Review
BibTex RIS Cite
Year 2025, Volume: 15 Issue: 1, 146 - 160, 26.06.2025
https://doi.org/10.53518/mjavl.1567291

Abstract

References

  • Ahmed, S. A., Rudden, M., Smyth, T. J., Dooley, J. S., Marchant, R., & Banat, I. M. (2019). Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Applied microbiology and biotechnology, 103, 3521-3535. https://doi.org/10.1007/s00253-019-09618-0
  • Akhlaghi, M., & Kohanmoo, A. (2018). Mechanisms of anti-obesity effects of catechins: a review. International Journal of Nutrition Sciences, 3(3), 127-132.
  • Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P., Barros, L., & Ferreira, I. C. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & function, 12(1), 14-29. https://doi.org/10.1039/D0FO02324H
  • Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430
  • Antonijević, M.R., Simijonović, D.M., Avdović, E.H., Ćirić, A., Petrović Z.D., Dimitrić-Marković, J., Stepanić, V., & Marković, Z.S. (2021). Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. Antioxidants, 10(7), 1106. https://doi.org/10.3390/antiox10071106
  • Arfaoui, L. (2021). Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules, 26(10), 2959. https://doi.org/10.3390/molecules26102959
  • Arivazhagan, L., & Subramanian, S. P. (2015). Tangeretin, a citrus flavonoid attenuates oxidative stress and protects hepatocellular architecture in rats with 7, 12-dimethylbenz (a) anthracene induced experimental mammary carcinoma. Journal of Functional Foods, 15, 339-353.
  • Artık, N., Anlı, E., Konar, N., & Vural, N. (2016). Gıdalarda bulunan fenolik bileşikler. Bölüm: Fenolik Bileşiklerin Yapıları. Sidas Medya Ltd. Şti., İzmir.
  • Bakkiyaraj, D., Nandhini, J. R., Malathy, B., & Pandian, S. K. (2013). The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling, 29(8), 929- 937. https://doi.org/10.1080/08927014.2013.820825
  • Behl, T., Bungau, S., Kumar, K., Zengin, G., Khan, F., Kumar, A., Kaur, R., Venkatachalam, T., Tit, D.,M.,Vesa, C., M., Barsan, G., & Mosteanu, D. E. (2020). Pleotropic effects of polyphenols in cardiovascular system. Biomedicine & Pharmacotherapy, 130, 110714. https://doi.org/10.1016/j.biopha.2020.110714
  • Berton, S.B.R., Cabral, M.R.P., Jesus, G.A.M., Sarragiotto, M.H., Pilau, E.J., Martins, A.F., Bonafé, E.G., & Matsushita, M. (2020). Ultra-high- performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities. Industrial Crops and Products, 154, 112701. https://doi.org/10.1016/j.indcrop.2020.112701
  • Biela, M., Kleinová, A., & Klein, E. (2022). Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Phytochemistry, 200, 113254. https://doi.org/10.1016/j.phytochem.2022.113254
  • Bitencourt, T. A., Komoto, T. T., Massaroto, B. G., Miranda, C. E. S., Beleboni, R. O., Marins, M., & Fachin, A. L. (2013). Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC complementary and alternative medicine, 13, 1-6. https://doi.org/10.1186/1472-6882-13-229
  • Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28(7), 755-767. https://doi.org/10.1080/08927014.2012.706751
  • Carvalho, R. S., Carollo, C. A., De Magalhães, J. C., Palumbo, J. M. C., Boaretto, A. G., e Sá, I. N., Ferraz, A.C., Lima, W., G.de Siqueira, J.M., & Ferreira, J. M. S. (2018). Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. South African Journal of Botany, 114, 181-187. https://doi.org/10.1016/j.sajb.2017.11.010
  • Choi, J. H., Seo, E. J., Sung, J., Choi, K. M., Kim, H., Kim, J. S., Lee, J., Efferth, T., & Hyun, T. K. (2017). Polyphenolic compounds, antioxidant and anti- inflammatory effects of Abeliophyllum distichum Nakai extract. Journal of Applied Botany & Food Quality, 90. https://doi.org/10.5073/JABFQ.2017.090.033
  • Číž, M., Dvořáková, A., Skočková, V., & Kubala, L. (2020). The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants, 9(8), 691. https://doi.org/10.3390/antiox9080691
  • Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health- promoting applications. Antioxidants, 9(12), 1263. https://doi.org/10.3390/antiox9121263
  • da Rocha Neto, A. C., Maraschin, M., & Di Piero, R. M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International journal of food microbiology, 215, 64-70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018
  • de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535
  • de Paulo Farias, D., de Araujo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. https://doi.org/10.1016/j.foodres.2021.110383
  • Deka, H., Choudhury, A., & Dey, B. K. (2022). An overview on plant derived phenolic compounds and their role in treatment and management of diabetes. Journal of pharmacopuncture, 25(3), 199. https://doi.org/10.3831/KPI.2022.25.3.199
  • Demir, Y., Durmaz, L., Taslimi, P., & Gulçin, İ. (2019). Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnology and applied biochemistry, 66(5), 781-786. https://doi.org/10.1002/bab.1781
  • Ding, Y., Shi, X., Shuai, X., Xu, Y., Liu, Y., Liang, X., Wei, D., & Su, D. (2014). Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. Journal of biomedical research, 28(4), 292. https://doi.org/10.7555/JBR.28.20130170
  • Dull, A. M., Moga, M. A., Dimienescu, O. G., Sechel, G., Burtea, V., & Anastasiu, C. V. (2019). Therapeutic approaches of resveratrol on endometriosis via anti-inflammatory and anti-angiogenic pathways. Molecules, 24(4), 667. https://doi.org/10.3390/molecules24040667
  • Edirisinghe, I., & Burton-Freeman, B. (2016). Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. Journal of Berry Research, 6(2), 237-250. https://doi.org/10.3233/JBR-160137
  • Ferreira, I.C.F.R., Martins, N., & Barros, L. (2017). Phenolic Compounds and its bioavailability: In vitro bioactive compounds or health promoters?. Advances in Food and Nutrition Research, 82, 1-44. https://doi.org/10.1016/bs.afnr.2016.12.004
  • Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy, 96, 305-312. https://doi.org/10.1016/j.biopha.2017.10.001
  • Gong, P., Wang, D., Cui, D., Yang, Q., Wang, P., Yang, W., & Chen, F. (2021). Anti-aging function and molecular mechanism of Radix Astragali and Radix Astragali preparata via network pharmacology and PI3K/Akt signaling pathway. Phytomedicine, 84, 153509. https://doi.org/10.1016/j.phymed.2021.153509
  • Gong, Y., Lv, J., Pang, X., Zhang, S., Zhang, G., Liu, L., Wang, Y., & Li, C. (2023). Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods, 12(12), 2334. https://doi.org/10.3390/foods12122334
  • Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923. https://doi.org/10.3390/antiox9100923
  • Huang, Q., Chen, L., Teng, H., Song, H., Wu, X., & Xu, M. (2015). Phenolic compounds ameliorate the glucose uptake in HepG2 cells' insulin resistance via activating AMPK: anti-diabetic effect of phenolic compounds in HepG2 cells. Journal of Functional Foods, 19, 487-494. https://doi.org/10.1016/j.jff.2015.09.020
  • Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C., & Rahu, N. (2016). Oxidative stress and inflammation: what polyphenols can do for us?. Oxidative medicine and cellular longevity, 2016. https://doi.org/10.1155/2016/7432797
  • Jiang, Y., Mei, C., Huang, X., Gu, Q., & Song, D. (2020). Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine- Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. Food Biophysics, 15, 442-451. https://doi.org/10.1007/s11483- 020-09636-w
  • Krongyut, O., & Sutthanut, K. (2019). Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of Mao Luang fruits (Antidesma bunius L.). Molecules, 24(22), 4109. https://doi.org/10.3390/molecules24224109
  • Kumar. N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
  • Lagh, A.B., Haas, B., & Grenier, D. (2017). Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum, Scientific Reports, 7, 44815.
  • Lee, J. H., Kim, Y. G., Ryu, S. Y., Cho, M. H., & Lee, J. (2014). Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157: H7 and Staphylococcus aureus biofilm formation. International journal of food microbiology, 174, 47-55. https://doi.org/10.1016/j.ijfoodmicro.2013.12.030
  • Lee, J., & Lee, D. G. (2015). Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. Current microbiology, 70, 383-389.
  • Lephart, E. D. (2016). Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing research reviews, 31, 36-54. https://doi.org/10.1016/j.arr.2016.08.001
  • Li, G., Wang, X., Xu, Y., Zhang, B., & Xia, X. (2014). Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus. European Food Research and Technology, 238, 589–596. https://doi.org/10.1016/j.micpath.2022.105748
  • Li, Z.J., Liu, M., Dawuti, G., Dou, Q., Ma, Y., Liu, H. G., & Aibai, S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy research, 31(7), 1039-1045. https://doi.org/10.1002/ptr.5823
  • Lin, S., Wang, Z., Lin, Y., Ge, S., Hamzah, S. S., & Hu, J. (2019). Bound phenolics from fresh lotus seeds exert anti-obesity effects in 3T3-L1 adipocytes and high-fat diet-fed mice by activation of AMPK. Journal of functional foods, 58, 74-84. https://doi.org/10.1016/j.jff.2019.04.054
  • Liu, Y., & Wang, L. (2022). Antibiofilm effect and mechanism of protocatechuic aldehyde against Vibrio parahaemolyticus. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2022.1060506
  • Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76, M398–M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
  • Luís, Â., Silva, F., Sousa, S., Duarte, A. P., & Domingues, F. (2014). Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 30(1), 69-79. https://doi.org/10.1080/08927014.2013.845878
  • Lutz, M., Fuentes, E., Ávila, F., Alarcón, M., & Palomo, I. (2019). Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules, 24(2), 366. https://doi.org/10.3390/molecules24020366
  • Maniglia, B. C., Rebelatto, E. A., Andrade, K. S., Zielinski, A., & de Andrade, C. J. (2021). Polyphenols. Food Bioactives and Health, 1-39. https://doi.org/10.1007/978-3-030-57469-7
  • Martinez-Gonzalez, A.I., Díaz-Sánchez, Á.G., De La Rosa, L.A., Vargas- Requena, C.L., Bustos-Jaimes, I., & Alvarez-Parrilla, E. (2017). Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions, Molecules, 22 (4), 1-24. https://doi.org/10.3390/molecules22040669
  • Martinez‐Micaelo, N., González‐Abuín, N., Pinent, M., Ardévol, A., & Blay, M. (2015). Procyanidin B2 inhibits inflammasome‐mediated IL‐1β production in lipopolysaccharide‐stimulated macrophages. Molecular nutrition & food research, 59(2), 262-269. https://doi.org/10.1002/mnfr.201400370
  • Nadaf, N.H., Parulekar, R.S., Patil, R.S., Gade, T.K., Momin, A.A., Waghmare, S.R., Dhanavade, M.J., Arvindekar, A.U., & Sonawane, K.D. (2018). Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. Journal of Ethnopharmacology, 222, 121-132. https://doi.org/10.1016/j.jep.2018.04.031
  • Najafi, M., Mood, K.H., Zahedi, M., & Klein, E. (2011). DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer–proton transfer and sequential proton loss electron transfer mechanisms of chroman derivatives antioxidant action, Computational and Theoretical Chemistry, 969(1–3), 1-12. https://doi.org/10.1016/j.comptc.2011.05.006
  • Nakai, K., & Tsuruta, D. (2021). What are reactive oxygen species, free radicals, and oxidative stress in skin diseases?. International journal of molecular sciences, 22(19), 10799.
  • Oliveira, A. K. D. S., de Oliveira e Silva, A. M., Pereira, R. O., Santos, A. S., Barbosa Junior, E. V., Bezerra, M. T., Barreto, R.,S.,S., Quintans-Junior, L., J., & Quintans, J. S. (2022). Anti-obesity properties and mechanism of action of flavonoids: A review. Critical Reviews in Food Science and Nutrition, 62(28), 7827-7848. https://doi.org/10.1080/10408398.2021.1919051
  • Onat, K. A., Sezer, M., & Çöl, B. (2021). Fenolik bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in bazı biyolojik aktiviteleri. Journal of the Institute of Science and Technology, 11(4), 2587-2598. https://doi.org/10.21597/jist.885898
  • Öncül. N., & Karabıyıklı, Ş. (2016). Mechanism of antibacterial effect of plant based antimicrobials, Ukrainian Food Journal, 5(3), 541-549.
  • Payne, D. E., Martin, N. R., Parzych, K. R., & Rickard, A. H., Underwood, A., Boles, B. R. (2013). Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infection and immunity, 81(2), 496-504. https://doi.org/10.1128/iai.00877-12
  • Pei, Z. J., Li,C., Dai, W., Lou, Z., Sun, X., Wang, H., Khan, A.A., & Wan, C. (2023). The Anti-Biofilm Activity and Mechanism of Apigenin-7-O- Glucoside Against Staphylococcus aureus and Escherichia coli. Infection and Drug Resistance, 16.
  • Pernin, A., Guillier, L., & Dubois-Brissonnet, F. (2019). Inhibitory activity of phenolic acids against Listeria monocytogenes: Deciphering the mechanisms of action using three different models. Food Microbiology, 80, 18-24. https://doi.org/10.1016/j.fm.2018.12.010
  • Piechowiak, T., & Balawejder, M. (2019). Onion skin extract as a protective agent against oxidative stress in Saccharomyces cerevisiae induced by cadmium, Food Biochem, 43(7), e12872. https://doi.org/10.1111/jfbc.12872
  • Pivari, F., Mingione, A., Brasacchio, C., & Soldati, L. (2019). Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients, 11(8), 1837. https://doi.org/10.3390/nu11081837
  • Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 306, 530–536. https://doi.org/10.1016/s0006-291x(03)01006-4
  • Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., Miesbauer, O., & Eisner, P. (2021). Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays, Molecules, 26(5), 1244 https://doi.org/10.3390/molecules26051244
  • Pok, P. S., Londoño, V. A. G., Vicente, S., Romero, S. M., Pacín, A., Tolaba, M., Alzamora, S., M., & Resnik, S. L. (2020). Evaluation of citrus flavonoids against Aspergillus parasiticus in maize: Aflatoxins reduction and ultrastructure alterations. Food chemistry, 318, 126414. https://doi.org/10.1016/j.foodchem.2020.126414
  • Pragasam, S. J., Venkatesan, V., & Rasool, M. (2013). Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 36, 169-176
  • Prateeksha, Rao, C. V., Das, A. K., Barik, S. K., & Singh, B. N. (2019). ZnO/curcumin nanocomposites for enhanced inhibition of Pseudomonas aeruginosa virulence via LasR-RhlR quorum sensing systems. Molecular pharmaceutics, 16(8), 3399-3413. https://doi.org/10.1021/acs.molpharmaceut.9b00179
  • Pudziuvelyte, L., Liaudanskas, M., Jekabsone, A., Sadauskiene, I., & Bernatoniene, J. (2020). Elsholtzia ciliata (Thunb.) Hyl. extracts from different plant parts: Phenolic composition, antioxidant, and anti- inflammatory activities. Molecules, 25(5), 1153. https://doi.org/10.3390/molecules25051153
  • Pyo, I. S., Yun, S., Yoon, Y. E., Choi, J. W., & Lee, S. J. (2020). Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules, 25(20), 4649. https://doi.org/10.3390/molecules25204649
  • Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M.,A., Alghamdi,S.,O., Alruwaili, A.,S., Hossain, M., S., Ahmed, M., Das, R., Emran, T., B., & Uddin, M. S. (2022). Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233
  • Rajkumari, J., Borkotoky, S., Murali, A., Suchiang, K., Mohanty, S. K., & Busi, S. (2018). Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnology letters, 40, 1087-1100. https://doi.org/10.1007/s10529-018-2557-9
  • Raudone, L., Vilkickyte, G., Pitkauskaite, L., Raudonis, R., Vainoriene, R., & Motiekaityte, V. (2019). Antioxidant activities of Vaccinium vitis-idaea L. leaves within cultivars and their phenolic compounds. Molecules, 24(5), 844. https://doi.org/10.3390/molecules24050844
  • Rodriguez-Mateos, A., Heiss, C., Borges, G., & Crozier, A. (2014). Berry (poly) phenols and cardiovascular health. Journal of agricultural and food chemistry, 62(18), 3842-3851. https://doi.org/10.1021/jf403757g
  • Ryyti, R., Hämäläinen, M., Leppänen, T., Peltola, R., & Moilanen, E. (2022). Phenolic compounds known to be present in lingonberry (Vaccinium Vitis-Idaea L.) enhance macrophage polarization towards the anti- inflammatory M2 phenotype. Biomedicines, 10(12), 3045. https://doi.org/10.3390/biomedicines10123045
  • Sandoval-Acuña, C., Ferreira, J., & Speisky, H. (2014). Polyphenols and mitochondria: An update on their increasingly emerging ROS- scavenging independent actions. Archives of Biochemistry and Biophysics, 559, 75-90. https://doi.org/10.1016/j.abb.2014.05.017
  • Serra, D.O., Mika, F., Richter, A.M., & Hengge, R. (2016). Yeşil çay polifenolü EGCG, amiloid kıvrımlı lif düzeneğini bozarak ve σE'ye bağımlı sRNA RybB yoluyla biyofilm düzenleyici CsgD'yi aşağı doğru düzenleyerek E. coli biyofilm oluşumunu engeller. Molecular Biology, 101 (1), 136-151. https://doi.org/10.1111/mmi.13379
  • Shakya, T., Stogios, P.J., Waglechner, N., Evdokimova, E., Ejim, L., & Blanchard, J.E. (2011). A small molecule discrimination map of the antibiotic resistance kinome. Chemistry & Biology, 18, 1591–1601. https://doi.org/10.1016/j.chembiol.2011.10.018
  • Shehata, M. G., Awad, T. S., Asker, D., El Sohaimy, S. A., Abd El-Aziz, N. M., & Youssef, M. M. (2021). Antioxidant and antimicrobial activities and UPLC- ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current research in food science, 4, 326-335. https://doi.org/10.1016/j.crfs.2021.05.001
  • Shirai, A., Kawasaka, K., & Tsuchiya, K. (2022). Antimicrobial action of phenolic acids combined with violet 405-nm light for disinfecting pathogenic and spoilage fungi. Journal of Photochemistry and Photobiology B: Biology, 229, 112411. https://doi.org/10.1016/j.jphotobiol.2022.112411
  • Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual review of biochemistry, 86, 715-748. https://doi.org/10.1146/annurev-biochem- 061516-045037
  • Silva, H., & Lopes, N. M. F. (2020). Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Frontiers in physiology, 11, 595516. https://doi.org/10.3389/fphys.2020.595516
  • Slobodníková, L., Fialová, S., Hupková, H., & Grančai, D. (2013). Rosmarinic acid interaction with planktonic and biofilm Staphylococcus aureus. Natural product communications, 8(12), 1934578X1300801223. https://doi.org/10.1177/1934578X1300801223
  • Spagnuolo, C., Moccia, S., & Russo, G. L., (2018). Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry, 153, 105-115. https://doi.org/10.1016/j.ejmech.2017.09.001
  • Sun, S., Huang, S., Shi, Y., Shao, Y., Qiu, J., Sedjoah, R. C. A. A., Yan,Z., Ding, L., Zou, D.,& Xin, Z. (2021). Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chemistry, 351, 129232. https://doi.org/10.1016/j.foodchem.2021.129232
  • Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules, 28(4), 1845. https://doi.org/10.3390/molecules28041845
  • Taticchi, A., Urbani, S., Albi, E., Servili, M., Codini, M., Traina, G., Balloni, S., Patria, F., F., Perioli, L., Beccari, T., & Conte, C. (2019). In vitro anti- inflammatory effects of phenolic compounds from Moraiolo virgin olive oil (MVOO) in brain cells via regulating the TLR4/NLRP3 axis. Molecules, 24(24), 4523. https://doi.org/10.3390/molecules24244523
  • Taylor, E., Kim, Y., & Zhang, K., Chau, L., Nguyen, B. C., Rayalam, S., Wang, X. (2022). Antiaging Mechanism of natural compounds: Effects on autophagy and oxidative stress. Molecules, 27(14), 4396. https://doi.org/10.3390/molecules27144396
  • Toma, L., Sanda, G. M., Niculescu, L. S., Deleanu, M., Sima, A. V., & Stancu, C. S. (2020). Phenolic compounds exerting lipid-regulatory, anti- inflammatory and epigenetic effects as complementary treatments in cardiovascular diseases. Biomolecules, 10(4), 641. https://doi.org/10.3390/biom10040641
  • Tsou, L. K., Lara-Tejero, M., Rosefigura, J., Zhang, Z. J., Wang, Y.C., & Yount, J. S. (2016). Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. Journal of the American Chemical Society, 138, 2209–2218. https://doi.org/10.1021/jacs.5b11575
  • Vrba, J., Kren, V., Vacek, J., Papouskova, B., & Ulrichova, J. (2012). Quercetin, quercetin glycosides and taxifolin differ in their ability to induce AhR activation and CYP1A1 expression in HepG2 cells. Phytotherapy research, 26(11), 1746-1752. https://doi.org/10.1002/ptr.4637
  • Vuolo, M. M., Lima, V.S., & Maróstica Junior, M. R. (2019). Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds, 33-50. https://doi.org/10.1016/B978-0-12- 814774-0.00002-5
  • Wang, Q. Q., Gao, H., Yuan, R., Han, S., Li, X. X., Tang, M., ng, B.,Li,J.,Zhao, L.,Feng, J., & Yang, S. (2020). Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated. PLoS One, 15(8), e0237017. https://doi.org/10.1371/journal.pone.0237017
  • Wu, M., Cai, J., Fang, Z., Li, S., Huang, Z., Tang, Z., Luo, Q., & Chen, H. (2022). The composition and anti-aging activities of polyphenol extract from Phyllanthus emblica L. fruit. Nutrients, 14(4), 857. https://doi.org/10.3390/nu14040857
  • Wu, T., Zang, X., He, M., Pan, S., & Xu, X. (2013). Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. Journal of Agricultural and Food Chemistry. 61, 8185–8190. https://doi.org/10.1021/jf402222v
  • Xie, H.K., Zhou, D.Y., Yin, F.W., Rakariyatham, K., Zhao, M.T., Liu, Z.Y., Li. D.Y., Zhao, Q., Liu, Y.X., Shahidi, F., & Zhu, B.W. (2019). Mechanism of antioxidant action of natural phenolics on scallop (Argopecten irradians) adductor muscle during drying process. Food Chemistry, 281. 251-260. https://doi.org/10.1016/j.foodchem.2018.12.108
  • Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618
  • Yang, X., & Jiang, X. (2015). Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer. Biotechnology Letters, 37, 1463-1472.
  • Yücel-Şengün, İ., & Öztürk, B. (2018). Bitkisel Kaynaklı Bazı Doğal Antimikrobiyaller. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi C- Yaşam Bilimleri ve Teknoloji, 7(2), 256-276. https://doi.org/10.18036/aubtdc.407806
  • Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. https://doi.org/10.1111/jfbc.13394
  • Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
  • Zhang, L., Kong, Y., Wu, D., Zhang, H., Wu, J., & Chen, J. (2008). Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Science, 17, 1971–1978. https://doi.org/10.1110/ps.036186.108
  • Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), 1934578X211069721. https://doi.org/10.1177/1934578X211069721
  • Zhao, H., & Xu, C. (2021). Natural phenolic compounds as anti-obesity and anti-cardiovascular disease agent. In Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer and Diabetes (pp. 205-221). Cham: Springer International Publishing.
  • Zheng, Y., Choi, Y. H., Lee, J. H., Lee, S. Y., & Kang, I. J. (2021). Anti-obesity effect of Erigeron annuus (L.) Pers. extract containing phenolic acids. Foods, 10(6), 1266. https://doi.org/10.3390/foods10061266
  • Zhou, L., Zheng, H., Tang, Y., Yu, W., & Gong, Q. (2013). Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnology letters, 35, 631-637. https://doi.org/10.1007/s10529-012-1126-x
  • Zhu, C., Lei, M., Andargie, M., Zeng, J., &Li, J. (2019). Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiological and Molecular Plant Pathology, 107, 46-50. https://doi.org/10.1016/j.pmpp.2019.04.009
  • Zhu, H., Yan, Y., Jiang, Y., & Meng, X. (2022). Ellagic acid and its anti- aging effects on central nervous system. International journal of molecular sciences, 23(18), 10937. https://doi.org/10.3390/ijms231810937

Bioactive Properties and Mechanisms of Effect of Phenolic Compounds

Year 2025, Volume: 15 Issue: 1, 146 - 160, 26.06.2025
https://doi.org/10.53518/mjavl.1567291

Abstract

The desire of people to live a healthy and long life has encouraged an increase in interest in natural and balanced nutrition. The production of natural food additives from plant, animal and fungal sources is gaining importance day by day to produce food with natural ingredients. Phenolic compounds commonly found in plants are organic compounds that contributes to improve the textural and sensory properties of foods, as well as enriching their nutritional values, and takes an active role in ensuring food safety due to its antimicrobial, antioxidant and antifungal effects. Studies conducted also show that phenolic compounds can be used in the treatment of infection, obesity, diabetes, cardiovascular health problems and aging. In this review study, the mechanisms of antimicrobial, antioxidant, anti-fungal, anti-biofilm, anti-oxidative stress, anti-inflammatory, anti-obesity, anti-diabetic, anti-aging and cardiovascular effects of phenolic compounds were investigated.

References

  • Ahmed, S. A., Rudden, M., Smyth, T. J., Dooley, J. S., Marchant, R., & Banat, I. M. (2019). Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Applied microbiology and biotechnology, 103, 3521-3535. https://doi.org/10.1007/s00253-019-09618-0
  • Akhlaghi, M., & Kohanmoo, A. (2018). Mechanisms of anti-obesity effects of catechins: a review. International Journal of Nutrition Sciences, 3(3), 127-132.
  • Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P., Barros, L., & Ferreira, I. C. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & function, 12(1), 14-29. https://doi.org/10.1039/D0FO02324H
  • Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430
  • Antonijević, M.R., Simijonović, D.M., Avdović, E.H., Ćirić, A., Petrović Z.D., Dimitrić-Marković, J., Stepanić, V., & Marković, Z.S. (2021). Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. Antioxidants, 10(7), 1106. https://doi.org/10.3390/antiox10071106
  • Arfaoui, L. (2021). Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules, 26(10), 2959. https://doi.org/10.3390/molecules26102959
  • Arivazhagan, L., & Subramanian, S. P. (2015). Tangeretin, a citrus flavonoid attenuates oxidative stress and protects hepatocellular architecture in rats with 7, 12-dimethylbenz (a) anthracene induced experimental mammary carcinoma. Journal of Functional Foods, 15, 339-353.
  • Artık, N., Anlı, E., Konar, N., & Vural, N. (2016). Gıdalarda bulunan fenolik bileşikler. Bölüm: Fenolik Bileşiklerin Yapıları. Sidas Medya Ltd. Şti., İzmir.
  • Bakkiyaraj, D., Nandhini, J. R., Malathy, B., & Pandian, S. K. (2013). The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling, 29(8), 929- 937. https://doi.org/10.1080/08927014.2013.820825
  • Behl, T., Bungau, S., Kumar, K., Zengin, G., Khan, F., Kumar, A., Kaur, R., Venkatachalam, T., Tit, D.,M.,Vesa, C., M., Barsan, G., & Mosteanu, D. E. (2020). Pleotropic effects of polyphenols in cardiovascular system. Biomedicine & Pharmacotherapy, 130, 110714. https://doi.org/10.1016/j.biopha.2020.110714
  • Berton, S.B.R., Cabral, M.R.P., Jesus, G.A.M., Sarragiotto, M.H., Pilau, E.J., Martins, A.F., Bonafé, E.G., & Matsushita, M. (2020). Ultra-high- performance liquid chromatography supports a new reaction mechanism between free radicals and ferulic acid with antimicrobial and antioxidant activities. Industrial Crops and Products, 154, 112701. https://doi.org/10.1016/j.indcrop.2020.112701
  • Biela, M., Kleinová, A., & Klein, E. (2022). Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Phytochemistry, 200, 113254. https://doi.org/10.1016/j.phytochem.2022.113254
  • Bitencourt, T. A., Komoto, T. T., Massaroto, B. G., Miranda, C. E. S., Beleboni, R. O., Marins, M., & Fachin, A. L. (2013). Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC complementary and alternative medicine, 13, 1-6. https://doi.org/10.1186/1472-6882-13-229
  • Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28(7), 755-767. https://doi.org/10.1080/08927014.2012.706751
  • Carvalho, R. S., Carollo, C. A., De Magalhães, J. C., Palumbo, J. M. C., Boaretto, A. G., e Sá, I. N., Ferraz, A.C., Lima, W., G.de Siqueira, J.M., & Ferreira, J. M. S. (2018). Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. South African Journal of Botany, 114, 181-187. https://doi.org/10.1016/j.sajb.2017.11.010
  • Choi, J. H., Seo, E. J., Sung, J., Choi, K. M., Kim, H., Kim, J. S., Lee, J., Efferth, T., & Hyun, T. K. (2017). Polyphenolic compounds, antioxidant and anti- inflammatory effects of Abeliophyllum distichum Nakai extract. Journal of Applied Botany & Food Quality, 90. https://doi.org/10.5073/JABFQ.2017.090.033
  • Číž, M., Dvořáková, A., Skočková, V., & Kubala, L. (2020). The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants, 9(8), 691. https://doi.org/10.3390/antiox9080691
  • Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant phenolics: Bioavailability as a key determinant of their potential health- promoting applications. Antioxidants, 9(12), 1263. https://doi.org/10.3390/antiox9121263
  • da Rocha Neto, A. C., Maraschin, M., & Di Piero, R. M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. International journal of food microbiology, 215, 64-70. https://doi.org/10.1016/j.ijfoodmicro.2015.08.018
  • de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., & Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535
  • de Paulo Farias, D., de Araujo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. https://doi.org/10.1016/j.foodres.2021.110383
  • Deka, H., Choudhury, A., & Dey, B. K. (2022). An overview on plant derived phenolic compounds and their role in treatment and management of diabetes. Journal of pharmacopuncture, 25(3), 199. https://doi.org/10.3831/KPI.2022.25.3.199
  • Demir, Y., Durmaz, L., Taslimi, P., & Gulçin, İ. (2019). Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase. Biotechnology and applied biochemistry, 66(5), 781-786. https://doi.org/10.1002/bab.1781
  • Ding, Y., Shi, X., Shuai, X., Xu, Y., Liu, Y., Liang, X., Wei, D., & Su, D. (2014). Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. Journal of biomedical research, 28(4), 292. https://doi.org/10.7555/JBR.28.20130170
  • Dull, A. M., Moga, M. A., Dimienescu, O. G., Sechel, G., Burtea, V., & Anastasiu, C. V. (2019). Therapeutic approaches of resveratrol on endometriosis via anti-inflammatory and anti-angiogenic pathways. Molecules, 24(4), 667. https://doi.org/10.3390/molecules24040667
  • Edirisinghe, I., & Burton-Freeman, B. (2016). Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. Journal of Berry Research, 6(2), 237-250. https://doi.org/10.3233/JBR-160137
  • Ferreira, I.C.F.R., Martins, N., & Barros, L. (2017). Phenolic Compounds and its bioavailability: In vitro bioactive compounds or health promoters?. Advances in Food and Nutrition Research, 82, 1-44. https://doi.org/10.1016/bs.afnr.2016.12.004
  • Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy, 96, 305-312. https://doi.org/10.1016/j.biopha.2017.10.001
  • Gong, P., Wang, D., Cui, D., Yang, Q., Wang, P., Yang, W., & Chen, F. (2021). Anti-aging function and molecular mechanism of Radix Astragali and Radix Astragali preparata via network pharmacology and PI3K/Akt signaling pathway. Phytomedicine, 84, 153509. https://doi.org/10.1016/j.phymed.2021.153509
  • Gong, Y., Lv, J., Pang, X., Zhang, S., Zhang, G., Liu, L., Wang, Y., & Li, C. (2023). Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods, 12(12), 2334. https://doi.org/10.3390/foods12122334
  • Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923. https://doi.org/10.3390/antiox9100923
  • Huang, Q., Chen, L., Teng, H., Song, H., Wu, X., & Xu, M. (2015). Phenolic compounds ameliorate the glucose uptake in HepG2 cells' insulin resistance via activating AMPK: anti-diabetic effect of phenolic compounds in HepG2 cells. Journal of Functional Foods, 19, 487-494. https://doi.org/10.1016/j.jff.2015.09.020
  • Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C., & Rahu, N. (2016). Oxidative stress and inflammation: what polyphenols can do for us?. Oxidative medicine and cellular longevity, 2016. https://doi.org/10.1155/2016/7432797
  • Jiang, Y., Mei, C., Huang, X., Gu, Q., & Song, D. (2020). Antibacterial Activity and Mechanism of a Bacteriocin Derived from the Valine- Cecropin A(1–8)-Plantaricin ZJ5(1–18) Hybrid Peptide Against Escherichia coli O104. Food Biophysics, 15, 442-451. https://doi.org/10.1007/s11483- 020-09636-w
  • Krongyut, O., & Sutthanut, K. (2019). Phenolic profile, antioxidant activity, and anti-obesogenic bioactivity of Mao Luang fruits (Antidesma bunius L.). Molecules, 24(22), 4109. https://doi.org/10.3390/molecules24224109
  • Kumar. N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
  • Lagh, A.B., Haas, B., & Grenier, D. (2017). Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum, Scientific Reports, 7, 44815.
  • Lee, J. H., Kim, Y. G., Ryu, S. Y., Cho, M. H., & Lee, J. (2014). Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157: H7 and Staphylococcus aureus biofilm formation. International journal of food microbiology, 174, 47-55. https://doi.org/10.1016/j.ijfoodmicro.2013.12.030
  • Lee, J., & Lee, D. G. (2015). Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. Current microbiology, 70, 383-389.
  • Lephart, E. D. (2016). Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing research reviews, 31, 36-54. https://doi.org/10.1016/j.arr.2016.08.001
  • Li, G., Wang, X., Xu, Y., Zhang, B., & Xia, X. (2014). Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus. European Food Research and Technology, 238, 589–596. https://doi.org/10.1016/j.micpath.2022.105748
  • Li, Z.J., Liu, M., Dawuti, G., Dou, Q., Ma, Y., Liu, H. G., & Aibai, S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy research, 31(7), 1039-1045. https://doi.org/10.1002/ptr.5823
  • Lin, S., Wang, Z., Lin, Y., Ge, S., Hamzah, S. S., & Hu, J. (2019). Bound phenolics from fresh lotus seeds exert anti-obesity effects in 3T3-L1 adipocytes and high-fat diet-fed mice by activation of AMPK. Journal of functional foods, 58, 74-84. https://doi.org/10.1016/j.jff.2019.04.054
  • Liu, Y., & Wang, L. (2022). Antibiofilm effect and mechanism of protocatechuic aldehyde against Vibrio parahaemolyticus. Frontiers in Microbiology, 16. https://doi.org/10.3389/fmicb.2022.1060506
  • Lou, Z., Wang, H., Zhu, S., Ma, C., & Wang, Z. (2011). Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science, 76, M398–M403. https://doi.org/10.1111/j.1750-3841.2011.02213.x
  • Luís, Â., Silva, F., Sousa, S., Duarte, A. P., & Domingues, F. (2014). Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 30(1), 69-79. https://doi.org/10.1080/08927014.2013.845878
  • Lutz, M., Fuentes, E., Ávila, F., Alarcón, M., & Palomo, I. (2019). Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules, 24(2), 366. https://doi.org/10.3390/molecules24020366
  • Maniglia, B. C., Rebelatto, E. A., Andrade, K. S., Zielinski, A., & de Andrade, C. J. (2021). Polyphenols. Food Bioactives and Health, 1-39. https://doi.org/10.1007/978-3-030-57469-7
  • Martinez-Gonzalez, A.I., Díaz-Sánchez, Á.G., De La Rosa, L.A., Vargas- Requena, C.L., Bustos-Jaimes, I., & Alvarez-Parrilla, E. (2017). Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions, Molecules, 22 (4), 1-24. https://doi.org/10.3390/molecules22040669
  • Martinez‐Micaelo, N., González‐Abuín, N., Pinent, M., Ardévol, A., & Blay, M. (2015). Procyanidin B2 inhibits inflammasome‐mediated IL‐1β production in lipopolysaccharide‐stimulated macrophages. Molecular nutrition & food research, 59(2), 262-269. https://doi.org/10.1002/mnfr.201400370
  • Nadaf, N.H., Parulekar, R.S., Patil, R.S., Gade, T.K., Momin, A.A., Waghmare, S.R., Dhanavade, M.J., Arvindekar, A.U., & Sonawane, K.D. (2018). Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. Journal of Ethnopharmacology, 222, 121-132. https://doi.org/10.1016/j.jep.2018.04.031
  • Najafi, M., Mood, K.H., Zahedi, M., & Klein, E. (2011). DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer–proton transfer and sequential proton loss electron transfer mechanisms of chroman derivatives antioxidant action, Computational and Theoretical Chemistry, 969(1–3), 1-12. https://doi.org/10.1016/j.comptc.2011.05.006
  • Nakai, K., & Tsuruta, D. (2021). What are reactive oxygen species, free radicals, and oxidative stress in skin diseases?. International journal of molecular sciences, 22(19), 10799.
  • Oliveira, A. K. D. S., de Oliveira e Silva, A. M., Pereira, R. O., Santos, A. S., Barbosa Junior, E. V., Bezerra, M. T., Barreto, R.,S.,S., Quintans-Junior, L., J., & Quintans, J. S. (2022). Anti-obesity properties and mechanism of action of flavonoids: A review. Critical Reviews in Food Science and Nutrition, 62(28), 7827-7848. https://doi.org/10.1080/10408398.2021.1919051
  • Onat, K. A., Sezer, M., & Çöl, B. (2021). Fenolik bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in bazı biyolojik aktiviteleri. Journal of the Institute of Science and Technology, 11(4), 2587-2598. https://doi.org/10.21597/jist.885898
  • Öncül. N., & Karabıyıklı, Ş. (2016). Mechanism of antibacterial effect of plant based antimicrobials, Ukrainian Food Journal, 5(3), 541-549.
  • Payne, D. E., Martin, N. R., Parzych, K. R., & Rickard, A. H., Underwood, A., Boles, B. R. (2013). Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infection and immunity, 81(2), 496-504. https://doi.org/10.1128/iai.00877-12
  • Pei, Z. J., Li,C., Dai, W., Lou, Z., Sun, X., Wang, H., Khan, A.A., & Wan, C. (2023). The Anti-Biofilm Activity and Mechanism of Apigenin-7-O- Glucoside Against Staphylococcus aureus and Escherichia coli. Infection and Drug Resistance, 16.
  • Pernin, A., Guillier, L., & Dubois-Brissonnet, F. (2019). Inhibitory activity of phenolic acids against Listeria monocytogenes: Deciphering the mechanisms of action using three different models. Food Microbiology, 80, 18-24. https://doi.org/10.1016/j.fm.2018.12.010
  • Piechowiak, T., & Balawejder, M. (2019). Onion skin extract as a protective agent against oxidative stress in Saccharomyces cerevisiae induced by cadmium, Food Biochem, 43(7), e12872. https://doi.org/10.1111/jfbc.12872
  • Pivari, F., Mingione, A., Brasacchio, C., & Soldati, L. (2019). Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients, 11(8), 1837. https://doi.org/10.3390/nu11081837
  • Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 306, 530–536. https://doi.org/10.1016/s0006-291x(03)01006-4
  • Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., Miesbauer, O., & Eisner, P. (2021). Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays, Molecules, 26(5), 1244 https://doi.org/10.3390/molecules26051244
  • Pok, P. S., Londoño, V. A. G., Vicente, S., Romero, S. M., Pacín, A., Tolaba, M., Alzamora, S., M., & Resnik, S. L. (2020). Evaluation of citrus flavonoids against Aspergillus parasiticus in maize: Aflatoxins reduction and ultrastructure alterations. Food chemistry, 318, 126414. https://doi.org/10.1016/j.foodchem.2020.126414
  • Pragasam, S. J., Venkatesan, V., & Rasool, M. (2013). Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 36, 169-176
  • Prateeksha, Rao, C. V., Das, A. K., Barik, S. K., & Singh, B. N. (2019). ZnO/curcumin nanocomposites for enhanced inhibition of Pseudomonas aeruginosa virulence via LasR-RhlR quorum sensing systems. Molecular pharmaceutics, 16(8), 3399-3413. https://doi.org/10.1021/acs.molpharmaceut.9b00179
  • Pudziuvelyte, L., Liaudanskas, M., Jekabsone, A., Sadauskiene, I., & Bernatoniene, J. (2020). Elsholtzia ciliata (Thunb.) Hyl. extracts from different plant parts: Phenolic composition, antioxidant, and anti- inflammatory activities. Molecules, 25(5), 1153. https://doi.org/10.3390/molecules25051153
  • Pyo, I. S., Yun, S., Yoon, Y. E., Choi, J. W., & Lee, S. J. (2020). Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules, 25(20), 4649. https://doi.org/10.3390/molecules25204649
  • Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M.,A., Alghamdi,S.,O., Alruwaili, A.,S., Hossain, M., S., Ahmed, M., Das, R., Emran, T., B., & Uddin, M. S. (2022). Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233
  • Rajkumari, J., Borkotoky, S., Murali, A., Suchiang, K., Mohanty, S. K., & Busi, S. (2018). Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnology letters, 40, 1087-1100. https://doi.org/10.1007/s10529-018-2557-9
  • Raudone, L., Vilkickyte, G., Pitkauskaite, L., Raudonis, R., Vainoriene, R., & Motiekaityte, V. (2019). Antioxidant activities of Vaccinium vitis-idaea L. leaves within cultivars and their phenolic compounds. Molecules, 24(5), 844. https://doi.org/10.3390/molecules24050844
  • Rodriguez-Mateos, A., Heiss, C., Borges, G., & Crozier, A. (2014). Berry (poly) phenols and cardiovascular health. Journal of agricultural and food chemistry, 62(18), 3842-3851. https://doi.org/10.1021/jf403757g
  • Ryyti, R., Hämäläinen, M., Leppänen, T., Peltola, R., & Moilanen, E. (2022). Phenolic compounds known to be present in lingonberry (Vaccinium Vitis-Idaea L.) enhance macrophage polarization towards the anti- inflammatory M2 phenotype. Biomedicines, 10(12), 3045. https://doi.org/10.3390/biomedicines10123045
  • Sandoval-Acuña, C., Ferreira, J., & Speisky, H. (2014). Polyphenols and mitochondria: An update on their increasingly emerging ROS- scavenging independent actions. Archives of Biochemistry and Biophysics, 559, 75-90. https://doi.org/10.1016/j.abb.2014.05.017
  • Serra, D.O., Mika, F., Richter, A.M., & Hengge, R. (2016). Yeşil çay polifenolü EGCG, amiloid kıvrımlı lif düzeneğini bozarak ve σE'ye bağımlı sRNA RybB yoluyla biyofilm düzenleyici CsgD'yi aşağı doğru düzenleyerek E. coli biyofilm oluşumunu engeller. Molecular Biology, 101 (1), 136-151. https://doi.org/10.1111/mmi.13379
  • Shakya, T., Stogios, P.J., Waglechner, N., Evdokimova, E., Ejim, L., & Blanchard, J.E. (2011). A small molecule discrimination map of the antibiotic resistance kinome. Chemistry & Biology, 18, 1591–1601. https://doi.org/10.1016/j.chembiol.2011.10.018
  • Shehata, M. G., Awad, T. S., Asker, D., El Sohaimy, S. A., Abd El-Aziz, N. M., & Youssef, M. M. (2021). Antioxidant and antimicrobial activities and UPLC- ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current research in food science, 4, 326-335. https://doi.org/10.1016/j.crfs.2021.05.001
  • Shirai, A., Kawasaka, K., & Tsuchiya, K. (2022). Antimicrobial action of phenolic acids combined with violet 405-nm light for disinfecting pathogenic and spoilage fungi. Journal of Photochemistry and Photobiology B: Biology, 229, 112411. https://doi.org/10.1016/j.jphotobiol.2022.112411
  • Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual review of biochemistry, 86, 715-748. https://doi.org/10.1146/annurev-biochem- 061516-045037
  • Silva, H., & Lopes, N. M. F. (2020). Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Frontiers in physiology, 11, 595516. https://doi.org/10.3389/fphys.2020.595516
  • Slobodníková, L., Fialová, S., Hupková, H., & Grančai, D. (2013). Rosmarinic acid interaction with planktonic and biofilm Staphylococcus aureus. Natural product communications, 8(12), 1934578X1300801223. https://doi.org/10.1177/1934578X1300801223
  • Spagnuolo, C., Moccia, S., & Russo, G. L., (2018). Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry, 153, 105-115. https://doi.org/10.1016/j.ejmech.2017.09.001
  • Sun, S., Huang, S., Shi, Y., Shao, Y., Qiu, J., Sedjoah, R. C. A. A., Yan,Z., Ding, L., Zou, D.,& Xin, Z. (2021). Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chemistry, 351, 129232. https://doi.org/10.1016/j.foodchem.2021.129232
  • Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules, 28(4), 1845. https://doi.org/10.3390/molecules28041845
  • Taticchi, A., Urbani, S., Albi, E., Servili, M., Codini, M., Traina, G., Balloni, S., Patria, F., F., Perioli, L., Beccari, T., & Conte, C. (2019). In vitro anti- inflammatory effects of phenolic compounds from Moraiolo virgin olive oil (MVOO) in brain cells via regulating the TLR4/NLRP3 axis. Molecules, 24(24), 4523. https://doi.org/10.3390/molecules24244523
  • Taylor, E., Kim, Y., & Zhang, K., Chau, L., Nguyen, B. C., Rayalam, S., Wang, X. (2022). Antiaging Mechanism of natural compounds: Effects on autophagy and oxidative stress. Molecules, 27(14), 4396. https://doi.org/10.3390/molecules27144396
  • Toma, L., Sanda, G. M., Niculescu, L. S., Deleanu, M., Sima, A. V., & Stancu, C. S. (2020). Phenolic compounds exerting lipid-regulatory, anti- inflammatory and epigenetic effects as complementary treatments in cardiovascular diseases. Biomolecules, 10(4), 641. https://doi.org/10.3390/biom10040641
  • Tsou, L. K., Lara-Tejero, M., Rosefigura, J., Zhang, Z. J., Wang, Y.C., & Yount, J. S. (2016). Antibacterial flavonoids from medicinal plants covalently inactivate type III protein secretion substrates. Journal of the American Chemical Society, 138, 2209–2218. https://doi.org/10.1021/jacs.5b11575
  • Vrba, J., Kren, V., Vacek, J., Papouskova, B., & Ulrichova, J. (2012). Quercetin, quercetin glycosides and taxifolin differ in their ability to induce AhR activation and CYP1A1 expression in HepG2 cells. Phytotherapy research, 26(11), 1746-1752. https://doi.org/10.1002/ptr.4637
  • Vuolo, M. M., Lima, V.S., & Maróstica Junior, M. R. (2019). Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds, 33-50. https://doi.org/10.1016/B978-0-12- 814774-0.00002-5
  • Wang, Q. Q., Gao, H., Yuan, R., Han, S., Li, X. X., Tang, M., ng, B.,Li,J.,Zhao, L.,Feng, J., & Yang, S. (2020). Procyanidin A2, a polyphenolic compound, exerts anti-inflammatory and anti-oxidative activity in lipopolysaccharide-stimulated. PLoS One, 15(8), e0237017. https://doi.org/10.1371/journal.pone.0237017
  • Wu, M., Cai, J., Fang, Z., Li, S., Huang, Z., Tang, Z., Luo, Q., & Chen, H. (2022). The composition and anti-aging activities of polyphenol extract from Phyllanthus emblica L. fruit. Nutrients, 14(4), 857. https://doi.org/10.3390/nu14040857
  • Wu, T., Zang, X., He, M., Pan, S., & Xu, X. (2013). Structure-activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. Journal of Agricultural and Food Chemistry. 61, 8185–8190. https://doi.org/10.1021/jf402222v
  • Xie, H.K., Zhou, D.Y., Yin, F.W., Rakariyatham, K., Zhao, M.T., Liu, Z.Y., Li. D.Y., Zhao, Q., Liu, Y.X., Shahidi, F., & Zhu, B.W. (2019). Mechanism of antioxidant action of natural phenolics on scallop (Argopecten irradians) adductor muscle during drying process. Food Chemistry, 281. 251-260. https://doi.org/10.1016/j.foodchem.2018.12.108
  • Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618
  • Yang, X., & Jiang, X. (2015). Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer. Biotechnology Letters, 37, 1463-1472.
  • Yücel-Şengün, İ., & Öztürk, B. (2018). Bitkisel Kaynaklı Bazı Doğal Antimikrobiyaller. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi C- Yaşam Bilimleri ve Teknoloji, 7(2), 256-276. https://doi.org/10.18036/aubtdc.407806
  • Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. https://doi.org/10.1111/jfbc.13394
  • Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
  • Zhang, L., Kong, Y., Wu, D., Zhang, H., Wu, J., & Chen, J. (2008). Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Science, 17, 1971–1978. https://doi.org/10.1110/ps.036186.108
  • Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Product Communications, 17(1), 1934578X211069721. https://doi.org/10.1177/1934578X211069721
  • Zhao, H., & Xu, C. (2021). Natural phenolic compounds as anti-obesity and anti-cardiovascular disease agent. In Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer and Diabetes (pp. 205-221). Cham: Springer International Publishing.
  • Zheng, Y., Choi, Y. H., Lee, J. H., Lee, S. Y., & Kang, I. J. (2021). Anti-obesity effect of Erigeron annuus (L.) Pers. extract containing phenolic acids. Foods, 10(6), 1266. https://doi.org/10.3390/foods10061266
  • Zhou, L., Zheng, H., Tang, Y., Yu, W., & Gong, Q. (2013). Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnology letters, 35, 631-637. https://doi.org/10.1007/s10529-012-1126-x
  • Zhu, C., Lei, M., Andargie, M., Zeng, J., &Li, J. (2019). Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum. Physiological and Molecular Plant Pathology, 107, 46-50. https://doi.org/10.1016/j.pmpp.2019.04.009
  • Zhu, H., Yan, Y., Jiang, Y., & Meng, X. (2022). Ellagic acid and its anti- aging effects on central nervous system. International journal of molecular sciences, 23(18), 10937. https://doi.org/10.3390/ijms231810937
There are 106 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other)
Journal Section Review Article
Authors

Merve Gündüz 0000-0002-7684-4002

Ahmet Bekteş 0000-0001-9092-7296

Şeniz Karabıyıklı Çiçek 0000-0001-9287-9400

Vildan Kilinç 0000-0002-2581-5957

Publication Date June 26, 2025
Submission Date October 15, 2024
Acceptance Date February 5, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Gündüz, M., Bekteş, A., Karabıyıklı Çiçek, Ş., Kilinç, V. (2025). Bioactive Properties and Mechanisms of Effect of Phenolic Compounds. Manas Journal of Agriculture Veterinary and Life Sciences, 15(1), 146-160. https://doi.org/10.53518/mjavl.1567291