Research Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 1, 69 - 88, 01.04.2025
https://doi.org/10.28978/nesciences.1631074

Abstract

References

  • Agar, D. A., Svanberg, M., Lindh, I., & Athanassiadis, D. (2020). Surplus forest biomass–The cost of utilisation through optimised logistics and fuel upgrading in northern Sweden. Journal of cleaner production, 275, 123151. https://doi.org/10.1016/j.jclepro.2020.123151.
  • Aslan, N. E. V. Z. A. T., & Cebeci, Y. A. K. U. P. (2007). Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 86(1-2), 90-97. https://doi.org/10.1016/j.fuel.2006.06.010
  • Bhatia, S. K., Palai, A. K., Kumar, A., Bhatia, R. K., Patel, A. K., Thakur, V. K., & Yang, Y. H. (2021). Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 340. https://doi.org/10.1016/j.biortech.2021.125644.
  • Bohre, A., Dutta, S., Saha, B., & Abu-Omar, M. M. (2015). Upgrading furfurals to drop-in biofuels: An overview. ACS Sustainable Chemistry & Engineering, 3(7), 1263-1277.
  • Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., & Titirici, M. (2015). Biomass‐derived carbon quantum dot sensitizers for solid‐state nanostructured solar cells. Angewandte Chemie International Edition, 54(15), 4463-4468. https://doi.org/10.1002/anie.201409290
  • Carlini, M., Castellucci, S., & Mennuni, A. (2018). Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia, 148, 431-438. https://doi.org/10.1016/j.egypro.2018.08.106
  • Chareonlimkun, A., Champreda, V., Shotipruk, A., & Laosiripojana, N. (2010). Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresource technology, 101(11), 4179-4186. https://doi.org/10.1016/j.biortech.2010.01.037
  • Chi, C., Zhang, Z., Chang, H. M., & Jameel, H. (2009). Determination of furfural and hydroxymethylfurfural formed from biomass under acidic conditions. Journal of Wood Chemistry and Technology, 29(4), 265-276. https://doi.org/10.1080/02773810903096025
  • da Luz Corrêa, A. P., Bastos, R. R. C., da Rocha Filho, G. N., Zamian, J. R., & da Conceição, L. R. V. (2020). Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction. RSC advances, 10(34), 20245-20256. https://doi.org/10.1039/D0RA03217D
  • de Andrade, J. K., de Andrade, C. K., Komatsu, E., Perreault, H., Torres, Y. R., da Rosa, M. R., & Felsner, M. L. (2017). A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups. Food chemistry, 228, 197-203. https://doi.org/10.1016/j.foodchem.2017.01.158
  • de Medeiros, T. V., Manioudakis, J., Noun, F., Macairan, J. R., Victoria, F., & Naccache, R. (2019). Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 7(24), 7175-7195.
  • Deka, M. J., Dutta, P., Sarma, S., Medhi, O. K., Talukdar, N. C., & Chowdhury, D. (2019). Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01985
  • Dulie, N. W., Woldeyes, B., & Demsash, H. D. (2021). Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural. International Journal of Biological Macromolecules, 171, 10-16. https://doi.org/10.1016/j.ijbiomac.2020.12.213
  • Ewnetu Sahlie, M., Zeleke, T. S., & Aklog Yihun, F. (2022). Water Hyacinth: A sustainable cellulose source for cellulose nanofiber production and application as recycled paper reinforcement. Journal of Polymer Research, 29(6), 230. https://doi.org/10.1007/s10965-022-03089-0
  • Fan, G., Wang, Y., Hu, Z., Yan, J., Li, J., & Song, G. (2018). Synthesis of 5-hydroxymethyl furfural from cellulose via a two-step process in polar aprotic solvent. Carbohydrate polymers, 200, 529-535. https://doi.org/10.1016/j.carbpol.2018.08.043
  • Fu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 203-213. https://doi.org/10.1007/s11144-012-0466-9
  • Gil Matellanes, M. V., Casal Banciella, M. D., Pevida García, C., Pis Martínez, J. J., & Rubiera González, F. (2010). Thermal behaviour and kinetics of coal/biomass blends during co-combustion. http://doi.org/10.1016/j.biortech.2010.02.008
  • He, Q., Lu, Y., Peng, Q., Chen, W., Fan, G., Chai, B., & Song, G. (2021). Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by sulfonated carbon-based solid acid. Biomass Conversion and Biorefinery, 1-9. https://doi.org/10.1007/s13399-021-01847-6
  • Huang, L., Xie, C., Liu, J., Zhang, X., Chang, K., Kuo, J., ... & Evrendilek, F. (2018). Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresource technology, 247, 217-225. https://doi.org/10.1016/j.biortech.2017.09.039
  • Issa, M. A., Abidin, Z. Z., Sobri, S., Abdul-Rashid, S., Mahdi, M. A., Ibrahim, N. A., & Pudza, M. Y. (2020). Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch. Chinese Journal of Chemical Engineering, 28(2), 584-592. https://doi.org/10.1016/j.cjche.2019.04.003
  • Jamil, F., Ala'a, H., Naushad, M., Baawain, M., Al-Mamun, A., Saxena, S. K., & Viswanadham, N. (2020). Evaluation of synthesized green carbon catalyst from waste date pits for tertiary butylation of phenol. Arabian journal of chemistry, 13(1), 298-307. https://doi.org/10.1016/j.arabjc.2017.04.009
  • Jori, P. K., & Jadhav, V. H. (2022). Highly Efficient Zirconium Based Carbonaceous Solid Acid Catalyst for Selective Synthesis of 5-HMF from Fructose and Glucose in Isopropanol as a Solvent. Catalysis Letters, 152(6), 1703-1710. https://doi.org/10.1007/s10562-021-03764-9
  • Khatiri, K., Sheikh, A., Hesam, R., & Alikhani, N. (2019). The Role of Participation in Preventing the Water Crisis. International Academic Journal of Innovative Research, 6(1), 47–52. https://doi.org/10.9756/IAJIR/V6I1/1910004
  • Li, M., Jiang, H., Zhang, L., Yu, X., Liu, H., Yagoub, A. E. A., & Zhou, C. (2020). Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system. Industrial Crops and Products, 149, 112361. https://doi.org/10.1016/j.indcrop.2020.112361.
  • Ma, X., Dong, Y., Sun, H., & Chen, N. (2017). Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Materials Today Chemistry, 5, 1-10. https://doi.org/10.1016/j.mtchem.2017.04.004
  • Majdanishabestari, K., & Soleimani, M. (2019). Using simulation-optimization model in water resource management with consideration of environmental issues. International Academic Journal of Science and Engineering, 6(1), 15–25. https://doi.org/10.9756/IAJSE/V6I1/1910002
  • Meng, W., Bai, X., Wang, B., Liu, Z., Lu, S., & Yang, B. (2019). Biomass‐derived carbon dots and their applications. Energy & Environmental Materials, 2(3), 172-192. https://doi.org/10.1002/eem2.12038
  • Mies, M. J. M., Rebrov, E. V., Jansen, J. C., De Croon, M. H. J. M., & Schouten, J. C. (2007). Hydrothermal synthesis of a continuous zeolite Beta layer by optimization of time, temperature and heating rate of the precursor mixture. Microporous and mesoporous materials, 106(1-3), 95-106. https://doi.org/10.1016/j.micromeso.2007.02.032
  • Mollazade, S. (2017). Optimal model of cultivation and water demand with environmental considerations in agricultural sector of Yasoouj plain. International Academic Journal of Economics, 4(1), 32–40.
  • Nandini, G. K. (2024). IOT Use in a farming area to manage water conveyance. Archives for Technical Sciences/Arhiv za Tehnicke Nauke, (31). https://doi.org/10.70102/afts.2024.1631.016.
  • Of, P., Acid, S., From, C., Husk, R., Of, I., Catalytic, I. T. S., & In, P. (2017). Preparation of Solid Acid Catalyst from Rice Husk and by Abel Aklilu A Thesis Submitted to The School of Chemical and Bio-Engineering Presented in Fulfilment of the Requirement for the Degree of Master of Science (Process Engineering) Addis Ababa Univer. October.
  • Ozyilmaz, A. T. (2023). Conducting Polymer Films on Zn Deposited Carbon Electrode. Natural and Engineering Sciences, 8(2), 129-139. https://doi.org/10.28978/nesciences.1342013
  • Park, S. Y., Lee, H. U., Park, E. S., Lee, S. C., Lee, J. W., Jeong, S. W., ... & Lee, J. (2014). Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS applied materials & interfaces, 6(5), 3365-3370.
  • Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., ... & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. Journal of hazardous materials, 400, 123116. https://doi.org/10.1016/j.jhazmat.2020.123116
  • Prathumsuwan, T., Jaiyong, P., In, I., & Paoprasert, P. (2019). Label-free carbon dots from water hyacinth leaves as a highly fluorescent probe for selective and sensitive detection of borax. Sensors and Actuators B: Chemical, 299, 126936. https://doi.org/10.1016/j.snb.2019.126936
  • Raghu, A. V., Karuppanan, K. K., & Pullithadathil, B. (2019). Highly surface active phosphorus-doped onion-like carbon nanostructures: ultrasensitive, fully reversible, and portable NH3 gas sensors. ACS Applied Electronic Materials, 1(11), 2208-2219.
  • Rana, A., Alghazal, M. S., Alsaeedi, M. M., S. Bakdash, R., Basheer, C., & Al-Saadi, A. A. (2019). Preparation and characterization of biomass carbon–based solid acid catalysts for the esterification of marine algae for biodiesel production. BioEnergy Research, 12, 433-442. https://doi.org/10.1007/s12155-019-9965-0
  • Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G., & Mumme, J. (2014). Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenergy, 1(1), 11-29.
  • Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chemistry, 16(1), 24-38. https://doi.org/10.1039/C3GC41324A
  • Salame, P. H., Pawade, V. B., & Bhanvase, B. A. (2018). Characterization tools and techniques for nanomaterials. In Nanomaterials for green energy (pp. 83-111). Elsevier. https://doi.org/10.1016/B978-0-12-813731-4.00003-5
  • Shao, Y., Ding, Y., Dai, J., Long, Y., & Hu, Z. T. (2021). Synthesis of 5-hydroxymethylfurfural from dehydration of biomass-derived glucose and fructose using supported metal catalysts. Green Synthesis and Catalysis, 2(2), 187-197. https://doi.org/10.1016/j.gresc.2021.01.006
  • Tiong, Y. W., Yap, C. L., Gan, S., & Yap, W. S. P. (2020). Kinetic and thermodynamic studies of oil palm mesocarp fiber cellulose conversion to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids. Renewable Energy, 146, 932-943. https://doi.org/10.1016/j.renene.2019.07.024
  • Yi, G., Teong, S. P., Li, X., & Zhang, Y. (2014). Purification of biomass‐derived 5‐hydroxymethylfurfural and its catalytic conversion to 2, 5‐furandicarboxylic acid. ChemSusChem, 7(8), 2131-2135. https://doi.org/10.1002/cssc.201402105
  • Yu, H., Niu, S., Lu, C., Li, J., & Yang, Y. (2017). Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel, 208, 101-110. https://doi.org/10.1016/j.fuel.2017.06.122
  • Zhang, T., Fan, W., Li, W., Xu, Z., Xin, H., Su, M., ... & Ma, L. (2017). One‐Pot Conversion of Carbohydrates into 5‐(Hydroxymethyl) furfural using Heterogeneous Lewis‐Acid and Brønsted‐Acid Catalysts. Energy Technology, 5(5), 747-755. https://doi.org/10.1002/ente.201600492
  • Zhang, Z., Zhen, J., Liu, B., Lv, K., & Deng, K. (2015). Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chemistry, 17(2), 1308-1317.
  • Zhu, C., Zhai, J., & Dong, S. (2012). Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical communications, 48(75), 9367-9369.
  • Zümrütdal, E., Zarifi, F., Yiğittekin, E. S., İstifli, E. S., Mertoğlu, T. Ş., Türüt, N., ... & Kılınççeker, G. (2022). Effect of Activated Carbon in Yogurt Production. Natural and Engineering Sciences, 7(1), 1-21. https://doi.org/10.28978/nesciences.1098648

Synthesis of Phosphonated Solid Acid Catalyst from Water Hyacinth-Derived Carbon Dots and Its Catalytic Performance in 5-Hydroxymethylfurfural Production

Year 2025, Volume: 10 Issue: 1, 69 - 88, 01.04.2025
https://doi.org/10.28978/nesciences.1631074

Abstract

The most effective parameters for the synthesis of Carbon Dots (CDs) obtained from Water Hyacinth (WH) were found to be 125 ̊C, 35 minutes, and 7 g, with a maximum yield of 18.65%, according to the Design Expert 13.0 program. The phosphonated solid acid catalyst (PCDs) was synthesized by functionalizing CDs with concentrated phosphoric acid (85%) at 150 ̊C for 6 hours and used as a catalyst for producing 5–hydroxymethylfurfural (5-HMF). UV, XRD, SEM, FTIR, TGA elemental analysis, and acid–base titration techniques were used to characterize the CDs and catalyst. The FTIR spectra confirm the synthesized catalyst exhibited functional groups such as -PO3H2, -COOH, and -OH. The Catalytic Performance of PCDs was evaluated in the one-step Microwave-Assisted (MW) conversion of WH into 5-HMF using a biphasic solvent (isopropanol: water), achieving a 73.05% yield at 90 ̊C in 40 minutes using 0.6 g of catalyst. For using crude biomass in 5-HMF production this method offers a green and efficient approach.

References

  • Agar, D. A., Svanberg, M., Lindh, I., & Athanassiadis, D. (2020). Surplus forest biomass–The cost of utilisation through optimised logistics and fuel upgrading in northern Sweden. Journal of cleaner production, 275, 123151. https://doi.org/10.1016/j.jclepro.2020.123151.
  • Aslan, N. E. V. Z. A. T., & Cebeci, Y. A. K. U. P. (2007). Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 86(1-2), 90-97. https://doi.org/10.1016/j.fuel.2006.06.010
  • Bhatia, S. K., Palai, A. K., Kumar, A., Bhatia, R. K., Patel, A. K., Thakur, V. K., & Yang, Y. H. (2021). Trends in renewable energy production employing biomass-based biochar. Bioresource Technology, 340. https://doi.org/10.1016/j.biortech.2021.125644.
  • Bohre, A., Dutta, S., Saha, B., & Abu-Omar, M. M. (2015). Upgrading furfurals to drop-in biofuels: An overview. ACS Sustainable Chemistry & Engineering, 3(7), 1263-1277.
  • Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S., & Titirici, M. (2015). Biomass‐derived carbon quantum dot sensitizers for solid‐state nanostructured solar cells. Angewandte Chemie International Edition, 54(15), 4463-4468. https://doi.org/10.1002/anie.201409290
  • Carlini, M., Castellucci, S., & Mennuni, A. (2018). Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia, 148, 431-438. https://doi.org/10.1016/j.egypro.2018.08.106
  • Chareonlimkun, A., Champreda, V., Shotipruk, A., & Laosiripojana, N. (2010). Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2–ZrO2 under hot compressed water (HCW) condition. Bioresource technology, 101(11), 4179-4186. https://doi.org/10.1016/j.biortech.2010.01.037
  • Chi, C., Zhang, Z., Chang, H. M., & Jameel, H. (2009). Determination of furfural and hydroxymethylfurfural formed from biomass under acidic conditions. Journal of Wood Chemistry and Technology, 29(4), 265-276. https://doi.org/10.1080/02773810903096025
  • da Luz Corrêa, A. P., Bastos, R. R. C., da Rocha Filho, G. N., Zamian, J. R., & da Conceição, L. R. V. (2020). Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction. RSC advances, 10(34), 20245-20256. https://doi.org/10.1039/D0RA03217D
  • de Andrade, J. K., de Andrade, C. K., Komatsu, E., Perreault, H., Torres, Y. R., da Rosa, M. R., & Felsner, M. L. (2017). A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups. Food chemistry, 228, 197-203. https://doi.org/10.1016/j.foodchem.2017.01.158
  • de Medeiros, T. V., Manioudakis, J., Noun, F., Macairan, J. R., Victoria, F., & Naccache, R. (2019). Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 7(24), 7175-7195.
  • Deka, M. J., Dutta, P., Sarma, S., Medhi, O. K., Talukdar, N. C., & Chowdhury, D. (2019). Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01985
  • Dulie, N. W., Woldeyes, B., & Demsash, H. D. (2021). Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural. International Journal of Biological Macromolecules, 171, 10-16. https://doi.org/10.1016/j.ijbiomac.2020.12.213
  • Ewnetu Sahlie, M., Zeleke, T. S., & Aklog Yihun, F. (2022). Water Hyacinth: A sustainable cellulose source for cellulose nanofiber production and application as recycled paper reinforcement. Journal of Polymer Research, 29(6), 230. https://doi.org/10.1007/s10965-022-03089-0
  • Fan, G., Wang, Y., Hu, Z., Yan, J., Li, J., & Song, G. (2018). Synthesis of 5-hydroxymethyl furfural from cellulose via a two-step process in polar aprotic solvent. Carbohydrate polymers, 200, 529-535. https://doi.org/10.1016/j.carbpol.2018.08.043
  • Fu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 203-213. https://doi.org/10.1007/s11144-012-0466-9
  • Gil Matellanes, M. V., Casal Banciella, M. D., Pevida García, C., Pis Martínez, J. J., & Rubiera González, F. (2010). Thermal behaviour and kinetics of coal/biomass blends during co-combustion. http://doi.org/10.1016/j.biortech.2010.02.008
  • He, Q., Lu, Y., Peng, Q., Chen, W., Fan, G., Chai, B., & Song, G. (2021). Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by sulfonated carbon-based solid acid. Biomass Conversion and Biorefinery, 1-9. https://doi.org/10.1007/s13399-021-01847-6
  • Huang, L., Xie, C., Liu, J., Zhang, X., Chang, K., Kuo, J., ... & Evrendilek, F. (2018). Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresource technology, 247, 217-225. https://doi.org/10.1016/j.biortech.2017.09.039
  • Issa, M. A., Abidin, Z. Z., Sobri, S., Abdul-Rashid, S., Mahdi, M. A., Ibrahim, N. A., & Pudza, M. Y. (2020). Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch. Chinese Journal of Chemical Engineering, 28(2), 584-592. https://doi.org/10.1016/j.cjche.2019.04.003
  • Jamil, F., Ala'a, H., Naushad, M., Baawain, M., Al-Mamun, A., Saxena, S. K., & Viswanadham, N. (2020). Evaluation of synthesized green carbon catalyst from waste date pits for tertiary butylation of phenol. Arabian journal of chemistry, 13(1), 298-307. https://doi.org/10.1016/j.arabjc.2017.04.009
  • Jori, P. K., & Jadhav, V. H. (2022). Highly Efficient Zirconium Based Carbonaceous Solid Acid Catalyst for Selective Synthesis of 5-HMF from Fructose and Glucose in Isopropanol as a Solvent. Catalysis Letters, 152(6), 1703-1710. https://doi.org/10.1007/s10562-021-03764-9
  • Khatiri, K., Sheikh, A., Hesam, R., & Alikhani, N. (2019). The Role of Participation in Preventing the Water Crisis. International Academic Journal of Innovative Research, 6(1), 47–52. https://doi.org/10.9756/IAJIR/V6I1/1910004
  • Li, M., Jiang, H., Zhang, L., Yu, X., Liu, H., Yagoub, A. E. A., & Zhou, C. (2020). Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system. Industrial Crops and Products, 149, 112361. https://doi.org/10.1016/j.indcrop.2020.112361.
  • Ma, X., Dong, Y., Sun, H., & Chen, N. (2017). Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Materials Today Chemistry, 5, 1-10. https://doi.org/10.1016/j.mtchem.2017.04.004
  • Majdanishabestari, K., & Soleimani, M. (2019). Using simulation-optimization model in water resource management with consideration of environmental issues. International Academic Journal of Science and Engineering, 6(1), 15–25. https://doi.org/10.9756/IAJSE/V6I1/1910002
  • Meng, W., Bai, X., Wang, B., Liu, Z., Lu, S., & Yang, B. (2019). Biomass‐derived carbon dots and their applications. Energy & Environmental Materials, 2(3), 172-192. https://doi.org/10.1002/eem2.12038
  • Mies, M. J. M., Rebrov, E. V., Jansen, J. C., De Croon, M. H. J. M., & Schouten, J. C. (2007). Hydrothermal synthesis of a continuous zeolite Beta layer by optimization of time, temperature and heating rate of the precursor mixture. Microporous and mesoporous materials, 106(1-3), 95-106. https://doi.org/10.1016/j.micromeso.2007.02.032
  • Mollazade, S. (2017). Optimal model of cultivation and water demand with environmental considerations in agricultural sector of Yasoouj plain. International Academic Journal of Economics, 4(1), 32–40.
  • Nandini, G. K. (2024). IOT Use in a farming area to manage water conveyance. Archives for Technical Sciences/Arhiv za Tehnicke Nauke, (31). https://doi.org/10.70102/afts.2024.1631.016.
  • Of, P., Acid, S., From, C., Husk, R., Of, I., Catalytic, I. T. S., & In, P. (2017). Preparation of Solid Acid Catalyst from Rice Husk and by Abel Aklilu A Thesis Submitted to The School of Chemical and Bio-Engineering Presented in Fulfilment of the Requirement for the Degree of Master of Science (Process Engineering) Addis Ababa Univer. October.
  • Ozyilmaz, A. T. (2023). Conducting Polymer Films on Zn Deposited Carbon Electrode. Natural and Engineering Sciences, 8(2), 129-139. https://doi.org/10.28978/nesciences.1342013
  • Park, S. Y., Lee, H. U., Park, E. S., Lee, S. C., Lee, J. W., Jeong, S. W., ... & Lee, J. (2014). Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS applied materials & interfaces, 6(5), 3365-3370.
  • Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., ... & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. Journal of hazardous materials, 400, 123116. https://doi.org/10.1016/j.jhazmat.2020.123116
  • Prathumsuwan, T., Jaiyong, P., In, I., & Paoprasert, P. (2019). Label-free carbon dots from water hyacinth leaves as a highly fluorescent probe for selective and sensitive detection of borax. Sensors and Actuators B: Chemical, 299, 126936. https://doi.org/10.1016/j.snb.2019.126936
  • Raghu, A. V., Karuppanan, K. K., & Pullithadathil, B. (2019). Highly surface active phosphorus-doped onion-like carbon nanostructures: ultrasensitive, fully reversible, and portable NH3 gas sensors. ACS Applied Electronic Materials, 1(11), 2208-2219.
  • Rana, A., Alghazal, M. S., Alsaeedi, M. M., S. Bakdash, R., Basheer, C., & Al-Saadi, A. A. (2019). Preparation and characterization of biomass carbon–based solid acid catalysts for the esterification of marine algae for biodiesel production. BioEnergy Research, 12, 433-442. https://doi.org/10.1007/s12155-019-9965-0
  • Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G., & Mumme, J. (2014). Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenergy, 1(1), 11-29.
  • Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chemistry, 16(1), 24-38. https://doi.org/10.1039/C3GC41324A
  • Salame, P. H., Pawade, V. B., & Bhanvase, B. A. (2018). Characterization tools and techniques for nanomaterials. In Nanomaterials for green energy (pp. 83-111). Elsevier. https://doi.org/10.1016/B978-0-12-813731-4.00003-5
  • Shao, Y., Ding, Y., Dai, J., Long, Y., & Hu, Z. T. (2021). Synthesis of 5-hydroxymethylfurfural from dehydration of biomass-derived glucose and fructose using supported metal catalysts. Green Synthesis and Catalysis, 2(2), 187-197. https://doi.org/10.1016/j.gresc.2021.01.006
  • Tiong, Y. W., Yap, C. L., Gan, S., & Yap, W. S. P. (2020). Kinetic and thermodynamic studies of oil palm mesocarp fiber cellulose conversion to levulinic acid and upgrading to ethyl levulinate via indium trichloride-ionic liquids. Renewable Energy, 146, 932-943. https://doi.org/10.1016/j.renene.2019.07.024
  • Yi, G., Teong, S. P., Li, X., & Zhang, Y. (2014). Purification of biomass‐derived 5‐hydroxymethylfurfural and its catalytic conversion to 2, 5‐furandicarboxylic acid. ChemSusChem, 7(8), 2131-2135. https://doi.org/10.1002/cssc.201402105
  • Yu, H., Niu, S., Lu, C., Li, J., & Yang, Y. (2017). Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel, 208, 101-110. https://doi.org/10.1016/j.fuel.2017.06.122
  • Zhang, T., Fan, W., Li, W., Xu, Z., Xin, H., Su, M., ... & Ma, L. (2017). One‐Pot Conversion of Carbohydrates into 5‐(Hydroxymethyl) furfural using Heterogeneous Lewis‐Acid and Brønsted‐Acid Catalysts. Energy Technology, 5(5), 747-755. https://doi.org/10.1002/ente.201600492
  • Zhang, Z., Zhen, J., Liu, B., Lv, K., & Deng, K. (2015). Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst. Green Chemistry, 17(2), 1308-1317.
  • Zhu, C., Zhai, J., & Dong, S. (2012). Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical communications, 48(75), 9367-9369.
  • Zümrütdal, E., Zarifi, F., Yiğittekin, E. S., İstifli, E. S., Mertoğlu, T. Ş., Türüt, N., ... & Kılınççeker, G. (2022). Effect of Activated Carbon in Yogurt Production. Natural and Engineering Sciences, 7(1), 1-21. https://doi.org/10.28978/nesciences.1098648
There are 48 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Nardos Tesfalem Olango 0009-0005-3519-9069

Ballekallu Chinna Eranna

Belete Yilma Hirpaye 0000-0002-7084-997X

Publication Date April 1, 2025
Submission Date February 1, 2025
Acceptance Date April 1, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Olango, N. T., Eranna, B. C., & Hirpaye, B. Y. (2025). Synthesis of Phosphonated Solid Acid Catalyst from Water Hyacinth-Derived Carbon Dots and Its Catalytic Performance in 5-Hydroxymethylfurfural Production. Natural and Engineering Sciences, 10(1), 69-88. https://doi.org/10.28978/nesciences.1631074

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015