Year 2016,
Volume: 4 Issue: 4, 188 - 197, 31.12.2016
D. K. Pradhan
S. R. Pattanaik
Abstract
References
H. H. Bauschke, X. Wang and L. Yao, An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator, Set-Valued Var. Anal. 17 (2009) 195-201.
H. H. Bauschke, X. Wang and L. Yao, On the maximal mono tonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function, Proceedings of the Haifa Workshop on Optimization Theory and Related Topics. Contemp. Math., Amer. Math. Soc., Providence, RI 568 (2012) 19-26.
J. M. Borwein, Maximality of sums of two maximal monotone operators in general Banach space, P. Am. Math. Soc. 135 (2007) 3917-3924.
J. M. Borwein and L. Yao, Maximality of the sum of a maximally monotone linear relation and a maximally monotone operator, Set-Valued Var Anal. 21 (2013) 603-616.
J. M. Borwein and L. Yao, Structure theory for maximally monotone operators with points of continuity, J. Optim Theory Appl. 157 (2013) 1-24 http://dx.doi.org/10.1007/s10957-012-0162-y.
J.M. Borwein and L. Yao, Sum theorems for maximally monotone operators of type (FPV), J. Aust. Math. Soc. 97 (2014) 1-26.
S. Fitzpatrick, Representing monotone operators by convex functions, in Work- shop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, Australia, 20 (1988) 59-65.
R.T. Rockafellar, Local boundedness of nonlinear, monotone operators, Mich. Math. J. 16 (1969) 397-407.
R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, T. Am. Math. Soc. 149 (1970) 75-88.
R. Rudin, Functional Analysis, Second Edition, McGraw-Hill, 1991.
S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.
S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
M.D. Voisei, The sum and chain rules for maximal monotone operators, Set-Valued Var. Anal. 16 (2008) 461-476.
L. Yao, The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone, Set-Valued Var. Anal. 20 (2012) 155-167.
L. Yao, Maximality of the sum of the subdifferential operator and a maximally monotone operator, arXiv: 1406.7664v1[math.FA] 30 Jun 2014, http://arxiv.org/pdf/1406.7664.pdf.
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.
On sum of monotone operator of type (FPV) and a maximal monotone operator
Year 2016,
Volume: 4 Issue: 4, 188 - 197, 31.12.2016
H. H. Bauschke, X. Wang and L. Yao, An answer to S. Simons’ question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator, Set-Valued Var. Anal. 17 (2009) 195-201.
H. H. Bauschke, X. Wang and L. Yao, On the maximal mono tonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function, Proceedings of the Haifa Workshop on Optimization Theory and Related Topics. Contemp. Math., Amer. Math. Soc., Providence, RI 568 (2012) 19-26.
J. M. Borwein, Maximality of sums of two maximal monotone operators in general Banach space, P. Am. Math. Soc. 135 (2007) 3917-3924.
J. M. Borwein and L. Yao, Maximality of the sum of a maximally monotone linear relation and a maximally monotone operator, Set-Valued Var Anal. 21 (2013) 603-616.
J. M. Borwein and L. Yao, Structure theory for maximally monotone operators with points of continuity, J. Optim Theory Appl. 157 (2013) 1-24 http://dx.doi.org/10.1007/s10957-012-0162-y.
J.M. Borwein and L. Yao, Sum theorems for maximally monotone operators of type (FPV), J. Aust. Math. Soc. 97 (2014) 1-26.
S. Fitzpatrick, Representing monotone operators by convex functions, in Work- shop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, Australia, 20 (1988) 59-65.
R.T. Rockafellar, Local boundedness of nonlinear, monotone operators, Mich. Math. J. 16 (1969) 397-407.
R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, T. Am. Math. Soc. 149 (1970) 75-88.
R. Rudin, Functional Analysis, Second Edition, McGraw-Hill, 1991.
S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.
S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
M.D. Voisei, The sum and chain rules for maximal monotone operators, Set-Valued Var. Anal. 16 (2008) 461-476.
L. Yao, The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone, Set-Valued Var. Anal. 20 (2012) 155-167.
L. Yao, Maximality of the sum of the subdifferential operator and a maximally monotone operator, arXiv: 1406.7664v1[math.FA] 30 Jun 2014, http://arxiv.org/pdf/1406.7664.pdf.
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.
There are 17 citations in total.
Details
Primary Language
English
Journal Section
Articles
Authors
D. K. Pradhan
India
S. R. Pattanaik
National Institute of Technology, RourkelaIndia
Pradhan, D. K., & Pattanaik, S. R. (2016). On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences, 4(4), 188-197.
AMA
Pradhan DK, Pattanaik SR. On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences. December 2016;4(4):188-197.
Chicago
Pradhan, D. K., and S. R. Pattanaik. “On Sum of Monotone Operator of Type (FPV) and a Maximal Monotone Operator”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 188-97.
EndNote
Pradhan DK, Pattanaik SR (December 1, 2016) On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences 4 4 188–197.
IEEE
D. K. Pradhan and S. R. Pattanaik, “On sum of monotone operator of type (FPV) and a maximal monotone operator”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 188–197, 2016.
ISNAD
Pradhan, D. K. - Pattanaik, S. R. “On Sum of Monotone Operator of Type (FPV) and a Maximal Monotone Operator”. New Trends in Mathematical Sciences 4/4 (December 2016), 188-197.
JAMA
Pradhan DK, Pattanaik SR. On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences. 2016;4:188–197.
MLA
Pradhan, D. K. and S. R. Pattanaik. “On Sum of Monotone Operator of Type (FPV) and a Maximal Monotone Operator”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 188-97.
Vancouver
Pradhan DK, Pattanaik SR. On sum of monotone operator of type (FPV) and a maximal monotone operator. New Trends in Mathematical Sciences. 2016;4(4):188-97.