Research Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 1, 352 - 362, 01.04.2025
https://doi.org/10.28978/nesciences.1648743

Abstract

References

  • Akazawa, T., Itami, H., & Ogawa, M. (2024). The physical properties of fish gelatin gel are enhanced by the cross-linking activity of olive leaf water extract. International Journal of Food Science and Technology, 59(3), 1580-1590.
  • Anny Leema, A., & Balakrishnan, P. (2024). Detection and Categorization of Rice Leaf Diseases through Federated Learning and Improved Vision Transformer Models. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(4), 370-379. https://doi.org/10.58346/JOWUA.2024.I4.025
  • Assar, D. H., Ragab, A. E., Abdelsatar, E., Salah, A. S., Salem, S. M., Hendam, B. M., ... & Elbialy, Z. I. (2023). Dietary olive leaf extract differentially modulates antioxidant defense of normal and aeromonas hydrophila-infected common carp (Cyprinus carpio) via Keap1/Nrf2 pathway signaling: a phytochemical and biological link. Animals, 13(13), 2229. https://doi.org/10.3390/ani13132229
  • Çiftçi, N., & Ayas, D. (2022). First record of Pempheris rhomboidea (Kossmann & Räuber, 1877) harvested from aquaculture fish cages. Natural and Engineering Sciences, 7(2), 182-189. http://doi.org/10.28978/nesciences.1159280
  • Conte, P., Pulina, S., Del Caro, A., Fadda, C., Urgeghe, P. P., De Bruno, A., ... & Piga, A. (2021). Gluten-free breadsticks fortified with phenolic-rich extracts from olive leaves and olive mill wastewater. Foods, 10(5), 923. https://doi.org/10.3390/foods10050923
  • Ferreira, D. M., de Oliveira, N. M., Chéu, M. H., Meireles, D., Lopes, L., Oliveira, M. B., & Machado, J. (2023). Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. Plants, 12(3), 688. https://doi.org/10.3390/plants12030688
  • Filipe, D., Gonçalves, M., Fernandes, H., Oliva-Teles, A., Peres, H., Belo, I., & Salgado, J. M. (2023). Shelf-life performance of fish feed supplemented with bioactive extracts from fermented olive mill and winery by-products. Foods, 12(2), 305. https://doi.org/10.3390/foods12020305
  • Ghelichpour, M., Mirghaed, A. T., Dawood, M. A., Hoseinifar, S. H., & Van Doan, H. (2021). Alteration of haematological and antioxidant parameters in common carp (Cyprinus carpio) fed olive (Olea europea) leaf extract after exposure to Danitol®. Aquaculture Research, 52(3), 1088-1095. https://doi.org/10.1111/are.14964
  • González-Hedström, D., de La Fuente-Fernandez, M., Priego, T., Martín, A. I., Amor, S., López-Calderón, A., ... & Granado, M. (2021). Addition of olive leaf extract to a mixture of algae and extra virgin olive oils decreases fatty acid oxidation and synergically attenuates age-induced hypertension, sarcopenia and insulin resistance in rats. Antioxidants, 10(7), 1066. https://doi.org/10.3390/antiox10071066
  • Hazreen-Nita, M. K., Kari, Z. A., Mat, K., Rusli, N. D., Sukri, S. A. M., Harun, H. C., ... & Dawood, M. A. (2022). Olive oil by-products in aquafeeds: Opportunities and challenges. Aquaculture Reports, 22, 100998. https://doi.org/10.1016/j.aqrep.2021.100998
  • Khwaldia, K., Attour, N., Matthes, J., Beck, L., & Schmid, M. (2022). Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1218-1253. https://doi.org/10.1111/1541-4337.12882
  • Kuley, E., Sakarya, Y., & Özyurt, G. (2024). Increasing the functional properties of fish oil microcapsules with olive leaf extracts. Biomass Conversion and Biorefinery, 14(8), 9689-9696. https://doi.org/10.1007/s13399-022-02930-2
  • Liu, J., Xue, M., Morais, S., He, M., Wang, H., Wang, J., ... & Liang, X. (2022). Effects of a phytogenic supplement containing olive by-product and green tea extracts on growth performance, lipid metabolism, and hepatic antioxidant capacity in largemouth bass (Micropterus salmoides) fed a high soybean meal diet. Antioxidants, 11(12), 2415.https://doi.org/10.3390/antiox11122415
  • Monsef Shokri, M., Yousefi, S., & Jamshidi, S. (2021). Effect of dietary ImmunoWall® on liver oxidative status in juvenile Persian sturgeon‎. International Journal of Aquatic Research and Environmental Studies, 1(2), 1-5. https://doi.org/10.70102/IJARES/V1I2/1
  • Mooraki, N., Omrani, M., Khajehrahimi, A. E., & Azhdari, P. (2021). Classifying five ornamental fish species of Cichlidae family by use of logistic regression and discrimination linear analysis. International Journal of Aquatic Research and Environmental Studies, 1(1), 15-21.. https://doi.org/10.70102/IJARES/V1I1/2
  • Nandy, M., & Dubey, A. (2024). Effective Surveillance of Water Quality in Remediulating Aquaculture Systems through the Application of Intelligent Biosensors. Natural and Engineering Sciences, 9(2), 234-243. https://doi.org/10.28978/nesciences.1575456
  • Oliveira, A. L., Gondim, S., Gómez-García, R., Ribeiro, T., & Pintado, M. (2021). Olive leaf phenolic extract from two Portuguese cultivars–bioactivities for potential food and cosmetic application. Journal of Environmental Chemical Engineering, 9(5), 106175. https://doi.org/10.1016/j.jece.2021.106175
  • Özyurt, G., Durmuş, M., Özkütük, A. S., & Uçar, Y. (2024). Microencapsulation of fish oil with olive leaf extract instead of synthetic antioxidant and its effects on nutraceutical properties of fish oil at different inlet temperatures. Biomass Conversion and Biorefinery, 14(9), 10517-10532. https://doi.org/10.1007/s13399-022-03231-4
  • Rad, H. N., & Behnamghader, A. (2014). Preparation of Bioactive Glass 77S for Bone Tissue Engineering Applications. International Academic Journal of Science and Engineering, 1(2), 68–74.
  • Talukdar, S., & Ghosh, K. (2025). Evaluation of growth, nutrient utilization, and metabolic function in rohu, Labeo rohita (Hamilton), fed diets incorporated with fermented Saraca asoca leaf meal. Fish Physiology and Biochemistry, 51(1), 3. https://doi.org/10.1007/s10695-024-01422-6
  • Toprakçı, İ., & Şahin, S. (2022). Encapsulation of olive leaf antioxidants in microbeads: Application of alginate and chitosan as wall materials. Sustainable Chemistry and Pharmacy, 27, 100707. https://doi.org/10.1016/j.scp.2022.100707

Examining the Liver Metabolic Alterations Induced by Olive Leaf Compounds in Aquatic Species

Year 2025, Volume: 10 Issue: 1, 352 - 362, 01.04.2025
https://doi.org/10.28978/nesciences.1648743

Abstract

Olea europaea L., frequently recognized for its traditional medicinal uses, contains bioactive compounds with antioxidant, anti-inflammatory, and metabolic regulatory properties. While these compounds have been widely investigated for their properties on human well-being, their consequences on aquatic species remain less discovered. The aim is to assess the effects of seven olive leaf metabolites caffeic acid, oleuropein, corosolic acid, moronic acid, lupeol, cycloartenol, and betulinic acid on liver metabolism in Nile tilapia (Oreochromis niloticus). The metabolites were incorporated into the fish food at three absorptions: 1g/100g, 3g/100g, and 5g/100g feed, and the fish were fed twice daily for 96 hours. Biochemical examination of fish serum revealed significantly improved Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), and glucose levels associated with the control group. Particularly, corosolic acid and moronic acid encouraged the greatest noticeable development in liver enzyme activities, signifying potential disruptions in liver metabolism and function. These consequences indicate that bioactive compounds in olive leaves can influence liver physiology in aquatic species, emphasizing their potential effect on fish health. The research delivers valuable insights into the metabolic effects of these complexes, with implications for aquaculture nutrition approaches. Further investigation are essential to assess their long-term security and effectiveness.

References

  • Akazawa, T., Itami, H., & Ogawa, M. (2024). The physical properties of fish gelatin gel are enhanced by the cross-linking activity of olive leaf water extract. International Journal of Food Science and Technology, 59(3), 1580-1590.
  • Anny Leema, A., & Balakrishnan, P. (2024). Detection and Categorization of Rice Leaf Diseases through Federated Learning and Improved Vision Transformer Models. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(4), 370-379. https://doi.org/10.58346/JOWUA.2024.I4.025
  • Assar, D. H., Ragab, A. E., Abdelsatar, E., Salah, A. S., Salem, S. M., Hendam, B. M., ... & Elbialy, Z. I. (2023). Dietary olive leaf extract differentially modulates antioxidant defense of normal and aeromonas hydrophila-infected common carp (Cyprinus carpio) via Keap1/Nrf2 pathway signaling: a phytochemical and biological link. Animals, 13(13), 2229. https://doi.org/10.3390/ani13132229
  • Çiftçi, N., & Ayas, D. (2022). First record of Pempheris rhomboidea (Kossmann & Räuber, 1877) harvested from aquaculture fish cages. Natural and Engineering Sciences, 7(2), 182-189. http://doi.org/10.28978/nesciences.1159280
  • Conte, P., Pulina, S., Del Caro, A., Fadda, C., Urgeghe, P. P., De Bruno, A., ... & Piga, A. (2021). Gluten-free breadsticks fortified with phenolic-rich extracts from olive leaves and olive mill wastewater. Foods, 10(5), 923. https://doi.org/10.3390/foods10050923
  • Ferreira, D. M., de Oliveira, N. M., Chéu, M. H., Meireles, D., Lopes, L., Oliveira, M. B., & Machado, J. (2023). Updated Organic Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. Plants, 12(3), 688. https://doi.org/10.3390/plants12030688
  • Filipe, D., Gonçalves, M., Fernandes, H., Oliva-Teles, A., Peres, H., Belo, I., & Salgado, J. M. (2023). Shelf-life performance of fish feed supplemented with bioactive extracts from fermented olive mill and winery by-products. Foods, 12(2), 305. https://doi.org/10.3390/foods12020305
  • Ghelichpour, M., Mirghaed, A. T., Dawood, M. A., Hoseinifar, S. H., & Van Doan, H. (2021). Alteration of haematological and antioxidant parameters in common carp (Cyprinus carpio) fed olive (Olea europea) leaf extract after exposure to Danitol®. Aquaculture Research, 52(3), 1088-1095. https://doi.org/10.1111/are.14964
  • González-Hedström, D., de La Fuente-Fernandez, M., Priego, T., Martín, A. I., Amor, S., López-Calderón, A., ... & Granado, M. (2021). Addition of olive leaf extract to a mixture of algae and extra virgin olive oils decreases fatty acid oxidation and synergically attenuates age-induced hypertension, sarcopenia and insulin resistance in rats. Antioxidants, 10(7), 1066. https://doi.org/10.3390/antiox10071066
  • Hazreen-Nita, M. K., Kari, Z. A., Mat, K., Rusli, N. D., Sukri, S. A. M., Harun, H. C., ... & Dawood, M. A. (2022). Olive oil by-products in aquafeeds: Opportunities and challenges. Aquaculture Reports, 22, 100998. https://doi.org/10.1016/j.aqrep.2021.100998
  • Khwaldia, K., Attour, N., Matthes, J., Beck, L., & Schmid, M. (2022). Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1218-1253. https://doi.org/10.1111/1541-4337.12882
  • Kuley, E., Sakarya, Y., & Özyurt, G. (2024). Increasing the functional properties of fish oil microcapsules with olive leaf extracts. Biomass Conversion and Biorefinery, 14(8), 9689-9696. https://doi.org/10.1007/s13399-022-02930-2
  • Liu, J., Xue, M., Morais, S., He, M., Wang, H., Wang, J., ... & Liang, X. (2022). Effects of a phytogenic supplement containing olive by-product and green tea extracts on growth performance, lipid metabolism, and hepatic antioxidant capacity in largemouth bass (Micropterus salmoides) fed a high soybean meal diet. Antioxidants, 11(12), 2415.https://doi.org/10.3390/antiox11122415
  • Monsef Shokri, M., Yousefi, S., & Jamshidi, S. (2021). Effect of dietary ImmunoWall® on liver oxidative status in juvenile Persian sturgeon‎. International Journal of Aquatic Research and Environmental Studies, 1(2), 1-5. https://doi.org/10.70102/IJARES/V1I2/1
  • Mooraki, N., Omrani, M., Khajehrahimi, A. E., & Azhdari, P. (2021). Classifying five ornamental fish species of Cichlidae family by use of logistic regression and discrimination linear analysis. International Journal of Aquatic Research and Environmental Studies, 1(1), 15-21.. https://doi.org/10.70102/IJARES/V1I1/2
  • Nandy, M., & Dubey, A. (2024). Effective Surveillance of Water Quality in Remediulating Aquaculture Systems through the Application of Intelligent Biosensors. Natural and Engineering Sciences, 9(2), 234-243. https://doi.org/10.28978/nesciences.1575456
  • Oliveira, A. L., Gondim, S., Gómez-García, R., Ribeiro, T., & Pintado, M. (2021). Olive leaf phenolic extract from two Portuguese cultivars–bioactivities for potential food and cosmetic application. Journal of Environmental Chemical Engineering, 9(5), 106175. https://doi.org/10.1016/j.jece.2021.106175
  • Özyurt, G., Durmuş, M., Özkütük, A. S., & Uçar, Y. (2024). Microencapsulation of fish oil with olive leaf extract instead of synthetic antioxidant and its effects on nutraceutical properties of fish oil at different inlet temperatures. Biomass Conversion and Biorefinery, 14(9), 10517-10532. https://doi.org/10.1007/s13399-022-03231-4
  • Rad, H. N., & Behnamghader, A. (2014). Preparation of Bioactive Glass 77S for Bone Tissue Engineering Applications. International Academic Journal of Science and Engineering, 1(2), 68–74.
  • Talukdar, S., & Ghosh, K. (2025). Evaluation of growth, nutrient utilization, and metabolic function in rohu, Labeo rohita (Hamilton), fed diets incorporated with fermented Saraca asoca leaf meal. Fish Physiology and Biochemistry, 51(1), 3. https://doi.org/10.1007/s10695-024-01422-6
  • Toprakçı, İ., & Şahin, S. (2022). Encapsulation of olive leaf antioxidants in microbeads: Application of alginate and chitosan as wall materials. Sustainable Chemistry and Pharmacy, 27, 100707. https://doi.org/10.1016/j.scp.2022.100707
There are 21 citations in total.

Details

Primary Language English
Subjects Aquaculture
Journal Section Articles
Authors

Veerendra Yadav 0000-0002-8679-132X

Bhumika Bhumika 0009-0001-7683-3370

Shashikant Deepak 0000-0003-0444-6889

Ramachandran Thulasiram 0000-0002-6991-0403

Publication Date April 1, 2025
Submission Date February 28, 2025
Acceptance Date March 21, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Yadav, V., Bhumika, B., Deepak, S., Thulasiram, R. (2025). Examining the Liver Metabolic Alterations Induced by Olive Leaf Compounds in Aquatic Species. Natural and Engineering Sciences, 10(1), 352-362. https://doi.org/10.28978/nesciences.1648743

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015