Research Article
BibTex RIS Cite

BİR DEPO İÇİN ENVANTER TUTMA VE ALAN KULLANIMI POLİTİKASININ ENİYİLEMESİ

Year 2025, Volume: 33 Issue: 1, 1608 - 1617, 24.04.2025
https://doi.org/10.31796/ogummf.1432654

Abstract

Bu çalışmada NP-Zor bir problem olan tek boyutlu değişken ölçekli kutulama problemi ele alınmaktadır. Bu çalışmada amaç, kullanılan kutuların kapasitelerinin toplamını ve kullanılan kutu sayısını en aza indiren verimli bir çözüm bulmak, böylece şirketin depolama politikasını optimize etmek ve depoda yer tasarrufu sağlamaktır. Gerçek bir deponun problemini çözmek için üç farklı yöntem: i) İlk Bulduğun Boşluğu Doldur (İBBD), ii) En İyi Boşluğu Doldur (EİBD) ve iii) Sonraki Boşluğu Doldur (SBD) algoritmaları kullanılmıştır. Deponun veri seti, farklı boyutlarda çeşitli öğelerden oluşmakta olup amaç bu öğeleri en verimli şekilde kutulara tahsis etmektir. Deneylerden elde edilen sonuçlara göre, İBBD ve EİBD algoritmaları SBD algoritmasından daha iyi olmakla beraber, her üç algoritmanın da mevcut depo uygulamasına kıyasla depolama alanı kullanımını azaltmada ve alandan yararlanmayı arttırmada başarılı olduğu gösterilmiştir.

References

  • Aarts, E., & Korst, J. (2003). Simulated Annealing and Boltzmann Machines. Wiley.
  • Alenezi, Q., Aboelfotoh, H., Albdaiwi, B., & Almulla, M.A. (2015). Heuristics for the Variable Sized Bin Packing Problem Using a Hybrid P-System and CUDA Architecture. Computer Science Department, Kuwait University. Retrieved from: https://arxiv.org/abs/1602.08735
  • Borgulya, I. (2024). A hybrid estimation of distribution algorithm for the offline 2D variable-sized bin packing problem. Central European Journal of Operations Research, 32, 45–65. https://doi.org/10.1007/s10100-023-00858-0
  • Boyar, J., Kamali, S., Larsen, K.S., & López-Ortiz, A. (2013). Online Bin Packing with Advice. Algorithmica, 74, 507-527. doi: https://doi.org/10.48550/arXiv.1212.4016
  • Coffman Jr, E.G., Garey, M.R., & Johnson, D.S. (1984). Approximation Algorithms for Bin-Packing — An Updated Survey. Algorithm Design for Computer System Design. Editors: Ausiello, G., Lucertini, M., & Serafini, P., Vienna, Springer, 49-106. Retrieved from: https://link.springer.com/chapter/10.1007/978-3-7091-4338-4_3
  • Dökeroğlu T. (2017). Bir boyutlu kutulama probleminin eniyilenmesi için hiper-sezgisel paralel bir algoritma, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1), 1-11. doi: https://doi.org/10.25092/baunfbed.319992
  • Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44, 145-159. doi: https://doi.org/10.1016/0377-2217(90)90350-K
  • Grondys, K. (2009). ABC Analysis in Spare Parts Warehouse. Polish Journal of Management Studies, 3, 147-156. Retrieved from: https://econpapers.repec.org/article/pczjournl/v_3a3_3ay_3a2009_3ai_3a1_3ap_3a147-156.htm
  • Gupta, A., Guruganesh, G., Kumar, A., & Wajc, D. (2018). Fully-Dynamic Bin Packing with Limited Repacking. ArXiv, abs/1711.02078. Retrieved from: https://doi.org/10.48550/arXiv.1711.02078
  • Haouari, M., & Serairi, M. (2009). Heuristics for the variable sized bin-packing problem. Computers & Operations Research, 36, 2877-2884. doi: https://doi.org/10.1016/j.cor.2008.12.016
  • Hemmelmayr, V., Schmid, V., & Blum, C. (2012). Variable neighbourhood search for the variable sized bin packing problem. Computers & Operations Research, 39, 1097-1108. doi: https://doi.org/10.1016/j.cor.2011.07.003
  • Jin, Z., Ito, T., & Ohno, K. (2003). The Three-Dimensional Bin Packing Problem and Its Practical Algorithm. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46, 60-66. doi: https://doi.org/10.1299/jsmec.46.60
  • Kang, J., & Park, S. (2003). Algorithms for the variable sized bin packing problem. European Journal of Operational Research, 147, 365-372. doi: https://doi.org/10.1016/S0377-2217(02)00247-3
  • Karp, R.M. (1992). On-line algorithms versus off-line algorithms: How much is it worth to know the future?. International Computer Science Institute, Berkeley, California, Technical report, TR-92-044. Retrieved from: https://www1.icsi.berkeley.edu/pubs/techreports/TR-92-044.pdf
  • Lodi, A., Martello, S., Monaci, M., & Vigo, D. (2013). Two-Dimensional Bin Packing Problems. Editor: Paschos, V. T. Paradigms of Combinatorial Optimization, 107-129, Wiley, GB. Retrieved from https://onlinelibrary.wiley.com/doi/10.1002/9781118600207.ch5
  • Martello, S., & Vigo, D. (1998). Exact Solution of the Two-Dimensional Finite Bin Packing Problem. Management Science, 44, 388-399. Retrieved from: https://www.jstor.org/stable/2634676
  • Pinto, A. R. F., Nagano, M. S., & Boz, E. (2023). A classification approach to order picking systems and policies: Integrating automation and optimization for future research. Results in Control and Optimization, 12, 100281. doi: https://doi.org/10.1016/j.rico.2023.100281
  • Tompkins, J.A., & Smith, J.D. (1998). The Warehouse Management Handbook. Tompkins Press, Raleigh, North Carolina.
  • Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183, 1109-1130. doi: https://doi.org/10.1016/j.ejor.2005.12.047

OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE

Year 2025, Volume: 33 Issue: 1, 1608 - 1617, 24.04.2025
https://doi.org/10.31796/ogummf.1432654

Abstract

This study considers the one-dimensional variable-sized bin packing problem (VSBPP) which is an NP-Hard problem. In this study, the objective is to find an efficient solution that minimizes both the total capacity of the bins used and the number of bins required, thereby optimizing the company's storage policy and saving space within the warehouse. Three algorithms are employed to solve a real warehouse’s VSBPP: i) First Fit Decreasing (FFD), ii) Best Fit Decreasing (BFD), and iii) Next Fit Decreasing (NFD). The warehouse dataset includes items of various sizes, and the goal is to allocate these items into bins most efficiently. Experimental results demonstrate that the FFD and BFD algorithms outperform the NFD algorithm. Furthermore, all three algorithms significantly reduce storage space usage and improve space utilization compared to the warehouse's current practices.

References

  • Aarts, E., & Korst, J. (2003). Simulated Annealing and Boltzmann Machines. Wiley.
  • Alenezi, Q., Aboelfotoh, H., Albdaiwi, B., & Almulla, M.A. (2015). Heuristics for the Variable Sized Bin Packing Problem Using a Hybrid P-System and CUDA Architecture. Computer Science Department, Kuwait University. Retrieved from: https://arxiv.org/abs/1602.08735
  • Borgulya, I. (2024). A hybrid estimation of distribution algorithm for the offline 2D variable-sized bin packing problem. Central European Journal of Operations Research, 32, 45–65. https://doi.org/10.1007/s10100-023-00858-0
  • Boyar, J., Kamali, S., Larsen, K.S., & López-Ortiz, A. (2013). Online Bin Packing with Advice. Algorithmica, 74, 507-527. doi: https://doi.org/10.48550/arXiv.1212.4016
  • Coffman Jr, E.G., Garey, M.R., & Johnson, D.S. (1984). Approximation Algorithms for Bin-Packing — An Updated Survey. Algorithm Design for Computer System Design. Editors: Ausiello, G., Lucertini, M., & Serafini, P., Vienna, Springer, 49-106. Retrieved from: https://link.springer.com/chapter/10.1007/978-3-7091-4338-4_3
  • Dökeroğlu T. (2017). Bir boyutlu kutulama probleminin eniyilenmesi için hiper-sezgisel paralel bir algoritma, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1), 1-11. doi: https://doi.org/10.25092/baunfbed.319992
  • Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44, 145-159. doi: https://doi.org/10.1016/0377-2217(90)90350-K
  • Grondys, K. (2009). ABC Analysis in Spare Parts Warehouse. Polish Journal of Management Studies, 3, 147-156. Retrieved from: https://econpapers.repec.org/article/pczjournl/v_3a3_3ay_3a2009_3ai_3a1_3ap_3a147-156.htm
  • Gupta, A., Guruganesh, G., Kumar, A., & Wajc, D. (2018). Fully-Dynamic Bin Packing with Limited Repacking. ArXiv, abs/1711.02078. Retrieved from: https://doi.org/10.48550/arXiv.1711.02078
  • Haouari, M., & Serairi, M. (2009). Heuristics for the variable sized bin-packing problem. Computers & Operations Research, 36, 2877-2884. doi: https://doi.org/10.1016/j.cor.2008.12.016
  • Hemmelmayr, V., Schmid, V., & Blum, C. (2012). Variable neighbourhood search for the variable sized bin packing problem. Computers & Operations Research, 39, 1097-1108. doi: https://doi.org/10.1016/j.cor.2011.07.003
  • Jin, Z., Ito, T., & Ohno, K. (2003). The Three-Dimensional Bin Packing Problem and Its Practical Algorithm. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46, 60-66. doi: https://doi.org/10.1299/jsmec.46.60
  • Kang, J., & Park, S. (2003). Algorithms for the variable sized bin packing problem. European Journal of Operational Research, 147, 365-372. doi: https://doi.org/10.1016/S0377-2217(02)00247-3
  • Karp, R.M. (1992). On-line algorithms versus off-line algorithms: How much is it worth to know the future?. International Computer Science Institute, Berkeley, California, Technical report, TR-92-044. Retrieved from: https://www1.icsi.berkeley.edu/pubs/techreports/TR-92-044.pdf
  • Lodi, A., Martello, S., Monaci, M., & Vigo, D. (2013). Two-Dimensional Bin Packing Problems. Editor: Paschos, V. T. Paradigms of Combinatorial Optimization, 107-129, Wiley, GB. Retrieved from https://onlinelibrary.wiley.com/doi/10.1002/9781118600207.ch5
  • Martello, S., & Vigo, D. (1998). Exact Solution of the Two-Dimensional Finite Bin Packing Problem. Management Science, 44, 388-399. Retrieved from: https://www.jstor.org/stable/2634676
  • Pinto, A. R. F., Nagano, M. S., & Boz, E. (2023). A classification approach to order picking systems and policies: Integrating automation and optimization for future research. Results in Control and Optimization, 12, 100281. doi: https://doi.org/10.1016/j.rico.2023.100281
  • Tompkins, J.A., & Smith, J.D. (1998). The Warehouse Management Handbook. Tompkins Press, Raleigh, North Carolina.
  • Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183, 1109-1130. doi: https://doi.org/10.1016/j.ejor.2005.12.047
There are 19 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Faris Albakar 0009-0001-0614-6030

Mhd Hazem Alhammamı 0009-0004-0147-9823

Husam Jehad Hasan Omar 0009-0008-9649-9622

Mazen Sımı 0009-0008-0542-0238

Basel Zbeda 0009-0008-5718-330X

Zehra Düzgit 0000-0003-0686-1672

Early Pub Date April 16, 2025
Publication Date April 24, 2025
Submission Date February 7, 2024
Acceptance Date December 19, 2024
Published in Issue Year 2025 Volume: 33 Issue: 1

Cite

APA Albakar, F., Alhammamı, M. H., Omar, H. J. H., Sımı, M., et al. (2025). OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 33(1), 1608-1617. https://doi.org/10.31796/ogummf.1432654
AMA Albakar F, Alhammamı MH, Omar HJH, Sımı M, Zbeda B, Düzgit Z. OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE. ESOGÜ Müh Mim Fak Derg. April 2025;33(1):1608-1617. doi:10.31796/ogummf.1432654
Chicago Albakar, Faris, Mhd Hazem Alhammamı, Husam Jehad Hasan Omar, Mazen Sımı, Basel Zbeda, and Zehra Düzgit. “OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 33, no. 1 (April 2025): 1608-17. https://doi.org/10.31796/ogummf.1432654.
EndNote Albakar F, Alhammamı MH, Omar HJH, Sımı M, Zbeda B, Düzgit Z (April 1, 2025) OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33 1 1608–1617.
IEEE F. Albakar, M. H. Alhammamı, H. J. H. Omar, M. Sımı, B. Zbeda, and Z. Düzgit, “OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE”, ESOGÜ Müh Mim Fak Derg, vol. 33, no. 1, pp. 1608–1617, 2025, doi: 10.31796/ogummf.1432654.
ISNAD Albakar, Faris et al. “OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 33/1 (April 2025), 1608-1617. https://doi.org/10.31796/ogummf.1432654.
JAMA Albakar F, Alhammamı MH, Omar HJH, Sımı M, Zbeda B, Düzgit Z. OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE. ESOGÜ Müh Mim Fak Derg. 2025;33:1608–1617.
MLA Albakar, Faris et al. “OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 33, no. 1, 2025, pp. 1608-17, doi:10.31796/ogummf.1432654.
Vancouver Albakar F, Alhammamı MH, Omar HJH, Sımı M, Zbeda B, Düzgit Z. OPTIMIZATION OF STOCK KEEPING AND SPACE UTILIZATION POLICY FOR A WAREHOUSE. ESOGÜ Müh Mim Fak Derg. 2025;33(1):1608-17.

20873     13565          15461