Research Article
BibTex RIS Cite
Year 2025, Volume: 15 Issue: 1, 103 - 112, 26.06.2025
https://doi.org/10.53518/mjavl.1667512

Abstract

References

  • Ackerman P., G. Harris, R. Klimpel, F. Aplan, Use of chelating agents as collectors in the flotation of copper sulfides and pyrite, Mining, Metallurgy & Exploration 16(1) (1999) 27-35.
  • Atak S., Flotasyon İlkeleri ve Uygulaması, ĐTÜ Vakfı 34 (1990).
  • Becke A.D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics 98(7) (1993) 5648-5652.
  • Brooks M., I. Fleming, Modernization of the Nchanga Flotation plant: A Comparison of flotation cells and columns, Mining Magazine 160(7) (1989) 34-35.
  • Chen W., M. Wong, J. Andres, M. Head-Gordon, E. Replogle, J. Pople, Gaussian 98, revision A. 7; Gaussian, Inc.: Pittsburgh, PA (1998).
  • Chen Y., Y. Sun, Y. Han, Efficient flotation separation of lead–zinc oxide ores using mineral sulfidation reconstruction technology: A review, Green and Smart Mining Engineering (2024).
  • Chia S.R., K.Y. Mak, Y.J. Khaw, N. Suhaidi, K.W. Chew, P.L. Show, An efficient and rapid method to extract and purify protein–Liquid Triphasic Flotation system, Bioresource Technology 294 (2019) 122158.
  • Dwyer F., Chelating agents and metal chelates, Elsevier2012.
  • Fuerstenau D., R. Herrera-Urbina, D. McGlashan, Studies on the applicability of chelating agents as universal collectors for copper minerals, International Journal of Mineral Processing 58(1-4) (2000) 15-33.
  • Gupta M., K. Huang, A. Noble, R.-H. Yoon, Improving the performance of a low-grade porphyry copper ore flotation plant using a simulator that can predict grade vs. recovery curves, Minerals Engineering 202 (2023) 108243.
  • Hacıfazlıoğlu H., Alternatif flotasyon yöntemlerinin tanıtılması, (2007).
  • Hummel M., E. Rubatscher, K. Wurst, G. Laus, P. Jaitner, H. Schottenberger, Crystal structure of 3-(4-azidophenyl) pentane-2, 4- dione, C11H11N3O2, Zeitschrift für Kristallographie-New Crystal Structures 224(1-4) (2009) 699-701.
  • Kee L.C., N.F. Shoparwe, Advances in Membrane Technology for Gold Extraction: A Comprehensive Review, Malaysian Journal of Bioengineering and Technology 1(2) (2024) 121-129.
  • Lu H., D. Dai, P. Yang, L. Li, Atomic orbitals in molecules: general electronegativity and improvement of Mulliken population analysis, Physical Chemistry Chemical Physics 8(3) (2006) 340-346.
  • Marabini A., V. Alesse, M. Barbaro, New synthetic collectors for selective flotation of zinc and lead oxidized minerals, XVI International Mineral Processing Congress, Elsevier Amsterdam, 1988, pp. 1197-1208.
  • Mohammadi-Jam S., D. Burnett, K. Waters, Surface energy of minerals–Applications to flotation, Minerals Engineering 66 (2014) 112-118.
  • Mulliken R.S., Electronic population analysis on LCAO–MO molecular wave functions. I, The Journal of chemical physics 23(10) (1955) 1833-1840.
  • Odabaşoğlu, C. M.. Albayrak, O. Büyükgüngör, 2, 6-Dimethyl-1, 4-benzoquinone 4-monooxime, Crystal Structure Communications 61(4) (2005) o240-o242.
  • Peleka E.N., G.P. Gallios, K.A. Matis, A perspective on flotation: A review, Journal of Chemical Technology & Biotechnology 93(3) (2018) 615-623.
  • Rai B., Molecular modeling and rational design of flotation reagents, International Journal of Mineral Processing 72(1-4) (2003) 95-110.
  • Tantirungrotechai Y., K. Phanasant, S. Roddecha, P. Surawatanawong, V. Sutthikhum, J. Limtrakul, Scaling factors for vibrational frequencies and zero-point vibrational energies of some recently developed exchange-correlation functionals, Journal of Molecular Structure: THEOCHEM 760(1-3) (2006) 189-192.
  • Torres J., C. Kremer, Coordination chemistry of lanthanide ions with X-(CH2-COO-) 2 (X= O, NH, S) ligands: The leading role of X as carboxylate-connecting group, Coordination Chemistry Reviews 494 (2023) 215347.
  • Valderrama L., J. Rubio, Unconventional column flotation of low-grade gold fine particles from tailings, International Journal of Mineral Processing 86(1-4) (2008) 75-84.
  • Yekeler, M., H. Yekeler, Molecular modeling study on the relative stabilities of the flotation products for arsenic-containing minerals: dixanthogens and arsenic (III) xanthates, Journal of colloid and interface science 284(2) (2005) 694-697.
  • Zhang H., W. Sun, C. Zhang, J. He, D. Chen, Y. Zhu, Adsorption performance and mechanism of the commonly used collectors with Oxygen-containing functional group on the ilmenite surface: A DFT study, Journal of Molecular Liquids 346 (2022) 117829.
  • Zhang L., F. Ying, W. Wu, P.C. Hiberty, S. Shaik, Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types, Chemistry–A European Journal 15(12) (2009) 2979-2989.

Interfacial Mechanisms of O-O Type Chelating Collectors in the Flotation of Copper Minerals: A Density Functional Study

Year 2025, Volume: 15 Issue: 1, 103 - 112, 26.06.2025
https://doi.org/10.53518/mjavl.1667512

Abstract

Flotation is a widely used separation technique in mineral processing that relies on surface chemistry to recover valuable metals from low-grade ores. This study presents a theoretical evaluation of O-O type chelating collectors in the selective flotation of copper minerals, emphasizing their interactions at the colloidal and interfacial levels. Using advanced computational methods, key surface chemistry parameters—including adhesion mechanisms, electron density distributions, and binding energies—were analyzed to assess the efficiency and selectivity of these collectors. The findings demonstrate that O-O type chelating collectors establish strong and specific interactions with copper mineral surfaces, enhancing hydrophobicity and improving attachment to air bubbles. Among the studied collectors—Cupferon, Neocupferon, 2-nitroso-1-naphthol, 2,4-pentanedione, Octyl hydroxamate, and 2-Acetyl-acetanalid—Octyl hydroxamate exhibited the highest stability and affinity for Cu²⁺ ions, while 2-Acetyl-acetanalid showed the weakest performance. This study provides fundamental insights into the interfacial mechanisms governing flotation efficiency and offers guidance for optimizing reagent selection. By contributing to the design of more selective and sustainable collectors, these findings support advancements in mineral processing, environmental technologies, and interfacial science.

References

  • Ackerman P., G. Harris, R. Klimpel, F. Aplan, Use of chelating agents as collectors in the flotation of copper sulfides and pyrite, Mining, Metallurgy & Exploration 16(1) (1999) 27-35.
  • Atak S., Flotasyon İlkeleri ve Uygulaması, ĐTÜ Vakfı 34 (1990).
  • Becke A.D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics 98(7) (1993) 5648-5652.
  • Brooks M., I. Fleming, Modernization of the Nchanga Flotation plant: A Comparison of flotation cells and columns, Mining Magazine 160(7) (1989) 34-35.
  • Chen W., M. Wong, J. Andres, M. Head-Gordon, E. Replogle, J. Pople, Gaussian 98, revision A. 7; Gaussian, Inc.: Pittsburgh, PA (1998).
  • Chen Y., Y. Sun, Y. Han, Efficient flotation separation of lead–zinc oxide ores using mineral sulfidation reconstruction technology: A review, Green and Smart Mining Engineering (2024).
  • Chia S.R., K.Y. Mak, Y.J. Khaw, N. Suhaidi, K.W. Chew, P.L. Show, An efficient and rapid method to extract and purify protein–Liquid Triphasic Flotation system, Bioresource Technology 294 (2019) 122158.
  • Dwyer F., Chelating agents and metal chelates, Elsevier2012.
  • Fuerstenau D., R. Herrera-Urbina, D. McGlashan, Studies on the applicability of chelating agents as universal collectors for copper minerals, International Journal of Mineral Processing 58(1-4) (2000) 15-33.
  • Gupta M., K. Huang, A. Noble, R.-H. Yoon, Improving the performance of a low-grade porphyry copper ore flotation plant using a simulator that can predict grade vs. recovery curves, Minerals Engineering 202 (2023) 108243.
  • Hacıfazlıoğlu H., Alternatif flotasyon yöntemlerinin tanıtılması, (2007).
  • Hummel M., E. Rubatscher, K. Wurst, G. Laus, P. Jaitner, H. Schottenberger, Crystal structure of 3-(4-azidophenyl) pentane-2, 4- dione, C11H11N3O2, Zeitschrift für Kristallographie-New Crystal Structures 224(1-4) (2009) 699-701.
  • Kee L.C., N.F. Shoparwe, Advances in Membrane Technology for Gold Extraction: A Comprehensive Review, Malaysian Journal of Bioengineering and Technology 1(2) (2024) 121-129.
  • Lu H., D. Dai, P. Yang, L. Li, Atomic orbitals in molecules: general electronegativity and improvement of Mulliken population analysis, Physical Chemistry Chemical Physics 8(3) (2006) 340-346.
  • Marabini A., V. Alesse, M. Barbaro, New synthetic collectors for selective flotation of zinc and lead oxidized minerals, XVI International Mineral Processing Congress, Elsevier Amsterdam, 1988, pp. 1197-1208.
  • Mohammadi-Jam S., D. Burnett, K. Waters, Surface energy of minerals–Applications to flotation, Minerals Engineering 66 (2014) 112-118.
  • Mulliken R.S., Electronic population analysis on LCAO–MO molecular wave functions. I, The Journal of chemical physics 23(10) (1955) 1833-1840.
  • Odabaşoğlu, C. M.. Albayrak, O. Büyükgüngör, 2, 6-Dimethyl-1, 4-benzoquinone 4-monooxime, Crystal Structure Communications 61(4) (2005) o240-o242.
  • Peleka E.N., G.P. Gallios, K.A. Matis, A perspective on flotation: A review, Journal of Chemical Technology & Biotechnology 93(3) (2018) 615-623.
  • Rai B., Molecular modeling and rational design of flotation reagents, International Journal of Mineral Processing 72(1-4) (2003) 95-110.
  • Tantirungrotechai Y., K. Phanasant, S. Roddecha, P. Surawatanawong, V. Sutthikhum, J. Limtrakul, Scaling factors for vibrational frequencies and zero-point vibrational energies of some recently developed exchange-correlation functionals, Journal of Molecular Structure: THEOCHEM 760(1-3) (2006) 189-192.
  • Torres J., C. Kremer, Coordination chemistry of lanthanide ions with X-(CH2-COO-) 2 (X= O, NH, S) ligands: The leading role of X as carboxylate-connecting group, Coordination Chemistry Reviews 494 (2023) 215347.
  • Valderrama L., J. Rubio, Unconventional column flotation of low-grade gold fine particles from tailings, International Journal of Mineral Processing 86(1-4) (2008) 75-84.
  • Yekeler, M., H. Yekeler, Molecular modeling study on the relative stabilities of the flotation products for arsenic-containing minerals: dixanthogens and arsenic (III) xanthates, Journal of colloid and interface science 284(2) (2005) 694-697.
  • Zhang H., W. Sun, C. Zhang, J. He, D. Chen, Y. Zhu, Adsorption performance and mechanism of the commonly used collectors with Oxygen-containing functional group on the ilmenite surface: A DFT study, Journal of Molecular Liquids 346 (2022) 117829.
  • Zhang L., F. Ying, W. Wu, P.C. Hiberty, S. Shaik, Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types, Chemistry–A European Journal 15(12) (2009) 2979-2989.
There are 26 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Research Article
Authors

Adem Necip 0000-0002-2092-7829

Hülya Yekeler 0009-0005-3861-5275

Publication Date June 26, 2025
Submission Date March 28, 2025
Acceptance Date April 18, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Necip, A., & Yekeler, H. (2025). Interfacial Mechanisms of O-O Type Chelating Collectors in the Flotation of Copper Minerals: A Density Functional Study. Manas Journal of Agriculture Veterinary and Life Sciences, 15(1), 103-112. https://doi.org/10.53518/mjavl.1667512