Research Article
BibTex RIS Cite

Cichlidae Ailesinden Üç Türün İki Alıştırma Sıcaklığında Termal Tolerans Parametreleri ve Bunların Vücut Büyüklüğüne Göre Değişimi

Year 2025, Volume: 15 Issue: 1, 44 - 52, 26.06.2025
https://doi.org/10.53518/mjavl.1559950

Abstract

Çalışmada Cihlidae ailesinden sarı prenses (Labidochromis caeruleus), şeker pembe (Aulonocara stuartgranti) ve yunus ciklit (Cyrtocara moorii)’in 20 ve 28 °C alıştırma sıcaklığında (AT) termal tolerans parametreleri ve bunların vücut büyüklüğüne göre değişimleri belirlenmiştir. Balık türleri arasında sıcaklık tolerans değerleri birbirine yakın olup, AT’ye bağlı olarak kritik düşük sıcaklık (CTmin) 9,40 – 12,79 °C, kritik yüksek sıcaklık (CTmax) 35,40 – 39,87 °C arasında saptanmıştır. Bu verilere göre 208 - 220 °C olarak hesaplanan TTP (thermal tolerance polygon) değeri, bu türlerin ait oldukları ailenin karekterine uygun olarak dar bir sıcaklık aralığına (stenothermik) sahip olduğunu göstermektedir. Üç ciklit türünde AT ile CTM değerleri arasında pozitif bir ilişki gözlenmiştir (P<0.05). AT’nin 20°C’den 28 °C’ye çıkması, balıkların CTmin değerlerinde 2,56 ile 3,39 °C, CTmax değerlerinde 2,42 ile 3,17 °C arasında bir artışa neden olmuştur. Bu değişime bağlı olarak ARR (alıştırma tepki oranı) değerleritürler arasında CTmin’de 0,32 ile 0,42, CTmax’da 0,30 ile 0,40 arasında bulunmuştur. Nispeten düşük sayılabilecek bu değerler, bu türlerin sıcaklık dalgalanmalarına karşı duyarlı olduğuna işaret etmektedir. Üç ciklit türünde 7-8 kat bir ağırlık farkınınher iki AT’de balıkların ne düşük ne de yüksek sıcaklık toleransı üzerinde herhangi bir etkisinin olmadığı belirlenmiştir (P > 0,05). Dolayısıyla, sucul poikiloterm hayvanların küçük boyutlu bireylerinin yüksek sıcaklıklarla baş etmede avantajlı olduklarına dair sav, bu üç ciklit türü üzerinde yapılan gözlemlerde doğrulanmamıştır

Supporting Institution

Çukurova Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FBA-2023-15727

References

  • Angilletta, M.J., Dunham, A.E. (2003). The temperature size rule in ectotherms: simple evolutionary explanations may not be general. American Society of Naturalist, 162(3), 332-342.
  • Atkinson, D., Morley, S.A., Hughes, R.N. (2006). From cellstocolonies: at whatlevels of body does the ‘temperature-size rule’ apply? Evolution & Development, 8(2), 202-214. https://doi.org/10.1111/j.1525- 142X.2006.00090.x
  • Becker, C.D., Genoway, R.G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of fresh water fish. Environmental Biology of Fishes, 4, 245-256.
  • Barrionuevo, W.R., Fernandes, M.N. (1995). Critical thermal maxima and minima for curimbata, Prochilodusscrofa steindachneri, of two different sizes. Aquacuture Research, 26: 447-45. https://doi.org/10.1111/j.1365- 2109.1995.tb00934.x
  • Beitinger, T.L., Bennett, W.A., Mccauley, R.W. (2000). Temperature tolerances of North American fresh water fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58, 237-275.
  • Bennett, W.A., Beitinger, T.L. (1997). Temperature Tolerance of the sheeps head Minnow, Cyprinodon variegatus. Copeia, 1, 77-87. https://doi.org/10.2307/1447842
  • Brans, K.I., Jansen.M., Vanoverbeke, J., Tuzun, N., Stoks, R., De Meester, L. (2017). The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size, Global Change Biology, 23, 5218-5227. https://doi.org/10.1111/gcb.13784
  • Claussen, D.L. (1977). Thermal acclimation in ambystomatid salamenders. Comparative Biochemistry and Physiology Part A: Physiology. 58, 333-340. https://doi.org/10.1016/0300-9629(77)90150-5
  • Cortemeglia, C., & Beitinger, T. L. (2005). Temperature tolerances of wild‐type and red transgenic zebra danios. Transactions of the American Fisheries Society, 134(6), 1431-1437.
  • Cox, D.K. (1974). Effects of three heating rates on the critical thermal maximum of blue gill.. In: J.W. Gibbons& R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Service., Springfield, 158-163.
  • Cowles, R.B., Bogert, C.M. (1944). A preliminary study of the thermal requirements a desert reptiles. Bulletin of the American Museum of Natural History, 13(1), 53-60.
  • Daufresne, M., Lengfellner, K., Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. The Proceedings of the National Academy of Sciences, 106(31), 788– 12 793. https://doi.org/10.1073/pnas.0902080106
  • Di Santo, V., Lobel, P.S. (2016). Size affects digestive responses to increasing temperature in fishes: physiological implications of being small under climate change. Marine Ecology, 37, 813-820. https://doi.org/10.1111/maec.12358
  • Di Santo,V., Lobel, P.S. (2017). Body size and thermal tolerance in tropical gobies, Journal of Experimental Marine Biology and Ecology, 487, 11-17. https://doi.org/10.1016/j.jembe.2016.11.007
  • Diaz, F., Re, A.D., Sierra, E., Amador, G. (2004). Behavioral thermoregulation and critical limits applied to culture of red claw crayfish, Cherax quadricarinatus (VonMartens). Freshwater Crayfish, 14, 90–98.
  • Diaz-Herrera, F., Uribe, S.E., Ramirez, B.L.F., Mora, G.A. (1998). Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palemonidae). Journal of Thermal Biology, 23(6), 381– 385.https://doi.org/10.1016/S0306-4565(98)00029-1
  • Eme, J., Bennett, W.A. (2009). Critical Thermal Tolerance Polygons of Tropical Marine Fishes from Sulawesi, Indonesia. Journal of Thermal Biology, 34(5), 220-225. https://doi.org/10.1016/j.jtherbio.2009.02.005
  • Ern, R., Andreassen, A. H., Jutfelt, F. (2023). Physiological mechanisms of acute upper thermal tolerance in fish. Physiology, 38(3), 141-158. https://doi.org/10.1152/physiol.00027.2022
  • Ford, T., Beitinger, T. L. (2005). Temperature tolerance in the goldfish, Carassius auratus. Journal of Thermal Biology, 30(2), 147-152.
  • Horne, C.R., Hirst, A. AndAtkinson, D. (2015). Temperature size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology. Letters, 18, 327- 335. https://doi.org/10.1111/ele.12413
  • Jørgensen L. B., Malte H., Ørsted M, Klahn N.A., Overgaard J. (2021). A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Scientific Reports, 11: 12840.https://doi:10.1038/s41598-021-92004-6
  • Kraskura, K., Hardison, E. A., Eliason, E. J. (2023). Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Scientific Reports, 13, 17900. https://doi.org/10.1038/s41598-023-44574- w
  • Lutterschmidt, W.I., Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. https://doi.org/10.1139/z97-783
  • Leıva, P.L., Calosi, P., Verberk, W.C.E.P. (2019). Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers, 374, 20190035. http://dx.doi.org/10.1098/rstb.2019.0035
  • Lutterschmidt, W.I., Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. https://doi.org/10.1139/z97-783
  • Ørsted, M., Jørgensen, L.B., Overgaard, J. (2022). Finding the right thermal limit: a frame work to reconcile ecological, physiological and methodological aspects of (CTmax) in ectotherms. Journal of Experimental Biology, 225(19), jeb244514. https://doi:10.1242/jeb.244514
  • Ospina, A.F., Mora, C. (2004). Effect of body size on reef fish tolerance to extreme low and high temperatures, Environmental Biology of Fishes 70, 339-343.
  • Pauly, D. (2010). Gasping fish and panting squids: oxygen, temperature and the growth of water breathing animals. Excellence in Ecology Series, International Ecology Institute, 22.
  • Pérez, E., Dı́az, F., & Espina, S. (2003). Thermoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein)(Pisces: Cichlidae). Journal of Thermal Biology, 28(8), 531- 537.
  • Re, A.D., Diaz, F., Sierra, E., Rodriguez, J., Perez, E. (2005). Effect of salinity and temperature on thermal tolerance of Brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea,Penaeidae). Journal of Thermal Biology, 30(8), 618–622. https://doi.org/10.1016/j.jtherbio.2005.09.004
  • Recsetar, M.S., Zeıgler, M.P., Ward, D.L., Bonar, S.A. AndCaldwell, C.A. (2012). Relationship between Fish Size and Upper Thermal Tolerance. Transactions of the American Fisheries Society, 141(6), 1433-1438. https://doi.org/10.1080/00028487.2012.694830
  • Selong, J.H., Mcmahon, T.E., Zale, A.V., Barrows, F.T. (2001). Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Transactions of the American Fisheries Society, 130(6), 1026-1037. https://doi.org/10.1577/1548-8659(2001)130<1026:EOTOGA>2.0.CO;2
  • Sheridan, J.A., Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1:401-406. https://doi.org/10.1038/NCLIMATE1259
  • Spotila, J.R., Terpin, K.M., Koons, R.R., Bonati, R.L. (1979). Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fish. 4(3), 281– 307.
  • Turko, A.J., Nolan, C.B., Balshine, S., Scott, G.R., Pitcher, T.E. (2020). Thermal tolerance depends on season, age and body condition in imperilled redside dace Clinostomus elongatus. Conservative Physiology, 8(1), 1-15. https://doi.org/10.1093/conphys/coaa062
  • Verberk, W.C.E.P., Bilton, D.T., Calosi, P., Spicer, J.I. (2011). Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565-1572. https://doi.org/10.1890/10-2369.1
  • Yanar, M., Erdoğan, E., Kumlu, M. (2019). Thermal tolerance of thirteen popular ornamental fish species. Aquaculture, 501, 382-386. https://doi.org/10.1016/j.aquaculture.2018.11.041
  • Yanar, M., Evliyaoğlu, E., & Tekelioğlu, B. K. (2023). Sex Differences in Thermal Tolerance of Nine Ornamental Fish Species from the Poecilidae, Cichlidae and Cyprinidae Family. Turkish Journal of Fisheries and Aquatic Sciences, 23(6).
  • Yoldaş, T., Erişmiş, U. C. (2022). Cold Hardiness in Animals: The Cryobiology of Amphibians. Commagene Journal of Biology, 6(2), 242-253.

Thermal Tolerance Parameters of Three Species from the CichlidaeFamily at Two Acclimation Temperatures and Their Changes According to Body Size

Year 2025, Volume: 15 Issue: 1, 44 - 52, 26.06.2025
https://doi.org/10.53518/mjavl.1559950

Abstract

Thermal tolerance parameters of electric yellow cichlid (Labidochromis caeruleus), peacock cichlid (Aulonocara stuartgranti) and blue dolphin cichlid (Cyrtocara moorii) at 20 and 28 °C acclimation temperatures (AT) and their changes according to body size were determined in this study. Depending on AT, the critical low (CTmin) and high (CTmax) temperatures ranged from 9,40 to 12,79 °C and 35,40 to 39,87 °C, respectively. TTP (thermal tolerance polygon) value calculated as 208 - 220 °C shows that these species have a narrow temperature range (stenothermic). A positive relationship was observed between AT and CTM values (P < 0.05). Increasing the AT from 20 to 28 °C caused an increase in the CTmin values of the species between 2.56 and 3,39 °C, and in the CTmax values between 2,42 and 3,17 °C. Depending on this change, the ARR (acclimation response rate) values were found between 0,32 and 0,42 in CTmin and 0,30 and 0,40 in CTmax among species. A 7-8 fold weight difference in three cichlid species did not affect either low or high-temperature tolerance of fish at both AT (P > 0.05). Therefore, the argument that small-sized individuals of aquatic poikilotherms have an advantage in coping with high temperatures was not observed in these three species.

Project Number

FBA-2023-15727

References

  • Angilletta, M.J., Dunham, A.E. (2003). The temperature size rule in ectotherms: simple evolutionary explanations may not be general. American Society of Naturalist, 162(3), 332-342.
  • Atkinson, D., Morley, S.A., Hughes, R.N. (2006). From cellstocolonies: at whatlevels of body does the ‘temperature-size rule’ apply? Evolution & Development, 8(2), 202-214. https://doi.org/10.1111/j.1525- 142X.2006.00090.x
  • Becker, C.D., Genoway, R.G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of fresh water fish. Environmental Biology of Fishes, 4, 245-256.
  • Barrionuevo, W.R., Fernandes, M.N. (1995). Critical thermal maxima and minima for curimbata, Prochilodusscrofa steindachneri, of two different sizes. Aquacuture Research, 26: 447-45. https://doi.org/10.1111/j.1365- 2109.1995.tb00934.x
  • Beitinger, T.L., Bennett, W.A., Mccauley, R.W. (2000). Temperature tolerances of North American fresh water fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58, 237-275.
  • Bennett, W.A., Beitinger, T.L. (1997). Temperature Tolerance of the sheeps head Minnow, Cyprinodon variegatus. Copeia, 1, 77-87. https://doi.org/10.2307/1447842
  • Brans, K.I., Jansen.M., Vanoverbeke, J., Tuzun, N., Stoks, R., De Meester, L. (2017). The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size, Global Change Biology, 23, 5218-5227. https://doi.org/10.1111/gcb.13784
  • Claussen, D.L. (1977). Thermal acclimation in ambystomatid salamenders. Comparative Biochemistry and Physiology Part A: Physiology. 58, 333-340. https://doi.org/10.1016/0300-9629(77)90150-5
  • Cortemeglia, C., & Beitinger, T. L. (2005). Temperature tolerances of wild‐type and red transgenic zebra danios. Transactions of the American Fisheries Society, 134(6), 1431-1437.
  • Cox, D.K. (1974). Effects of three heating rates on the critical thermal maximum of blue gill.. In: J.W. Gibbons& R.R. Sharitz (ed.) Thermal Ecology, Nat. Tech. Inform. Service., Springfield, 158-163.
  • Cowles, R.B., Bogert, C.M. (1944). A preliminary study of the thermal requirements a desert reptiles. Bulletin of the American Museum of Natural History, 13(1), 53-60.
  • Daufresne, M., Lengfellner, K., Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. The Proceedings of the National Academy of Sciences, 106(31), 788– 12 793. https://doi.org/10.1073/pnas.0902080106
  • Di Santo, V., Lobel, P.S. (2016). Size affects digestive responses to increasing temperature in fishes: physiological implications of being small under climate change. Marine Ecology, 37, 813-820. https://doi.org/10.1111/maec.12358
  • Di Santo,V., Lobel, P.S. (2017). Body size and thermal tolerance in tropical gobies, Journal of Experimental Marine Biology and Ecology, 487, 11-17. https://doi.org/10.1016/j.jembe.2016.11.007
  • Diaz, F., Re, A.D., Sierra, E., Amador, G. (2004). Behavioral thermoregulation and critical limits applied to culture of red claw crayfish, Cherax quadricarinatus (VonMartens). Freshwater Crayfish, 14, 90–98.
  • Diaz-Herrera, F., Uribe, S.E., Ramirez, B.L.F., Mora, G.A. (1998). Critical thermal maxima and minima of Macrobrachium rosenbergii (Decapoda: Palemonidae). Journal of Thermal Biology, 23(6), 381– 385.https://doi.org/10.1016/S0306-4565(98)00029-1
  • Eme, J., Bennett, W.A. (2009). Critical Thermal Tolerance Polygons of Tropical Marine Fishes from Sulawesi, Indonesia. Journal of Thermal Biology, 34(5), 220-225. https://doi.org/10.1016/j.jtherbio.2009.02.005
  • Ern, R., Andreassen, A. H., Jutfelt, F. (2023). Physiological mechanisms of acute upper thermal tolerance in fish. Physiology, 38(3), 141-158. https://doi.org/10.1152/physiol.00027.2022
  • Ford, T., Beitinger, T. L. (2005). Temperature tolerance in the goldfish, Carassius auratus. Journal of Thermal Biology, 30(2), 147-152.
  • Horne, C.R., Hirst, A. AndAtkinson, D. (2015). Temperature size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology. Letters, 18, 327- 335. https://doi.org/10.1111/ele.12413
  • Jørgensen L. B., Malte H., Ørsted M, Klahn N.A., Overgaard J. (2021). A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Scientific Reports, 11: 12840.https://doi:10.1038/s41598-021-92004-6
  • Kraskura, K., Hardison, E. A., Eliason, E. J. (2023). Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Scientific Reports, 13, 17900. https://doi.org/10.1038/s41598-023-44574- w
  • Lutterschmidt, W.I., Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. https://doi.org/10.1139/z97-783
  • Leıva, P.L., Calosi, P., Verberk, W.C.E.P. (2019). Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers, 374, 20190035. http://dx.doi.org/10.1098/rstb.2019.0035
  • Lutterschmidt, W.I., Hutchison, V.H. (1997). The critical thermal maximum: history and critique. Canadian Journal of Zoology, 75(10), 1561-1574. https://doi.org/10.1139/z97-783
  • Ørsted, M., Jørgensen, L.B., Overgaard, J. (2022). Finding the right thermal limit: a frame work to reconcile ecological, physiological and methodological aspects of (CTmax) in ectotherms. Journal of Experimental Biology, 225(19), jeb244514. https://doi:10.1242/jeb.244514
  • Ospina, A.F., Mora, C. (2004). Effect of body size on reef fish tolerance to extreme low and high temperatures, Environmental Biology of Fishes 70, 339-343.
  • Pauly, D. (2010). Gasping fish and panting squids: oxygen, temperature and the growth of water breathing animals. Excellence in Ecology Series, International Ecology Institute, 22.
  • Pérez, E., Dı́az, F., & Espina, S. (2003). Thermoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein)(Pisces: Cichlidae). Journal of Thermal Biology, 28(8), 531- 537.
  • Re, A.D., Diaz, F., Sierra, E., Rodriguez, J., Perez, E. (2005). Effect of salinity and temperature on thermal tolerance of Brown shrimp Farfantepenaeus aztecus (Ives) (Crustacea,Penaeidae). Journal of Thermal Biology, 30(8), 618–622. https://doi.org/10.1016/j.jtherbio.2005.09.004
  • Recsetar, M.S., Zeıgler, M.P., Ward, D.L., Bonar, S.A. AndCaldwell, C.A. (2012). Relationship between Fish Size and Upper Thermal Tolerance. Transactions of the American Fisheries Society, 141(6), 1433-1438. https://doi.org/10.1080/00028487.2012.694830
  • Selong, J.H., Mcmahon, T.E., Zale, A.V., Barrows, F.T. (2001). Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Transactions of the American Fisheries Society, 130(6), 1026-1037. https://doi.org/10.1577/1548-8659(2001)130<1026:EOTOGA>2.0.CO;2
  • Sheridan, J.A., Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1:401-406. https://doi.org/10.1038/NCLIMATE1259
  • Spotila, J.R., Terpin, K.M., Koons, R.R., Bonati, R.L. (1979). Temperature requirements of fishes from eastern Lake Erie and the upper Niagara River: a review of the literature. Environmental Biology of Fish. 4(3), 281– 307.
  • Turko, A.J., Nolan, C.B., Balshine, S., Scott, G.R., Pitcher, T.E. (2020). Thermal tolerance depends on season, age and body condition in imperilled redside dace Clinostomus elongatus. Conservative Physiology, 8(1), 1-15. https://doi.org/10.1093/conphys/coaa062
  • Verberk, W.C.E.P., Bilton, D.T., Calosi, P., Spicer, J.I. (2011). Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565-1572. https://doi.org/10.1890/10-2369.1
  • Yanar, M., Erdoğan, E., Kumlu, M. (2019). Thermal tolerance of thirteen popular ornamental fish species. Aquaculture, 501, 382-386. https://doi.org/10.1016/j.aquaculture.2018.11.041
  • Yanar, M., Evliyaoğlu, E., & Tekelioğlu, B. K. (2023). Sex Differences in Thermal Tolerance of Nine Ornamental Fish Species from the Poecilidae, Cichlidae and Cyprinidae Family. Turkish Journal of Fisheries and Aquatic Sciences, 23(6).
  • Yoldaş, T., Erişmiş, U. C. (2022). Cold Hardiness in Animals: The Cryobiology of Amphibians. Commagene Journal of Biology, 6(2), 242-253.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Animal Behaviour, Animal Physiology - Systems, Animal Structure and Function, Veterinary Sciences (Other)
Journal Section Research Article
Authors

Ece Evliyaoğlu 0000-0003-3578-7336

Serdar Kilercioğlu 0000-0001-5288-0781

Bilge Kaan Tekelioğlu 0000-0001-6727-3175

Şefik Surhan Tabakoğlu 0000-0001-9926-3000

Mahmut Yanar 0000-0002-4445-0228

Ali Özdeş 0000-0002-0271-2445

Project Number FBA-2023-15727
Publication Date June 26, 2025
Submission Date October 2, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Evliyaoğlu, E., Kilercioğlu, S., Tekelioğlu, B. K., Tabakoğlu, Ş. S., et al. (2025). Cichlidae Ailesinden Üç Türün İki Alıştırma Sıcaklığında Termal Tolerans Parametreleri ve Bunların Vücut Büyüklüğüne Göre Değişimi. Manas Journal of Agriculture Veterinary and Life Sciences, 15(1), 44-52. https://doi.org/10.53518/mjavl.1559950