hermida, L., Pichardo-Gallardo, Á., Almuiña-González, R., de Miguel, T., Sánchez, S., Sánchez-Pérez, A., & Villa, T. G. (2020). A hundred years of bacteriophages: Can phages replace antibiotics in agriculture and aquaculture? The Journal of Antibiotics. https://doi.org/10.3390/antibiotics9080493.
  • Stenholm, A. R., Dalsgaard, I., & Middelboe, M. (2008). Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Applied and environmental microbiology, 74(13), 4070-4078.
  • Sundberg, L., Sundell, K., & Wiklund, T. (2021). Role of bacteriophages in aquaculture: Potential and challenges. Microbial Biotechnology 13(6):1589–1599. https://doi.org/10.1111/1751-7915.13645.
  • Sundell, K., Landor, L., Castillo, D., Middelboe, M., & Wiklund, T. (2020). Bacteriophages as biocontrol agents for Flavobacterium psychrophilum biofilms and rainbow trout infections. Phage 1(4):198–204. https://doi.org/10.1089/phage.2020.0017.
  • Torres-Barceló, C., Gurney, J., Gougat-Barbera, C., Vasse, M., Hochberg, M. E., & Hochberg, M. E. (2018). Transient negative effects of antibiotics on phages do not jeopardise the advantages of combination therapies. FEMS Microbiology Ecology. https://doi.org/10.1093/FEMSEC/FIY107.
  • Türe, M., & Alp, H. (2016). Identification of bacterial pathogens and determination of their antibacterial resistance profiles in some cultured fish in Turkey. Journal of Veterinary Research, 60(2), 141-146.
  • Vincent, A. T., & Charette, S. J. (2022). To be or not to be mesophilic, that is the question for Aeromonas salmonicida. Microorganisms 10(2):240. https://doi.org/10.3390/microorganisms10020240.
  • Wang, J., Feng, Y., Qin, Z., Geng, Y., Huang, X., Ouyang, P., ... & Lai, W. (2022). Isolation, characterization and complete genome sequencing of a Streptococcus dysgalactiae associated with cultured channel catfish mortalities in China. Aquaculture Reports 27:101408. https://doi.org/10.1016/j.aqrep.2022.101408.
  • Wong, Z. C., Alwie, N. A. M., Lim, L. S., Sano, M., & Lal, M. T. M. (2024). Potential biocontrol for bacterial and viral disease treatment in aquaculture: A minireview. Journal of Microorganism Control 29(3):99–103.
  • Yaşa, İ., Evran, S., Eren Eroğlu, A. E., Önder, C., Allahyari, M., Menderes, G., & Kullay, M. (2024). Partial characterization of three bacteriophages isolated from aquaculture hatchery water and their potential in the biocontrol of Vibrio spp. Microorganisms 12(5):895. https://doi.org/10.3390/microorganisms12050895.
  • Ye, M., et al. (2019). Environmental impacts of phage therapy: A review. Environment International.
  • Yılmaz, D. K., & Berik, N. (2025). Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood. Aquatic Sciences and Engineering, 40(1), 9-17.
  • Zhang, L., Zhao, H., & Liu, J. (2021). Environmental persistence of antibiotics and antibiotic resistance genes in aquaculture systems. Environmental Science & Technology 12(5):467–479.
  • Zhang, X., Klümper, U., Krömeke, J., Hille, F., Meeske, A. J., & Smits, S. H. J. (2022). CRISPR–Cas9 based bacteriophage genome editing. Microbiology Spectrum, 10(6), e00820-22. https://doi.org/10.1128/spectrum.00820-22

Phage Therapy in Aquaculture: Applications, Efficacy and Challenges

Year 2025, Volume: 11 Issue: 2, 182 - 200, 26.06.2025
https://doi.org/10.58626/memba.1728310

Abstract

Aquaculture and fisheries have emerged as some of the fastest-growing food sectors in recent years. However, the indiscriminate use of antibiotics in aquaculture and fisheries has led to the development and spread of antibiotic resistance. In this context, phage therapy offers an alternative, sustainable, and environmentally friendly solution for controlling pathogens that cause significant economic losses in aquaculture. Over recent years, the application of phage therapy in aquaculture has gained increasing attention. Phage therapy has shown promising results in controlling pathogens such as Vibrio, Aeromonas, and Flavobacterium. This method effectively improves fish health, reduces antibiotic usage, and preserves microbial balance due to the specificity of phages. Despite its potential, several challenges affect the efficacy and success of phage therapy. These challenges include the sensitivity of phages to environmental factors, the potential of bacteria to develop resistance against phages, difficulties in developing effective phage formulations, and scientific gaps in phage therapy research. To address these issues, biotechnological and nanotechnological methods have been employed to enhance the effectiveness of phages and increase their resilience to environmental factors. Innovative technologies such as CRISPR-Cas9 enhance the specificity of phages toward target pathogens while supporting microbial balance. Additionally, microencapsulation techniques strengthen phage stability, enabling more efficient application. However, for the large-scale implementation of phage therapy, clear regulatory frameworks and economic sustainability are required. This study provides a comprehensive evaluation of the applications and efficacy of phages, advanced techniques used in their formulation, challenges encountered in phage therapy, and existing scientific gaps in the field of aquaculture. The insights gained from this study are expected to contribute significantly to the expansion of phage therapy applications in aquaculture, raise awareness about reducing antibiotic use, and support sustainable production practices.

References

  • Abedon, S. T., & Yin, J. (2009). Bacteriophage plaques: theory and analysis. In Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (pp. 161-174). Totowa, NJ: Humana Press.
  • Abedon, S. T. (2016). Phage therapy dosing: The problem(s) with multiplicity of infection (MOI). https://doi.org/10.1080/21597081.2016.1220348
  • Álvarez, B., & Biosca, E. G. (2025). Harnessing the Activity of Lytic Bacteriophages to Foster the Sustainable Development Goals and the “One Health” Strategy. https://doi.org/10.20944/preprints202501.2210.v1
  • Ansari, F., & Nagar, V. (2024). Aeromonas Biocontrol Using Bacteriophages: A Promising Strategy.
  • Aquaculture and Aquaculture Drugs Basics. (2020). https://www.fda.gov/animal-veterinary/animal-health-literacy/aquaculture-and-aquaculture-drugs-basics
  • Aziz, N. S., Ibrahim, S., Zaharinie, T., & Tang, S.-S. (2024). Bacteriophage encapsulation – Trends and potential applications in aquaculture. Aquaculture, 594, 741398. https://doi.org/10.1016/j.aquaculture.2024.741398
  • Batchelder, J. I., Hare, P. J., & Mok, W. W. K. (2023). Resistance-resistant antibacterial treatment strategies. Frontiers in Antibiotics, 2. https://doi.org/10.3389/frabi.2023.1093156
  • Baytaroglu, E. S., & Kucukkagnici, O. (2025). Screening of Aeromonas spp. and their antimicrobial resistance profiles in wild fish and seawater from the Gulf of Antalya, Mediterranean Sea. Eurasian Journal of Veterinary Sciences, 41.
  • Çağatay, T., İ. (2023). Bacteriophage applications in aquaculture. Israeli Journal of Aquaculture-Bamidgeh, 75(2).
  • Cao, Z., Liu, X., & Zhang, Y. (2020). Environmental factors influencing bacteriophage stability and efficacy in aquaculture. Environmental Science & Technology 22(3):187–194.
  • Castillo, D., & Middelboe, M. (2016). Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Microbiology Letters, 363(24), fnw272.
  • Chen, D., Wang, Z., Li, X., Du, H., Zhang, K., Cao, S., et al. (2024). Biological properties of Vibrio parahaemolyticus lytic phages and transcriptome analysis of their interactions with the host. Aquaculture Reports 39:102450.
  • Choudhury, T. G., Nandi, S. P., & Saikia, B. (2019). Influence of some environmental variables and addition of r-lysozyme on efficacy of Vibrio harveyi phage for therapy. Journal of Biosciences, 44(1), 8. https://doi.org/10.1007/s12038-018-9830-x
  • Christiansen, R. H., Dalsgaard, I., Middelboe, M., Lauritsen, A. H., & Madsen, L. (2014). Detection and quantification of Flavobacterium psychrophilum-specific bacteriophages in vivo in rainbow trout upon oral administration: implications for disease control in aquaculture. Applied and Environmental Microbiology, 80(24), 7683-7693.
  • Colavecchio, A., Cadieux, B., Lo, A., & Goodridge, L. (2017). Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family – A Review Frontiers in Microbiology, 8. Frontiers Media. https://doi.org/10.3389/fmicb.2017.01108
  • Culot, A., Grosset, N., & Gautier, M. L. (2019). Overcoming the challenges of phage therapy for industrial aquaculture: A review [Review of Overcoming the challenges of phage therapy for industrial aquaculture: A review]. Aquaculture, 513, 734423. https://doi.org/10.1016/j.aquaculture.2019.734423
  • Dai, L., Wu, J., Chen, R., Zhang, R., Zhang, Y., & Wei, W. (2024). Isolation and characterization of a novel bacteriophage against Vibrio alginolyticus from coastal waters and its environmental tolerance. Virology 600:110219.
  • Dang, W., Wu, J., & Chen, L. (2021). Bacteriophage cocktails: Development and applications in aquaculture. Journal of Marine Biotechnology 28(7):789–804.
  • Ding, T., Sun, H., Pan, Q., Zhao, F., Zhang, Z., & Ren, H. (2020). Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Research 286:198080. https://doi.org/10.1016/j.virusres.2020.198080. PMID: 32615132.
  • Donati, V., Dalsgaard, I., Sundell, K., Castillo, D., Er-Rafik, M., Clark, J., Wiklund, T., Middelboe, M., & Madsen, L. (2021). Phage-mediated control of Flavobacterium psychrophilum in aquaculture: In vivo experiments to compare delivery methods. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.628309.
  • Droubogiannis, S., Pavlidi, L., Skliros, D., Flemetakis, E., & Katharios, P. (2023). Comprehensive characterization of a novel bacteriophage, vB_VhaS_MAG7 against a fish pathogenic strain of Vibrio harveyi and its in vivo efficacy in phage therapy trials. International Journal of Molecular Sciences 24(9):8200. https://doi.org/10.3390/ijms24098200.
  • Eroğlu, A. E. E., & Yaşa, İ. (2025). Genomic overview of the N4-like TEMp-D1 phage and the efficacy of antibiotic-phage synergy for the biocontrol of Photobacterium damselae subsp. damselae. Aquaculture International 33(1):1–19. https://doi.org/10.1007/s10499-024-01234-9.
  • European Medicines Agency. (2022). Guideline on Quality, Safety and Efficacy of Veterinary Medicinal Products Specifically Designed for Phage Therapy, 13 October 2023, EMA/CVMP/NTWP/32862/2022.
  • Fabrega, J., & Carapeto, R. (2020). Regulatory review of the environmental risk assessment of veterinary medicinal products in the European Union, with particular focus on the centralised authorisation procedure. Environmental Sciences Europe, 32(1). https://doi.org/10.1186/s12302-020-00374-x
  • Fazzino, L., Anisman, J., Chacón, J. M., & Harcombe, W. R. (2020). Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microbial Biotechnology. https://doi.org/10.1111/1751-7915.13650
  • Feng, Y., Cao, S., Qin, Z., Ouyang, P., Chen, D., Guo, H., Fang, J., Deng, H., Li, W., & Geng, Y. (2022). Comparative analysis of sturgeon- and catfish-derived Yersinia ruckeri reveals the genetic variation and the risk of heavy antibiotic resistance. Aquaculture Reports. https://doi.org/10.1016/j.aqrep.2022.101231.
  • Forti, F., Roach, D. R., Cafora, M., Pasini, M. E., Horner, D. S., Fiscarelli, E., Rossitto, M., Cariani, L., Briani, F., Debarbieux, L., & Ghisotti, D. (2018). Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.02573-17.
  • Gao, Z., Piao, Y., Hu, B., Yang, C., Zhang, X., Zheng, Q., & Cao, J. (2023). Investigation of antibiotic resistance genotypic and phenotypic characteristics of marine aquaculture fish carried in the Dalian area of China. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2023.1222847.
  • Geetha, P., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: a crisis for concern. Biologia, 75(9), 1497. https://doi.org/10.2478/s11756-020-00456-4.
  • Hietala, V., Horsma‐Heikkinen, J., Carron, A., Skurnik, M., & Kiljunen, S. (2019). The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01674
  • Gholami, A., Dowling, J., & Laure, E. (2015, July 20). A security framework for population-scale genomics analysis. International Conference on High Performance Computing and Simulation. https://doi.org/10.1109/HPCSIM.2015.7237028
  • González-Gómez, J. P., Soto-Rodriguez, S. A., Gomez-Gil, B., Serrano-Hernández, J. M., Lozano-Olvera, R., López-Cuevas, O., ... & Chaidez, C. (2023). Effect of phage therapy on survival, histopathology, and water microbiota of Penaeus vannamei challenged with Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND). Aquaculture, 576, 739851.
  • Hodgson, K. (2013). Bacteriophage therapy. In Microbiology Australia, 28-31.
  • Hossain, M. M. M., Tanni, L. N., Rahman, M. A., Farjana, N., Moon, R. S., Tonni, N. Z., et al. (2024). Bacteriophage and non-pathogenic Vibrio to control diseases in shrimp aquaculture. Comparative Immunology Reports 6:200126. https://doi.org/10.1016/j.cir.2023.200126.
  • Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., & Sullivan, M. B. (2017). Lysogeny in nature: mechanisms, impact and ecology of temperate phages. The ISME Journal. https://doi.org/10.1038/ISMEJ.2017.16
  • Huang, K., & Nitin, N. (2019). Edible bacteriophage-based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 502:18–25. https://doi.org/10.1016/j.aquaculture.2019.01.041.
  • Imbeault, S., Tremblay, D., & Moineau, S. (2006). Bacteriophage therapy: Mechanisms of action and applications. Bacteriophage Research 7(1):45–57.
  • Islam, G. S., Wang, Q., & Sabour, P. M. (2017). Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application. Methods in Molecular Biology, 71. https://doi.org/10.1007/978-1-4939-7343-9_6
  • Jassim, S., & Limoges, R. G. (2014). Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’ [Review of Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’]. World Journal of Microbiology and Biotechnology, 30(8), 2153. Springer Science+Business Media. https://doi.org/10.1007/s11274-014-1655-7
  • Jo, A., Ding, T., & Ahn, J. (2016). Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Science and Biotechnology. https://doi.org/10.1007/S10068-016-0153-0
  • Joy, J. P. (2021). Exploring the lytic and lysogenic life cycles of bacteriophages. Current Science. https://doi.org/10.24918/CS.2021.6.
  • Kalatzis, P. G., Castillo, D., Katharios, P., & Middelboe, M. (2018). Review Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy
  • Kaur, S., Kaur, H., Kaur, B., Kumar, B. N., Tyagi, A., Singh, P., et al. (2024). Isolating pathogenic multidrug-resistant Aeromonas hydrophila from diseased fish and assessing the effectiveness of a novel lytic Aeromonas veronii bacteriophage (AVP3) for biocontrol. Microbial Pathogenesis 196:106914. https://doi.org/10.1016/j.micpath.2023.106914.
  • Kazimierczak, M., Cao, Z., & Hassan, R. (2018). Innovations in aquaculture disease management: The role of phage therapy. Journal of Aquatic Biotechnology 24(8):523–534. https://doi.org/10.1016/j.jab.2018.06.003.
  • Kumari, M., Singh, R., & Verma, R. (2023). Evaluation of phage therapy against Aeromonas hydrophila infection in Pangasius buchanani. Frontiers in Aquaculture 2:1201466. https://doi.org/10.3389/faquc.2023.1201466.
  • Kunttu, P., Sundell, K., & Wiklund, T. (2021). Antimicrobial strategies in aquaculture: Challenges and solutions. Pathogens 10(2):99–115. https://doi.org/10.3390/pathogens10020099.
  • Kusunur, A. B., Mogilipuri, S. S., Moturu, D., Benala, M., Vaiyapuri, M., Panda, S. K., et al. (2023). Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. Journal of Applied Microbiology. https://doi.org/10.1093/jambio/lxad060.
  • Laanto E, Bamford JK, Ravantti JJ, Sundberg LR. The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front Microbiol. 2015 Aug 19;6:829. doi: 10.3389/fmicb.2015.00829. PMID: 26347722; PMCID: PMC4541368.
  • Le, S. T., & Kurtböke, İ. 2019. Bacteriophages as biocontrol agents in aquaculture. Microbiology Australia. https://doi.org/10.1071/MA19003.
  • Liang, J., Wang, Z., & Chen, Y. (2023). Antibiotic resistance genes in aquaculture environments: Occurrence, transfer, and implications. Environmental Microbiology. https://doi.org/10.1111/1462-2920.16345.
  • Liang, S., Liang, R., Raza, S. H. A., Huang, Q., Li, T., Bai, H., et al. (2025). Biological analysis of phage vB_AhaP_PT2 and treatment rescued crucian carp infected with Aeromonas hydrophila. Aquaculture 595:741654.
  • Linares, R., Arnaud, C.-A., Degroux, S., Schoehn, G., & Breyton, C. (2020). Structure, function and assembly of the long, flexible tail of siphophages. Current Opinion in Virology. https://doi.org/10.1016/J.COVIRO.2020.06.010.
  • Liu, R., Han, G., Zong, L., Cun, S., Hao, B., Zhang, J., & Liu, X. (2022). Bacteriophage therapy in aquaculture: current status and future challenges. Folia Microbiologica, 67(4), 573. Springer Science+Business Media. https://doi.org/10.1007/s12223-022-00965-6
  • Liu, X., Ming, Z., Ding, Y., Guan, P., Shao, Y., Wang, L., & Wang, X. (2025). Characterization of a novel phage SPX1 and biological control for biofilm of Shewanella in shrimp and food contact surfaces. International Journal of Food Microbiology 426:110911. https://doi.org/10.1016/j.ijfoodmicro.2024.110911.
  • Lomelí-Ortega, C. O., Barajas-Sandoval, D., Ramírez-Sánchez, I., Martínez-Villalobos, J. M., Leptihn, S., & Quiroz-Guzmán, E. (2025). Complete genome sequence of Vibrio diabolicus bacteriophage vB_Vc_SrVc2 and its efficacy as prophylactic phage therapy. Virology 602:110322.
  • Los, M. (2020). Strategies of phage contamination prevention in industry. Open Journal of Biology: https://doi.org/10.17352/OJB.000014.
  • Ly-Chatain, M. H. (2014). The factors affecting effectiveness of treatment in phage therapy. Frontiers in Microbiology. https://doi.org/10.3389/FMICB.2014.00051.
  • Mateus, L., Costa, L., Silva, Y. J., et al. (2014). Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture, 424–425, 167–173. https://doi.org/10.1016/j.aquaculture.2013.12.033.
  • Misol Jr, G. N., Kokkari, C., & Katharios, P. (2020). Biological and genomic characterization of a novel jumbo bacteriophage, vB_VhaM_pir03 with broad host lytic activity against Vibrio harveyi. Pathogens 9(12):1051. https://doi.org/10.3390/pathogens9121051.
  • Möller, J., Emge, P., Avalos Vizcarra, I., Kollmannsberger, P., & Vogel, V. (2013). Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces. New Journal of Physics. https://doi.org/10.1088/1367-2630/15/12/125016.
  • Morrison, S., & Rainnie, D. J. (2004). Bacteriophage therapy: an alternative to antibiotic therapy in aquaculture?
  • Muramatsu, H., Lam, K., Bajusz, C., Laczkó, D., Karikó, K., Schreiner, P., Martin, A., Lutwyche, P., Heyes, J., & Pardi, N. (2022). Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Molecular Therapy, 30(5), 1941. https://doi.org/10.1016/j.ymthe.2022.02.001
  • Nguyen, C. D., Amoroso, G., Ventura, T., & Elizur, A. (2020). Assessing the pyloric caeca and distal gut microbiota correlation with flesh color in Atlantic salmon (Salmo salar L., 1758). Microorganisms 8(8):1244. https://doi.org/10.3390/microorganisms8081244.
  • Ninawe, A. S., Sivasankari, S., Ramasamy, P., Kiran, G. S., & Selvin, J. (2020). Bacteriophages for aquaculture disease control. Aquaculture International 28:1925–1938. https://doi.org/10.1007/s10499-020-00555-3.
  • Nokhwal, A., Anand, T., Ravikant, & Vaid, R. K. (2023). Bacteriophage therapy: an emerging paradigm in fish disease management. Aquaculture International, 31(2), 777-805.
  • Oliveira, J. M. M., Castilho, F., Cunha, Â., & Pereira, M. J. (2012). Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquaculture International, 20(5), 879. https://doi.org/10.1007/s10499-012-9515-7
  • Opperman, C., Sundell, K., & Wiklund, T. (2022). Treating bacterial infections with bacteriophages in the 21st century: Opportunities and challenges. Frontiers in Microbiology 13:654120. https://doi.org/10.3389/fmicb.2022.654120.
  • Orndorff, P. E. (2016). Use of bacteriophage to target bacterial surface structures required for virulence: A systematic search for antibiotic alternatives. Current Genetics. https://doi.org/10.1007/S00294-016-0603-5.
  • Park, S. C., & Nakai, T. (2003). Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Diseases of Aquatic Organisms 53(1):33–39. https://doi.org/10.3354/dao053033.
  • Peña-Rodríguez, A., Ramírez-Sánchez, I., Leptihn, S., & Quiroz-Guzmán, E. (2025). A novel vibriophage vB_Vp_PvVp04 against pathogenic Vibrio parahaemolyticus and its formulation for inclusion in shrimp feed. Aquaculture International 33(1):117. https://doi.org/10.1007/s10499-024-01012-4.
  • Pereira, A., Silva, J., & Gomes, D. (2022). Advances in aquaculture: Emerging technologies and sustainable practices. Aquaculture Journal 15(3):123–135. https://doi.org/10.1007/s10499-022-01002-7.
  • Pereira, C., Silva, Y. J., Santos, A. L., Cunha, A., Gomes, N. C. M., & Almeida, A. (2011). Bacteriophages with potential for inactivation of fish pathogenic bacteria: Survival, host specificity and effect on bacterial community structure. Marine Drugs. https://doi.org/10.3390/MD9112236.
  • Pirnay, J.-P., Blasdel, B. G., Bretaudeau, L., Buckling, A., Chanishvili, N., Clark, J. R., Côrte-Real Sofia, V., Debarbieux, L., Dublanchet, A., De Vos, D., Gabard, J., Garcia, M., Goderdzishvili, M., Górski, A., Górski, A., Hardcastle, J., Huys, I., Kutter, E., Lavigne, R., … Van den Eede, G. (2015). Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharmaceutical Research. https://doi.org/10.1007/S11095-014-1617-7
  • Platt, R. (2000). Bacteriophage therapy: a novel method of lytic phage delivery. https://doi.org/10.31274/RTD-180813-15276
  • Rai, S., Kaur, B., Singh, P., Singh, A., Benjakul, S., Reddy, S., Nagar, V., & Tyagi, A. (2023). Perspectives on phage therapy for health management in aquaculture. Aquaculture International, 32(2), 1349. https://doi.org/10.1007/s10499-023-01220-6
  • Ramírez, C., & Romero, J. (2024). Unveiling hidden allies: In silico discovery of prophages in Tenacibaculum species. Antibiotics 13(12):1184. https://doi.org/10.3390/antibiotics13121184.
  • Ren, H., Li, Z., Xu, Y., Wang, L., & Li, X. (2019). Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicus. Aquaculture. https://doi.org/10.1016/J.AQUACULTURE.2019.01.006
  • Richards, G. P. (2014). Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage, 4(4). Taylor & Francis. https://doi.org/10.4161/21597081.2014.975540.
  • Rocha, C., Cabral, H. N., Marques, J. C., & Gonçalves, A. M. M. (2022). A global overview of aquaculture food production with a focus on the activity’s development in transitional systems—The case study of a South European country (Portugal). Journal of Marine Science and Engineering. https://doi.org/10.3390/jmse10030417.
  • Romero, J., Alvial, A., Duran-Avelar, M. de J., Rivas, A., & Bastías, R. (2024). Lysin and lytic phages reduce Vibrio counts in live feed and fish larvae. Microorganisms, 12(4), 831. https://doi.org/10.3390/microorganisms12040831.
  • Royam, M. M., & Nachimuthu, R. (2020). Isolation, characterization, and efficacy of bacteriophages isolated against Citrobacter spp.: An in vivo approach in a zebrafish model (Danio rerio). Research in Microbiology 171(8):341–350. https://doi.org/10.1016/j.resmic.2020.06.002.
  • Scarano, C., Piras, F., Virdis, S. G., Ziino, G., Nuvoloni, R., Dalmasso, A., De Santis, E. P. L., & Spanu, C. (2018). Antibiotic resistance of Aeromonas spp. strains isolated from Sparus aurata reared in Italian mariculture farms. International Journal of Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2018.07.033.
  • Schulz, P., Pajdak, J., & Siwicki, A. K. (2022). In Vivo Bacteriophages’ Application for the Prevention and Therapy of Aquaculture Animals–Chosen Aspects [Review of In Vivo Bacteriophages’ Application for the Prevention and Therapy of Aquaculture Animals–Chosen Aspects]. Animals, 12(10), 1233. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ani12101233.
  • Sieiro, C., Areal-Hermida, L., Pichardo-Gallardo, Á., Almuiña-González, R., de Miguel, T., Sánchez, S., Sánchez-Pérez, A., & Villa, T. G. (2020). A hundred years of bacteriophages: Can phages replace antibiotics in agriculture and aquaculture? The Journal of Antibiotics. https://doi.org/10.3390/antibiotics9080493.
  • Stenholm, A. R., Dalsgaard, I., & Middelboe, M. (2008). Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Applied and environmental microbiology, 74(13), 4070-4078.
  • Sundberg, L., Sundell, K., & Wiklund, T. (2021). Role of bacteriophages in aquaculture: Potential and challenges. Microbial Biotechnology 13(6):1589–1599. https://doi.org/10.1111/1751-7915.13645.
  • Sundell, K., Landor, L., Castillo, D., Middelboe, M., & Wiklund, T. (2020). Bacteriophages as biocontrol agents for Flavobacterium psychrophilum biofilms and rainbow trout infections. Phage 1(4):198–204. https://doi.org/10.1089/phage.2020.0017.
  • Torres-Barceló, C., Gurney, J., Gougat-Barbera, C., Vasse, M., Hochberg, M. E., & Hochberg, M. E. (2018). Transient negative effects of antibiotics on phages do not jeopardise the advantages of combination therapies. FEMS Microbiology Ecology. https://doi.org/10.1093/FEMSEC/FIY107.
  • Türe, M., & Alp, H. (2016). Identification of bacterial pathogens and determination of their antibacterial resistance profiles in some cultured fish in Turkey. Journal of Veterinary Research, 60(2), 141-146.
  • Vincent, A. T., & Charette, S. J. (2022). To be or not to be mesophilic, that is the question for Aeromonas salmonicida. Microorganisms 10(2):240. https://doi.org/10.3390/microorganisms10020240.
  • Wang, J., Feng, Y., Qin, Z., Geng, Y., Huang, X., Ouyang, P., ... & Lai, W. (2022). Isolation, characterization and complete genome sequencing of a Streptococcus dysgalactiae associated with cultured channel catfish mortalities in China. Aquaculture Reports 27:101408. https://doi.org/10.1016/j.aqrep.2022.101408.
  • Wong, Z. C., Alwie, N. A. M., Lim, L. S., Sano, M., & Lal, M. T. M. (2024). Potential biocontrol for bacterial and viral disease treatment in aquaculture: A minireview. Journal of Microorganism Control 29(3):99–103.
  • Yaşa, İ., Evran, S., Eren Eroğlu, A. E., Önder, C., Allahyari, M., Menderes, G., & Kullay, M. (2024). Partial characterization of three bacteriophages isolated from aquaculture hatchery water and their potential in the biocontrol of Vibrio spp. Microorganisms 12(5):895. https://doi.org/10.3390/microorganisms12050895.
  • Ye, M., et al. (2019). Environmental impacts of phage therapy: A review. Environment International.
  • Yılmaz, D. K., & Berik, N. (2025). Phenotypic and Genotypic Antibiotic Resistance of Bacteria Isolated from Ready-to-eat Salted Seafood. Aquatic Sciences and Engineering, 40(1), 9-17.
  • Zhang, L., Zhao, H., & Liu, J. (2021). Environmental persistence of antibiotics and antibiotic resistance genes in aquaculture systems. Environmental Science & Technology 12(5):467–479.
  • Zhang, X., Klümper, U., Krömeke, J., Hille, F., Meeske, A. J., & Smits, S. H. J. (2022). CRISPR–Cas9 based bacteriophage genome editing. Microbiology Spectrum, 10(6), e00820-22. https://doi.org/10.1128/spectrum.00820-22
There are 97 citations in total.

Details

Primary Language English
Subjects Pisciculture, Fish Pests and Diseases
Journal Section Research Articles
Authors

Mustafa Üstündağ 0000-0002-2990-4981

Publication Date June 26, 2025
Submission Date January 19, 2025
Acceptance Date June 19, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Üstündağ, M. (2025). Phage Therapy in Aquaculture: Applications, Efficacy and Challenges. MEMBA Su Bilimleri Dergisi, 11(2), 182-200. https://doi.org/10.58626/memba.1728310
AMA Üstündağ M. Phage Therapy in Aquaculture: Applications, Efficacy and Challenges. MEMBA Su Bilimleri Dergisi. June 2025;11(2):182-200. doi:10.58626/memba.1728310
Chicago Üstündağ, Mustafa. “Phage Therapy in Aquaculture: Applications, Efficacy and Challenges”. MEMBA Su Bilimleri Dergisi 11, no. 2 (June 2025): 182-200. https://doi.org/10.58626/memba.1728310.
EndNote Üstündağ M (June 1, 2025) Phage Therapy in Aquaculture: Applications, Efficacy and Challenges. MEMBA Su Bilimleri Dergisi 11 2 182–200.
IEEE M. Üstündağ, “Phage Therapy in Aquaculture: Applications, Efficacy and Challenges”, MEMBA Su Bilimleri Dergisi, vol. 11, no. 2, pp. 182–200, 2025, doi: 10.58626/memba.1728310.
ISNAD Üstündağ, Mustafa. “Phage Therapy in Aquaculture: Applications, Efficacy and Challenges”. MEMBA Su Bilimleri Dergisi 11/2 (June 2025), 182-200. https://doi.org/10.58626/memba.1728310.
JAMA Üstündağ M. Phage Therapy in Aquaculture: Applications, Efficacy and Challenges. MEMBA Su Bilimleri Dergisi. 2025;11:182–200.
MLA Üstündağ, Mustafa. “Phage Therapy in Aquaculture: Applications, Efficacy and Challenges”. MEMBA Su Bilimleri Dergisi, vol. 11, no. 2, 2025, pp. 182-00, doi:10.58626/memba.1728310.
Vancouver Üstündağ M. Phage Therapy in Aquaculture: Applications, Efficacy and Challenges. MEMBA Su Bilimleri Dergisi. 2025;11(2):182-200.

Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi olarak 2013'te kurulan dergimiz,
MEMBA Su Bilimleri Dergisi olarak yayın hayatına devam etmektedir.
-----------
Su bilimleri alanında biyoloji, ekoloji, içsular, balık besleme, balık avcılığı, balıkçılık teknolojisi, balıkçılık ekonomisi ve yönetimi, su ürünleri işleme teknolojileri, su kimyası, mikrobiyoloji, alg biyoteknolojisi, denizel organizmaların korunması, acısu ve tatlı su habitatları ve kirlilik, ekotoksikoloji, tarımsal ve çevresel sürdürülebilirlik, iklim ve bitki büyüme modelleri, iklim değişikliği, doğal afetler, hidrometeorolojik afetler, uzaktan algılama, coğrafi bilgi teknolojileri, kıyısal alanlar, kurak ve yarıkurak topografyalar, mekansal analiz ve modelleme, biyocoğrafya, fiziki coğrafya, beşeri ve ekonomik coğrafya, jeomorfoloji, çevresel sorunlar, hayvansal ve bitkisel biyoteknoloji, hayvansal ve bitkisel üretim alanlarında İngilizce ve Türkçe orjinal makaleler, kısa notlar, teknik notlar, raporlar ve derlemeleri yılda dört sayı (Mart, Haziran, Eylül, Aralık) olarak yayınlanan online, açık erişimli, uluslararası hakemli dergidir.

MEMBA Su Bilimleri Dergisi
TRDizin, SOBIAD, ASCI, CAB Direct, Google Scholar, Paperity, Asosindex, Academic Journal Index, CNKI Scholar
dizinlerinde taranmaktadır.
----------
Dergimize makale yükleme sırasında intihal benzerlik raporu yüklemek zorunlu ve bu raporun intihal benzerlik oranının % 30'un altında olması gerekmektedir. Bu raporu yazarlar makale yükleme sırasında göndermelidir.
Dergimize yüklenen Türkçe ve İngilizce makalelerde Türkçe ve İngilizce özetlerin bulunması zorunludur.