FRACTURE RESISTANCE AND SELF-HEALING POTENTIAL OF VERY THIN ASPHALT OVERLAY ENHANCED BY MICROWAVE HEATING
Year 2025,
Volume: 33 Issue: 1, 1739 - 1750, 24.04.2025
Ezgi Eren
,
Jan Valentin
,
Peter Gallo
,
Perviz Ahmedzade
Abstract
Very-thin asphalt overlay mixtures require a careful balance of competing demands, such as enhancing skid resistance, reducing noise, and improving rutting resistance, due to their reduced thickness. Achieving this balance involves reducing the nominal maximum aggregate size (NMAS) and incorporating coarser aggregate gradations. This design complexity is particularly critical for semi-dense graded very-thin overlays, which are more susceptible to cracking. In this context, investigating the healing potential of very-thin asphalt overlays through microwave heating offers a promising opportunity to extend pavement life while minimizing economic and environmental impacts. This study investigates and compares the cracking resistance and self-healing capabilities of two mixtures by applying Fracture–Healing–Fracture (FHF) cycles using Semi-Circular Bending (SCB) testing under microwave heating. The mixtures examined include a semi-dense aggregate gradation (BBTM8) designed for very-thin overlays, and a dense-graded aggregate mixture (ACL 16+) intended for binder courses and containing 50% reclaimed asphalt pavement (RAP). As a result, the ACL mixture exhibited a fracture toughness (KIC) value of 37.1 N/mm³⁄², attributed to its denser gradation, larger NMAS, higher stiffness, and greater RAP content. In contrast, the initial KIC value of the BBTM8 mixture was 18.4 N/mm³⁄². However, following microwave heating, the KIC value of the BBTM8 mixture increased significantly and approached that of the ACL mixture, aided by its higher air void content. The FHF cycle results revealed that the BBTM8 mixture demonstrated higher fracture resistance and more efficient recovery performance than the ACL mixture.
Ethical Statement
No conflict of interest was declared by the authors.
Supporting Institution
Czech Technical University in Prague
Project Number
The part of the activities provided by CTU in Prague was supported by project No. GA22-04047K funded by The Czech Scientific Foundation (GACR)
Thanks
We would like to thank the Czech Technical University in Prague, Road Structures Department for providing us with the opportunity to use their laboratory facilities. The part of the activities provided by CTU in Prague was supported by project No. GA22-04047K funded by The Czech Scientific Foundation (GACR).
References
- Atakan, M., and Yıldız, K. (2024). Effect of aggregate damage on self-healing characteristics of asphalt concrete: An image processing-based method. Construction Building Materials, 425, 135924.
- Bui, H. H., and Saleh, M. J. E. F. M. (2021). Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test. 242, 107452.
- Chen, X., and Solaimanian, M. (2019). Effect of long-term aging on fracture properties of virgin and recycled asphalt concrete. Advances in Civil Engineering Materials, 8(1), 527-543.
- Eren, E., Valentin, J., and Ahmedzade, P. (2024). Assessment of the Effects of Induction Heating Induced-Healing on the Fracture Properties of Very Thin Asphalt Concrete. Paper presented at the International Conference on Maintenance and Rehabilitation of Pavements.
- Fernández-Sánchez, G., Berzosa, Á., Barandica, J. M., Cornejo, E., and Serrano, J. M. (2015). Opportunities for GHG emissions reduction in road projects: a comparative evaluation of emissions scenarios using CO2NSTRUCT. Journal of Cleaner Production, 104, 156-167.
- Gallego, J., del Val, M. A., Contreras, V., Páez, A. J. C., and Materials, B. (2013). Heating asphalt mixtures with microwaves to promote self-healing. 42, 1-4.
- Garcia-Gil, L., Miró, R., and Pérez-Jiménez, F. E. J. A. S. (2019). Evaluating the role of aggregate gradation on cracking performance of asphalt concrete for thin overlays. 9(4), 628.
- Gómez-Meijide, B., Ajam, H., Lastra-González, P., Garcia, A. J. C., and Materials, B. (2016). Effect of air voids content on asphalt self-healing via induction and infrared heating. 126, 957-966.
- Guo, M., Zhang, R., Du, X., and Liu, P. J. E. (2024). A state-of-the-art review on the functionality of ultra-thin overlays towards a future low carbon road maintenance. 32, 82-98.
- He, L., Zhou, Z., Ling, F., Alexiadis, A., Van den Bergh, W., Cannone Falchetto, A., . . . Kowalski, K. J. (2022). A Coarse-Grained Molecular Model for Simulating Self-Healing of Bitumen. Applied Sciences, 12(20), 10360.
- Huang, H., Xu, J., Liu, J., and Chen, H. (2021). Comparative Study on Microwave Absorbing Heating Characteristics and Microwave Deicing Performance of Airport Pavement Modified Concrete.
- Jiang, J., Chen, H., Bahia, H. U. J. M., and Structures. (2022). Factors controlling pre-and post-peak behavior of asphalt mixtures containing RAP in the SCB test. 55(6), 160.
- Liu, Q., Schlangen, E., van de Ven, M., van Bochove, G., van Montfort, J. J. C., and Materials, B. (2012). Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. 29, 403-409.
- Liu, Q., Schlangen, E., and Van De Ven, M. J. T. r. r. (2012). Induction healing of porous asphalt. 2305(1), 95-101.
- Liu, W., Wan, P., Wu, S., Liu, Q., Wang, J., Jiang, Q., . . . Materials, B. (2024). Effect of aging level on the healing properties of an induction-heated ultra-thin wearing course and its mechanism. 430, 136506.
- Liu, X., Zhao, Y., Wei, D. J. C., and Materials, B. (2024). The effect mechanism of microwave enhanced aggregates on the microwave heating performance of asphalt mixtures. 411, 134314.
- Melanta, S., Miller-Hooks, E., and Avetisyan, H. G. (2013). Carbon footprint estimation tool for transportation construction projects. Journal of Construction Engineering Management, 139(5), 547-555.
- Stripple, H. (2001). Life cycle assessment of road. A pilot study for inventory analysis. In: IVL Svenska Miljöinstitutet.
- Sun, D., Sun, G., Zhu, X., Pang, Q., Yu, F., and Lin, T. (2017). Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope. Construction Building Materials, 132, 230-239.
- Sun, D., Sun, G., Zhu, X., Ye, F., and Xu, J. (2018). Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations. Fuel, 211, 609-620.
- Sun, G., Hu, M., Sun, D., Deng, Y., Ma, J., and Lu, T. (2020). Temperature induced self-healing capability transition phenomenon of bitumens. Fuel, 263, 116698.
- Tang, J., Liu, Q., Wu, S., Ye, Q., Sun, Y., and Schlangen, E. (2016). Investigation of the optimal self-healing temperatures and healing time of asphalt binders. Construction Building Materials, 113, 1029-1033.
- Vackova, P., and Valentin, J. (2022). Semi-circular Bending (SCB) Test—Modified Method and New Test Parameters. Paper presented at the CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures.
- Wan, J., Xiao, Y., Song, W., Chen, C., Pan, P., and Zhang, D. J. M. (2018). Self-healing property of ultra-thin wearing courses by induction heating. 11(8), 1392.
- Wang, F., Zhu, H., Shu, B., Li, Y., Gu, D., Gao, Y., . . . Materials, B. (2022). Microwave heating mechanism and self-healing performance of asphalt mixture with basalt and limestone aggregates. 342, 127973.
- Wool, R., and O’connor, K. (1981). A theory crack healing in polymers. Journal of applied physics, 52(10), 5953-5963.
- World Bank, G. (2010). Greenhouse Gas Emissions Mitigation in Road Construction and Rehabilitation: A Toolkit for Developing Countries.
- Xiang, H., He, Z., Chen, L., Zhu, H., and Wang, Z. (2019). Key factors and optimal conditions for self-healing of bituminous binder. Journal of Materials in Civil Engineering, 31(9), 04019172.
- Yıldız, K., Atakan, M. J. C., and Materials, B. (2020). Improving microwave healing characteristic of asphalt concrete by using fly ash as a filler. 262, 120448.
- Yoo, D.-Y., Kim, S., Kim, M.-J., Kim, D., and Shin, H.-O. (2019). Self-healing capability of asphalt concrete with carbon-based materials. Journal of Materials Research Technology, 8(1), 827-839.
- Yu, J., Feng, Z., Chen, Y., Yu, H., Korolev, E., Obukhova, S., . . . Zhang, Y. (2024). Investigation of cracking resistance of cold asphalt mixture designed for ultra-thin asphalt layer. Construction Building Materials, 414, 134941.
- Zhang, L., Zhang, Z., Yu, W., and Miao, Y. J. P. (2023). Review of the application of microwave heating technology in asphalt pavement self-healing and de-icing. 15(7), 1696.
MİKRODALGA ISITMA İLE GELİŞTİRİLEN ÇOK İNCE ASFALT KAPLAMANIN KIRILMA DİRENCİ VE KENDİ KENDİNİ İYİLEŞTİRME POTANSİYELİ
Year 2025,
Volume: 33 Issue: 1, 1739 - 1750, 24.04.2025
Ezgi Eren
,
Jan Valentin
,
Peter Gallo
,
Perviz Ahmedzade
Abstract
Çok ince asfalt kaplamalar, azaltılmış kalınlıkları nedeniyle kayma direncinin artırılması, gürültünün azaltılması ve tekerlek izi direncinin iyileştirilmesi gibi birbiriyle çelişen ihtiyaçların dikkatli bir şekilde dengelenmesini gerektirir. Bu dengenin sağlanması, nominal maksimum agrega boyutunun (NMAS) küçültülmesini ve daha kaba agrega derecelendirmelerinin kullanılmasını içerir. Bu tasarım karmaşıklığı, çatlamaya daha yatkın olan yarı yoğun dereceli çok ince kaplamalar için özellikle kritik öneme sahiptir. Bu bağlamda, çok ince asfalt kaplamaların mikrodalga ısıtma yoluyla iyileşme potansiyelinin araştırılması, ekonomik ve çevresel etkileri en aza indirirken kaplama ömrünü uzatmak için umut verici bir fırsat sunmaktadır. Bu çalışma, mikrodalga ısıtma altında Yarım Dairesel Eğilme (SCB) testi kullanılarak uygulanan Kırılma–İyileşme–Kırılma (FHF) döngüleri aracılığıyla iki farklı karışımın çatlama direnci ve kendi kendini iyileştirme yeteneklerini incelemekte ve karşılaştırmaktadır. İncelenen karışımlar; çok ince kaplamalar için tasarlanmış yarı yoğun agrega derecelendirmesi (BBTM8) ve %50 geri kazanılmış asfalt kaplama (RAP) içeren, bağlayıcı tabaka için kullanılan yoğun dereceli agrega karışımıdır (ACL 16+). Sonuç olarak, ACL karışımı daha yoğun derecelendirme yapısı, daha büyük NMAS değeri, daha yüksek sertliği ve daha fazla RAP içeriği sayesinde 37,1 N/mm³/² değerinde kırılma tokluğu (KIC) sergilemiştir. Buna karşılık, BBTM8 karışımının başlangıçtaki KIC değeri 18,4 N/mm³⁄² olarak ölçülmüştür. Ancak mikrodalga ısıtma sonrasında, daha yüksek hava boşluğu içeriğinin de katkısıyla BBTM8 karışımının KIC değeri önemli ölçüde artarak ACL karışımının seviyesine yaklaşmıştır. FHF döngüsü sonuçları, BBTM8 karışımının ACL karışımına kıyasla daha yüksek kırılma direnci ve daha etkin bir iyileşme performansı gösterdiğini ortaya koymuştur.
Project Number
The part of the activities provided by CTU in Prague was supported by project No. GA22-04047K funded by The Czech Scientific Foundation (GACR)
References
- Atakan, M., and Yıldız, K. (2024). Effect of aggregate damage on self-healing characteristics of asphalt concrete: An image processing-based method. Construction Building Materials, 425, 135924.
- Bui, H. H., and Saleh, M. J. E. F. M. (2021). Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test. 242, 107452.
- Chen, X., and Solaimanian, M. (2019). Effect of long-term aging on fracture properties of virgin and recycled asphalt concrete. Advances in Civil Engineering Materials, 8(1), 527-543.
- Eren, E., Valentin, J., and Ahmedzade, P. (2024). Assessment of the Effects of Induction Heating Induced-Healing on the Fracture Properties of Very Thin Asphalt Concrete. Paper presented at the International Conference on Maintenance and Rehabilitation of Pavements.
- Fernández-Sánchez, G., Berzosa, Á., Barandica, J. M., Cornejo, E., and Serrano, J. M. (2015). Opportunities for GHG emissions reduction in road projects: a comparative evaluation of emissions scenarios using CO2NSTRUCT. Journal of Cleaner Production, 104, 156-167.
- Gallego, J., del Val, M. A., Contreras, V., Páez, A. J. C., and Materials, B. (2013). Heating asphalt mixtures with microwaves to promote self-healing. 42, 1-4.
- Garcia-Gil, L., Miró, R., and Pérez-Jiménez, F. E. J. A. S. (2019). Evaluating the role of aggregate gradation on cracking performance of asphalt concrete for thin overlays. 9(4), 628.
- Gómez-Meijide, B., Ajam, H., Lastra-González, P., Garcia, A. J. C., and Materials, B. (2016). Effect of air voids content on asphalt self-healing via induction and infrared heating. 126, 957-966.
- Guo, M., Zhang, R., Du, X., and Liu, P. J. E. (2024). A state-of-the-art review on the functionality of ultra-thin overlays towards a future low carbon road maintenance. 32, 82-98.
- He, L., Zhou, Z., Ling, F., Alexiadis, A., Van den Bergh, W., Cannone Falchetto, A., . . . Kowalski, K. J. (2022). A Coarse-Grained Molecular Model for Simulating Self-Healing of Bitumen. Applied Sciences, 12(20), 10360.
- Huang, H., Xu, J., Liu, J., and Chen, H. (2021). Comparative Study on Microwave Absorbing Heating Characteristics and Microwave Deicing Performance of Airport Pavement Modified Concrete.
- Jiang, J., Chen, H., Bahia, H. U. J. M., and Structures. (2022). Factors controlling pre-and post-peak behavior of asphalt mixtures containing RAP in the SCB test. 55(6), 160.
- Liu, Q., Schlangen, E., van de Ven, M., van Bochove, G., van Montfort, J. J. C., and Materials, B. (2012). Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test. 29, 403-409.
- Liu, Q., Schlangen, E., and Van De Ven, M. J. T. r. r. (2012). Induction healing of porous asphalt. 2305(1), 95-101.
- Liu, W., Wan, P., Wu, S., Liu, Q., Wang, J., Jiang, Q., . . . Materials, B. (2024). Effect of aging level on the healing properties of an induction-heated ultra-thin wearing course and its mechanism. 430, 136506.
- Liu, X., Zhao, Y., Wei, D. J. C., and Materials, B. (2024). The effect mechanism of microwave enhanced aggregates on the microwave heating performance of asphalt mixtures. 411, 134314.
- Melanta, S., Miller-Hooks, E., and Avetisyan, H. G. (2013). Carbon footprint estimation tool for transportation construction projects. Journal of Construction Engineering Management, 139(5), 547-555.
- Stripple, H. (2001). Life cycle assessment of road. A pilot study for inventory analysis. In: IVL Svenska Miljöinstitutet.
- Sun, D., Sun, G., Zhu, X., Pang, Q., Yu, F., and Lin, T. (2017). Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope. Construction Building Materials, 132, 230-239.
- Sun, D., Sun, G., Zhu, X., Ye, F., and Xu, J. (2018). Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations. Fuel, 211, 609-620.
- Sun, G., Hu, M., Sun, D., Deng, Y., Ma, J., and Lu, T. (2020). Temperature induced self-healing capability transition phenomenon of bitumens. Fuel, 263, 116698.
- Tang, J., Liu, Q., Wu, S., Ye, Q., Sun, Y., and Schlangen, E. (2016). Investigation of the optimal self-healing temperatures and healing time of asphalt binders. Construction Building Materials, 113, 1029-1033.
- Vackova, P., and Valentin, J. (2022). Semi-circular Bending (SCB) Test—Modified Method and New Test Parameters. Paper presented at the CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures.
- Wan, J., Xiao, Y., Song, W., Chen, C., Pan, P., and Zhang, D. J. M. (2018). Self-healing property of ultra-thin wearing courses by induction heating. 11(8), 1392.
- Wang, F., Zhu, H., Shu, B., Li, Y., Gu, D., Gao, Y., . . . Materials, B. (2022). Microwave heating mechanism and self-healing performance of asphalt mixture with basalt and limestone aggregates. 342, 127973.
- Wool, R., and O’connor, K. (1981). A theory crack healing in polymers. Journal of applied physics, 52(10), 5953-5963.
- World Bank, G. (2010). Greenhouse Gas Emissions Mitigation in Road Construction and Rehabilitation: A Toolkit for Developing Countries.
- Xiang, H., He, Z., Chen, L., Zhu, H., and Wang, Z. (2019). Key factors and optimal conditions for self-healing of bituminous binder. Journal of Materials in Civil Engineering, 31(9), 04019172.
- Yıldız, K., Atakan, M. J. C., and Materials, B. (2020). Improving microwave healing characteristic of asphalt concrete by using fly ash as a filler. 262, 120448.
- Yoo, D.-Y., Kim, S., Kim, M.-J., Kim, D., and Shin, H.-O. (2019). Self-healing capability of asphalt concrete with carbon-based materials. Journal of Materials Research Technology, 8(1), 827-839.
- Yu, J., Feng, Z., Chen, Y., Yu, H., Korolev, E., Obukhova, S., . . . Zhang, Y. (2024). Investigation of cracking resistance of cold asphalt mixture designed for ultra-thin asphalt layer. Construction Building Materials, 414, 134941.
- Zhang, L., Zhang, Z., Yu, W., and Miao, Y. J. P. (2023). Review of the application of microwave heating technology in asphalt pavement self-healing and de-icing. 15(7), 1696.