Case Report
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 1, 34 - 39, 01.01.2017

Abstract

References

  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. Journal, 10 (3), 338-354, 1958.
  • Dombrowski, P., On the differential geometry of tangent bundles, J. Reine Angew. Math., 210, 73–88, 1962.
  • Musso, E. and Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (4), 1–19, 1988.
  • Sekizawa, M., Curvatures of tangent bundles with Cheeger–Gromoll metric, Tokyo J. Math. 14, 407–417, 1991.
  • Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math. 19, 71–76, 1999.
  • Benyounes, M, Loubeau, E., and Todjihounde, L., Harmonic maps and Kaluza-Klein metrics on spheres, 42 (3), 791-821, 2012.
  • Mok, K.P., On the differential geometry of frame bundles of Riemannian manifolds, J.für die reine und angewandte Math., 302, 16-31, 1978.
  • Yano, K., and Ishihara S., Tangent and cotangent bundles, Marcel Dekker, 1973.
  • Salimov, A. and Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turkish J. of Math., 33, 99-105, 2009.
  • Gezer, A. and Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396, 119-132, 2012.

Some applications on tangent bundle with Kaluza-Klein metric

Year 2017, Volume: 5 Issue: 1, 34 - 39, 01.01.2017

Abstract

In this paper, differential equations of geodesics;
parallelism, incompressibility and closeness conditions of the horizontal and
complete lift of the vector fields are investigated with respect to
Kaluza-Klein metric on tangent bundle.

References

  • Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. Journal, 10 (3), 338-354, 1958.
  • Dombrowski, P., On the differential geometry of tangent bundles, J. Reine Angew. Math., 210, 73–88, 1962.
  • Musso, E. and Tricerri F., Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. 150 (4), 1–19, 1988.
  • Sekizawa, M., Curvatures of tangent bundles with Cheeger–Gromoll metric, Tokyo J. Math. 14, 407–417, 1991.
  • Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math. 19, 71–76, 1999.
  • Benyounes, M, Loubeau, E., and Todjihounde, L., Harmonic maps and Kaluza-Klein metrics on spheres, 42 (3), 791-821, 2012.
  • Mok, K.P., On the differential geometry of frame bundles of Riemannian manifolds, J.für die reine und angewandte Math., 302, 16-31, 1978.
  • Yano, K., and Ishihara S., Tangent and cotangent bundles, Marcel Dekker, 1973.
  • Salimov, A. and Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turkish J. of Math., 33, 99-105, 2009.
  • Gezer, A. and Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger-Gromoll type, J. Math. Anal. Appl., 396, 119-132, 2012.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Altunbas

Merve Tastan

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Altunbas, M., & Tastan, M. (2017). Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences, 5(1), 34-39.
AMA Altunbas M, Tastan M. Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences. January 2017;5(1):34-39.
Chicago Altunbas, Murat, and Merve Tastan. “Some Applications on Tangent Bundle With Kaluza-Klein Metric”. New Trends in Mathematical Sciences 5, no. 1 (January 2017): 34-39.
EndNote Altunbas M, Tastan M (January 1, 2017) Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences 5 1 34–39.
IEEE M. Altunbas and M. Tastan, “Some applications on tangent bundle with Kaluza-Klein metric”, New Trends in Mathematical Sciences, vol. 5, no. 1, pp. 34–39, 2017.
ISNAD Altunbas, Murat - Tastan, Merve. “Some Applications on Tangent Bundle With Kaluza-Klein Metric”. New Trends in Mathematical Sciences 5/1 (January 2017), 34-39.
JAMA Altunbas M, Tastan M. Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences. 2017;5:34–39.
MLA Altunbas, Murat and Merve Tastan. “Some Applications on Tangent Bundle With Kaluza-Klein Metric”. New Trends in Mathematical Sciences, vol. 5, no. 1, 2017, pp. 34-39.
Vancouver Altunbas M, Tastan M. Some applications on tangent bundle with Kaluza-Klein metric. New Trends in Mathematical Sciences. 2017;5(1):34-9.