Year 2016,
Volume: 4 Issue: 4, 239 - 244, 31.12.2016
Funda Karacal
Mehmet Akif Ince
Umit Ertugrul
Abstract
References
Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.
Some properties of K_⪯ set
Year 2016,
Volume: 4 Issue: 4, 239 - 244, 31.12.2016
Birkhoff G. Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, RI, 1967.
Blyth T. S. Lattices and Ordered Algebric Structures. Berlin: Springer,2005.
Ertugrul U., Kesicioğlu M. N., F. Karaçal, Ordering based on uninorms, Information Sciences, 330(2016) 315-327.
Ertugrul U., Karaçal F., Mesiar R., Modified ordinal sums of triangular norms and triangular conorms on bounded lattices, International Journal of Intelligent Systems, 30 (2015) 807-817.
Gratzer G. General Lattice Theory. Berlin: Akademie, 1978.
Höhle U. Commutative, Residuated l- monoids, in: U. Ho ̈hle, E.P. Klement (Eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory. Dordrecht: Kluwer, 1995.
Karacal F., Ertugrul U., Mesiar R., Characterization of uninorms on bounded lattices, Fuzzy Sets Systems (2016), http://dx.doi.org/10.1016/j.fss.2016.05.014
Karacal F., Khadjiev Dj. ∨_- distributive and infinitely ∨_-distributive t-norms on complete lattice. Fuzzy Sets and Systems 2005; 151: 341-352.
Kesicioglu M. N., Karaçal F. Mesiar R. Order-equivalent triangular norms. Fuzzy Sets and Systems 2015; 268: 59-71.
Klement E. P., Mesiar R. Pap E. Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain, Fuzziness Knowledge-Based Systems 2000; 8: 701-717.
Klement E. P., Mesiar R. Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000.
Klement E. P., Weber S. An integral representation for decomposable measures of measurable functions. Aequationes Math. 1994; 47: 255-262.
Kolesárová A. On the integral representation of possibility measures of fuzzy events. J. Fuzzy Math. 1997; 5: 759-766.
Mitsch H. A natural partial order for semigroups. Proceedings of the American Mathematical Society 1986; 97: 384-388.
Zhang D. Triangular Norms on Partially Ordered Sets. Fuzzy Sets and Systems 2005; 153: 195-209.
There are 15 citations in total.
Details
Primary Language
English
Journal Section
Articles
Authors
Funda Karacal
Türkiye
Mehmet Akif Ince
Recep Tayyip Erdogan UniversityTürkiye
Umit Ertugrul
Karadeniz Technical UniversityTürkiye
Karacal, F., Ince, M. A., & Ertugrul, U. (2016). Some properties of K_⪯ set. New Trends in Mathematical Sciences, 4(4), 239-244.
AMA
Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. December 2016;4(4):239-244.
Chicago
Karacal, Funda, Mehmet Akif Ince, and Umit Ertugrul. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 239-44.
EndNote
Karacal F, Ince MA, Ertugrul U (December 1, 2016) Some properties of K_⪯ set. New Trends in Mathematical Sciences 4 4 239–244.
IEEE
F. Karacal, M. A. Ince, and U. Ertugrul, “Some properties of K_⪯ set”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 239–244, 2016.
ISNAD
Karacal, Funda et al. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences 4/4 (December 2016), 239-244.
JAMA
Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4:239–244.
MLA
Karacal, Funda et al. “Some Properties of K_⪯ Set”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 239-44.
Vancouver
Karacal F, Ince MA, Ertugrul U. Some properties of K_⪯ set. New Trends in Mathematical Sciences. 2016;4(4):239-44.