Research Article
BibTex RIS Cite

Preparation and characterization of melamine formaldehyde organo clay nanocomposite foams (MFCNCF)

Year 2025, Volume: 5 Issue: 1, 1 - 8, 25.06.2025
https://doi.org/10.5281/zenodo.15727928

Abstract

Melamine formaldehyde resins are one of the well-known thermosetting resins. It has been observed that melamine formaldehyde foam composites prepared with various nanoparticle reinforcements exhibit better mechanical, thermal and sound insulation properties. In this study, it was aimed to synthesize melamine formaldehyde organoclay nanocomposite foams and investigate their thermal insulation and mechanical stability by using microwave irradiation and heating technique together, which can offer advantages such as faster reaction, high yield and purity, reduced curing time. Pure melamine formaldehyde foam, MFF and melamine formaldehyde organoclay nanocomposite foams, MAFCNFs prepared with various organoclay contents were characterized by HRTEM, FTIR, SEM and XRD techniques. From spectroscopic and microscopic analyses, it was observed that organoclay platelets could be exfoliated with increasing clay content without undergoing much change in the resin matrix. The highest compressive strength was obtained in the MFCNCF3 foam with high organo clay content (0.68MPaN/mm2) and the bulk density was determined to be quite low (0.20g/cm3). On the other hand, in the nanocomposite with 0.15% organo clay content (MFCNCF2), a compressive strength of 0.32 N/mm2 and a thermal conductivity coefficient of 0.065 were measured.

References

  • 1. Kelsall R, Hamley IW, Geoghegan M, eds. Nanoscale Science and Technology. John Wiley & Sons, Ltd; 2005. https://www.wiley.com/en-gb/Nanoscale+Science+and+Technology-p-9780470850862
  • 2. Ramsden J. Nanotechnology: An Introduction. 2nd ed. Elsevier; 2016. doi:10.1016/C2014-0-03912-3
  • 3. Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanoparticle Res. 2011;13(2):427-445. doi:10.1007/s11051-010-0192-z
  • 4. Dahman Y. Nanotechnology and Functional Materials for Engineers. Elsevier; 2017.
  • 5. Yakar Z. Nanotechnology 1: Fundamentals of Nanotechnology. (Ersöz M, Işıtan A, Balaban M, eds.). BilalOfset; 2018. https://hdl.handle.net/11499/3117%09
  • 6. Yang B, Chen J, Liu B, Ding Y, Tang Y, Yan X. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. J Mater Chem A. 2021;9(10):6352-6360. doi:10.1039/D1TA00404B
  • 7. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15(1-2):11-29. doi:10.1016/S0169-1317(99)00017-4
  • 8. Thostenson E, Li C, Chou T. Nanocomposites in context. Compos Sci Technol. 2005;65(3-4):491-516. doi:10.1016/j.compscitech.2004.11.003
  • 9. Balta JA, Simpson J, Michaud V, Månson J-AE, Schrooten J. Embedded shape memory alloys confer aerodynamic profile adaptivity. Smart Mater Bull. 2001;2001(12):8-12. doi:10.1016/S1471-3918(01)80094-0
  • 10. Bernet N, Wakeman MD, Bourban P-E, Månson J-AE. An integrated cost and consolidation model for commingled yarn based composites. Compos Part A Appl Sci Manuf. 2002;33(4):495-506. doi:10.1016/S1359-835X(01)00140-3
  • 11. Clifford S, Jansson N, Yu W, Michaud V, Månson J-A. Thermoviscoelastic anisotropic analysis of process induced residual stresses and dimensional stability in real polymer matrix composite components. Compos Part A Appl Sci Manuf. 2006;37(4):538-545. doi:10.1016/j.compositesa.2005.05.008
  • 12. Jansson N, Wakeman WD, Månson J-AE. Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms. Compos Struct. 2007;80(1):21-31. doi:10.1016/j.compstruct.2006.02.036
  • 13. Giannelis EP. Polymer Layered Silicate Nanocomposites. Adv Mater. 1996;8(1):29-35. doi:10.1002/adma.19960080104
  • 14. Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899-1912. doi:10.1016/S0266-3538(01)00094-X
  • 15. Chen G, Wu C, Weng W, Wu D, Yan W. Preparation of polystyrene/graphite nanosheet composite. Polymer (Guildf). 2003;44(6):1781-1784. doi:10.1016/S0032-3861(03)00050-8
  • 16. Kumar AP, Depan D, Singh Tomer N, Singh RP. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog Polym Sci. 2009;34(6):479-515. doi:10.1016/j.progpolymsci.2009.01.002
  • 17. Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci. 2010;35(7):902-958. doi:10.1016/j.progpolymsci.2010.03.001
  • 18. Judah H. The Synthesis, Characterisation and Rheological Properties of Clay-Polymer Nanocomposites. Sheff Hallam Univ. Published online 2019. doi:https://doi.org/10.7190/shu-thesis-00316
  • 19. Ogata N, Kawakage S, Ogihara T. Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blends prepared using water as solvent. J Appl Polym Sci. 1997;66(3):573-581. doi:10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
  • 20. Rehab A, Salahuddin N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater Sci Eng A. 2005;399(1-2):368-376. doi:10.1016/j.msea.2005.04.019
  • 21. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O. Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J Mater Res. 1993;8(5):1174-1178. doi:10.1557/JMR.1993.1174
  • 22. Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites. Chem Mater. 1995;7(11):2144-2150. doi:10.1021/cm00059a023
  • 23. Li Y, Zhao B, Xie S, Zhang S. Synthesis and properties of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites. Polym Int. 2003;52(6):892-898. doi:10.1002/pi.1121
  • 24. Lee DC, Jang LW. Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization. J Appl Polym Sci. 1998;68(12):1997-2005. doi:10.1002/(SICI)1097-4628(19980620)68:12<1997::AID-APP14>3.0.CO;2-P
  • 25. Azeez AA, Rhee KY, Park SJ, Hui D. Epoxy clay nanocomposites – processing, properties and applications: A review. Compos Part B Eng. 2013;45(1):308-320. doi:10.1016/j.compositesb.2012.04.012
  • 26. Xie T, Yang G, Fang X, Ou Y. Synthesis and characterization of poly(methyl methacrylate)/montmorillonite nanocomposites by in situ bulk polymerization. J Appl Polym Sci. 2003;89(8):2256-2260. doi:10.1002/app.12468
  • 27. Gürses A, Şahin E. Preparation of Melamine Urea Formaldehyde Organo Clay Nanocomposite Foams Using Thermal Processing and Microwave Irradiation Techniques and Investigation of Their Thermal Insulation and Compressive Strength. Polym Sci Ser B. 2024;66(1):117-128. doi:10.1134/S1560090424600396
  • 28. Vaia RA, Giannelis EP. Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates. Macromolecules. 1997;30(25):7990-7999. doi:10.1021/ma9514333
  • 29. Tseng C, Wu J, Lee H, Chang F. Preparation and characterization of polystyrene–clay nanocomposites by free‐radical polymerization. J Appl Polym Sci. 2002;85(7):1370-1377. doi:10.1002/app.10585
  • 30. Gürses A, Güneş K, Mindivan F, Korucu ME, Açıkyıldız M, Doğar Ç. The investigation of electrokinetic behaviour of micro-particles produced by CTA+ ions and Na-montmorillonite. Appl Surf Sci. 2014;318:79-84. doi:10.1016/j.apsusc.2014.01.036
  • 31. Singla P, Mehta R, Upadhyay SN. Clay Modification by the Use of Organic Cations. Green Sustain Chem. 2012;02(01):21-25. doi:10.4236/gsc.2012.21004
  • 32. Santos EC dos, Bandeira RM, Vega ML, Santos Junior JR dos. Poly(melamine-formaldehyde-silica) Composite Hydrogel for Methylene Blue Removal. Mater Res. 2021;24(4). doi:10.1590/1980-5373-mr-2020-0574
  • 33. Naresh R, Parameshwaran R, Vinayaka Ram V. Microcapsules of n-dodecanoic acid/melamine-formaldehyde with enhanced thermal energy storage capability for solar applications. J Sci Adv Mater Devices. 2022;7(3):100462. doi:10.1016/j.jsamd.2022.100462
  • 34. Gürses A, Şahin E. Preparation of Melamine Formaldehyde Foam and a Melamine-Formaldehyde-Organo-Clay Nanocomposite and Hybrid Composites. Minerals. 2023;13(11):1407. doi:10.3390/min13111407
  • 35. Gao Y, Liu S, Wang Q, Wang G. Preparation of melamine–formaldehyde resin grafted by (3‐aminopropyl) triethoxysilane for high‐performance hydrophobic materials. J Appl Polym Sci. 2020;137(19). doi:10.1002/app.48664
  • 36. Nemanič V, Zajec B, Žumer M, Figar N, Kavšek M, Mihelič I. Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation. Appl Energy. 2014;114:320-326. doi:10.1016/j.apenergy.2013.09.071
  • 37. Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3(21):11624-11630. doi:10.1039/C5TA01852H
  • 38. Gürses A, Doğar Ç, Köktepe S, Mindivan F, Güneş K, Aktürk S. Investigation of Thermal Properties of PUF/colored Organoclay Nanocomposites. Acta Phys Pol A. 2015;127(4):979-983. doi:10.12693/APhysPolA.127.979
  • 39. Wanyika H, Maina E, Gachanja A, Marika D. Instrumental characterization of montmorillonite clays by X-ray fluorescence spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction and UV/visible spectrophotometry. J Agric Sci Technol. 2016;17(1):224-239. https://www.ajol.info/index.php/jagst/article/view/219175
  • 40. Yu C, Xu W, Zhao X, Xu J, Jiang M. Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber. Fibers Polym. 2014;15(9):1828-1834. doi:10.1007/s12221-014-1828-x
  • 41. Amaral C, Vicente R, Ferreira VM, Silva T. Polyurethane foams with microencapsulated phase change material: Comparative analysis of thermal conductivity characterization approaches. Energy Build. 2017;153:392-402. doi:10.1016/j.enbuild.2017.08.019
Year 2025, Volume: 5 Issue: 1, 1 - 8, 25.06.2025
https://doi.org/10.5281/zenodo.15727928

Abstract

References

  • 1. Kelsall R, Hamley IW, Geoghegan M, eds. Nanoscale Science and Technology. John Wiley & Sons, Ltd; 2005. https://www.wiley.com/en-gb/Nanoscale+Science+and+Technology-p-9780470850862
  • 2. Ramsden J. Nanotechnology: An Introduction. 2nd ed. Elsevier; 2016. doi:10.1016/C2014-0-03912-3
  • 3. Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanoparticle Res. 2011;13(2):427-445. doi:10.1007/s11051-010-0192-z
  • 4. Dahman Y. Nanotechnology and Functional Materials for Engineers. Elsevier; 2017.
  • 5. Yakar Z. Nanotechnology 1: Fundamentals of Nanotechnology. (Ersöz M, Işıtan A, Balaban M, eds.). BilalOfset; 2018. https://hdl.handle.net/11499/3117%09
  • 6. Yang B, Chen J, Liu B, Ding Y, Tang Y, Yan X. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. J Mater Chem A. 2021;9(10):6352-6360. doi:10.1039/D1TA00404B
  • 7. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15(1-2):11-29. doi:10.1016/S0169-1317(99)00017-4
  • 8. Thostenson E, Li C, Chou T. Nanocomposites in context. Compos Sci Technol. 2005;65(3-4):491-516. doi:10.1016/j.compscitech.2004.11.003
  • 9. Balta JA, Simpson J, Michaud V, Månson J-AE, Schrooten J. Embedded shape memory alloys confer aerodynamic profile adaptivity. Smart Mater Bull. 2001;2001(12):8-12. doi:10.1016/S1471-3918(01)80094-0
  • 10. Bernet N, Wakeman MD, Bourban P-E, Månson J-AE. An integrated cost and consolidation model for commingled yarn based composites. Compos Part A Appl Sci Manuf. 2002;33(4):495-506. doi:10.1016/S1359-835X(01)00140-3
  • 11. Clifford S, Jansson N, Yu W, Michaud V, Månson J-A. Thermoviscoelastic anisotropic analysis of process induced residual stresses and dimensional stability in real polymer matrix composite components. Compos Part A Appl Sci Manuf. 2006;37(4):538-545. doi:10.1016/j.compositesa.2005.05.008
  • 12. Jansson N, Wakeman WD, Månson J-AE. Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms. Compos Struct. 2007;80(1):21-31. doi:10.1016/j.compstruct.2006.02.036
  • 13. Giannelis EP. Polymer Layered Silicate Nanocomposites. Adv Mater. 1996;8(1):29-35. doi:10.1002/adma.19960080104
  • 14. Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899-1912. doi:10.1016/S0266-3538(01)00094-X
  • 15. Chen G, Wu C, Weng W, Wu D, Yan W. Preparation of polystyrene/graphite nanosheet composite. Polymer (Guildf). 2003;44(6):1781-1784. doi:10.1016/S0032-3861(03)00050-8
  • 16. Kumar AP, Depan D, Singh Tomer N, Singh RP. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog Polym Sci. 2009;34(6):479-515. doi:10.1016/j.progpolymsci.2009.01.002
  • 17. Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci. 2010;35(7):902-958. doi:10.1016/j.progpolymsci.2010.03.001
  • 18. Judah H. The Synthesis, Characterisation and Rheological Properties of Clay-Polymer Nanocomposites. Sheff Hallam Univ. Published online 2019. doi:https://doi.org/10.7190/shu-thesis-00316
  • 19. Ogata N, Kawakage S, Ogihara T. Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blends prepared using water as solvent. J Appl Polym Sci. 1997;66(3):573-581. doi:10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
  • 20. Rehab A, Salahuddin N. Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater Sci Eng A. 2005;399(1-2):368-376. doi:10.1016/j.msea.2005.04.019
  • 21. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O. Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J Mater Res. 1993;8(5):1174-1178. doi:10.1557/JMR.1993.1174
  • 22. Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites. Chem Mater. 1995;7(11):2144-2150. doi:10.1021/cm00059a023
  • 23. Li Y, Zhao B, Xie S, Zhang S. Synthesis and properties of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites. Polym Int. 2003;52(6):892-898. doi:10.1002/pi.1121
  • 24. Lee DC, Jang LW. Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization. J Appl Polym Sci. 1998;68(12):1997-2005. doi:10.1002/(SICI)1097-4628(19980620)68:12<1997::AID-APP14>3.0.CO;2-P
  • 25. Azeez AA, Rhee KY, Park SJ, Hui D. Epoxy clay nanocomposites – processing, properties and applications: A review. Compos Part B Eng. 2013;45(1):308-320. doi:10.1016/j.compositesb.2012.04.012
  • 26. Xie T, Yang G, Fang X, Ou Y. Synthesis and characterization of poly(methyl methacrylate)/montmorillonite nanocomposites by in situ bulk polymerization. J Appl Polym Sci. 2003;89(8):2256-2260. doi:10.1002/app.12468
  • 27. Gürses A, Şahin E. Preparation of Melamine Urea Formaldehyde Organo Clay Nanocomposite Foams Using Thermal Processing and Microwave Irradiation Techniques and Investigation of Their Thermal Insulation and Compressive Strength. Polym Sci Ser B. 2024;66(1):117-128. doi:10.1134/S1560090424600396
  • 28. Vaia RA, Giannelis EP. Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates. Macromolecules. 1997;30(25):7990-7999. doi:10.1021/ma9514333
  • 29. Tseng C, Wu J, Lee H, Chang F. Preparation and characterization of polystyrene–clay nanocomposites by free‐radical polymerization. J Appl Polym Sci. 2002;85(7):1370-1377. doi:10.1002/app.10585
  • 30. Gürses A, Güneş K, Mindivan F, Korucu ME, Açıkyıldız M, Doğar Ç. The investigation of electrokinetic behaviour of micro-particles produced by CTA+ ions and Na-montmorillonite. Appl Surf Sci. 2014;318:79-84. doi:10.1016/j.apsusc.2014.01.036
  • 31. Singla P, Mehta R, Upadhyay SN. Clay Modification by the Use of Organic Cations. Green Sustain Chem. 2012;02(01):21-25. doi:10.4236/gsc.2012.21004
  • 32. Santos EC dos, Bandeira RM, Vega ML, Santos Junior JR dos. Poly(melamine-formaldehyde-silica) Composite Hydrogel for Methylene Blue Removal. Mater Res. 2021;24(4). doi:10.1590/1980-5373-mr-2020-0574
  • 33. Naresh R, Parameshwaran R, Vinayaka Ram V. Microcapsules of n-dodecanoic acid/melamine-formaldehyde with enhanced thermal energy storage capability for solar applications. J Sci Adv Mater Devices. 2022;7(3):100462. doi:10.1016/j.jsamd.2022.100462
  • 34. Gürses A, Şahin E. Preparation of Melamine Formaldehyde Foam and a Melamine-Formaldehyde-Organo-Clay Nanocomposite and Hybrid Composites. Minerals. 2023;13(11):1407. doi:10.3390/min13111407
  • 35. Gao Y, Liu S, Wang Q, Wang G. Preparation of melamine–formaldehyde resin grafted by (3‐aminopropyl) triethoxysilane for high‐performance hydrophobic materials. J Appl Polym Sci. 2020;137(19). doi:10.1002/app.48664
  • 36. Nemanič V, Zajec B, Žumer M, Figar N, Kavšek M, Mihelič I. Synthesis and characterization of melamine–formaldehyde rigid foams for vacuum thermal insulation. Appl Energy. 2014;114:320-326. doi:10.1016/j.apenergy.2013.09.071
  • 37. Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3(21):11624-11630. doi:10.1039/C5TA01852H
  • 38. Gürses A, Doğar Ç, Köktepe S, Mindivan F, Güneş K, Aktürk S. Investigation of Thermal Properties of PUF/colored Organoclay Nanocomposites. Acta Phys Pol A. 2015;127(4):979-983. doi:10.12693/APhysPolA.127.979
  • 39. Wanyika H, Maina E, Gachanja A, Marika D. Instrumental characterization of montmorillonite clays by X-ray fluorescence spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction and UV/visible spectrophotometry. J Agric Sci Technol. 2016;17(1):224-239. https://www.ajol.info/index.php/jagst/article/view/219175
  • 40. Yu C, Xu W, Zhao X, Xu J, Jiang M. Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber. Fibers Polym. 2014;15(9):1828-1834. doi:10.1007/s12221-014-1828-x
  • 41. Amaral C, Vicente R, Ferreira VM, Silva T. Polyurethane foams with microencapsulated phase change material: Comparative analysis of thermal conductivity characterization approaches. Energy Build. 2017;153:392-402. doi:10.1016/j.enbuild.2017.08.019
There are 41 citations in total.

Details

Primary Language English
Subjects Nanofabrication, Growth and Self Assembly
Journal Section Research Articles
Authors

Elif Sahin 0000-0003-4844-9862

Ahmet Gürses 0000-0001-9800-0399

Early Pub Date June 24, 2025
Publication Date June 25, 2025
Submission Date December 10, 2024
Acceptance Date March 1, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite