Review
BibTex RIS Cite

Kemik doku mühendisliği uygulamalarında poli(laktik asit) (PLA) kullanımı

Year 2025, Volume: 10 Issue: 1, 1 - 13
https://doi.org/10.56171/ojn.1611817

Abstract

Kemik, az miktarda bir hasar gördüğünde kendisini yenileyip onarabilme yeteneğine sahip bir dokudur ancak büyük kusurları onarmakta yetersiz kalmaktadır. Büyük kemik defektlerini onarmak için günümüzde uygulanan çeşitli tedaviler ise donör eksikliği, genetik farklılık, enfeksiyon, doku reddi vb. riskler nedeniyle kısıtlıdır. Kemik tedavilerinde geleneksel metal malzemelerin yoğun olarak kullanılması ile birlikte, bu malzemelerin birçok dezavantajı bulunmaktadır. Ancak son yıllarda gözler daha hafif, mekanik dayanımı metallerle kıyaslanacak kadar yüksek, insan vücudu ile biyouyumlu ve yüksek işlenebilirlik gibi özellikler sergileyen poli(laktik asit) (PLA), polietereterketon (PEEK), polikaprolakton (PCL), poli(glikolik asit) (PGA) vb. biyobozunur biyopolimerlere çevrilmiştir. Bu malzemeler bu özelliklerinden dolayı medikal alanda son yıllarda yükselen bir kullanım trendine ulaşmıştır. PLA’nın kemik iskeleleri üzerine ekilen hücrelerin, migrasyon, proliferasyon, dağıtım ve farklılaşma dahil olmak üzere hücre süreçlerini destekleyen bir biyomalzeme olması nedeniyle, kemik doku mühendisliği uygulamalarında tercih edildiği bilinmektedir. Kemik iskelelerinin üretimi için geleneksel üretim yöntemlerinin yanında son yıllarda teknolojinin gelişmesiyle birlikte yenilikçi teknoloji yaklaşımları da bulunmaktadır. Ancak geleneksel üretim yöntemleri kullanılarak üretilen kemik iskelelerin, gözeneklilik durumu tam olarak kontrol edilemediği için gelişen teknoloji ile birlikte yeni tasarım ve hızlı prototipleme yöntemlerine olan eğilim artmıştır. Eklemeli imalat teknolojileri ile üretilen kemik iskelelerinde, 3B gözenekli ve iç bağlantılara sahip kemik iskelelerinin oluşturulmasına imkân sağlanmıştır. Ayrıca araştırmacılar, saf PLA ile üretilmiş kemik iskelelerinin osteojeniklik, gözeneklilik ve mekanik dayanım gibi mekanik ve biyolojik özelliklerinin iyileştirilmesi adına PLA bazlı kompozit iskele üretimine yönelmiştir. Çalışmada kemik doku mühendisliği uygulamalarında PLA’nın başka bir malzeme ile takviye edilerek kompozit kemik iskelesi oluşturduğu uygulamalara değinilmiştir.

References

  • M. S. Alavi et al. (2023) Applications of poly (lactic acid) in bone tissue engineering: A review article,” Artificial Organs, vol. 47, no. 9. doi: 10.1111/aor.14612.
  • Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, and M. Glogauer (2015) Biodegradable Materials for Bone Repair and Tissue Engineering Applications,” Materials 2015, Vol. 8, Pages 5744-5794, vol. 8, no. 9, pp. 5744–5794, Aug. doi: 10.3390/MA8095273.
  • [3] N. İ. Büyük et al. (2023) Effect of different pore sizes of 3D printed PLA-based scaffold in bone tissue engineering International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 72, no. 13, pp.1021–1031.doi: 10.1080/00914037.2022.2075869.
  • [4] S. Salehi, H. Ghomi, S. A. Hassanzadeh-Tabrizi, N. Koupaei, and M. Khodaei, “The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering,” Int J Biol Macromol, vol. 221, pp. 1325–1334, Nov. 2022, doi: 10.1016/J.IJBIOMAC.2022.09.027.
  • [5] A. Haleem, M. Javaid, R. H. Khan, and R. Suman, “3D printing applications in bone tissue engineering,” J Clin Orthop Trauma, vol. 11, pp. S118–S124, Feb. 2020, doi: 10.1016/J.JCOT.2019.12.002.
  • [6] P. K. A. Terzioğlu, “(PDF) Kemik Doku Mühendisliği Uygulamaları için Polilaktik Asit-Hidroksiapatit Kompozitler.” Accessed: Jan. 01, 2024.
  • [7] M. Jouyandeh, H. Vahabi, N. Rabiee, M. Rabiee, M. Bagherzadeh, and M. R. Saeb, “Green composites in bone tissue engineering,” Emergent Materials 2021 5:3, vol. 5, no. 3, pp. 603–620, Aug. 2021, doi: 10.1007/S42247-021-00276-5.
  • [8] L. Ravikumar and D. Chandramohan, "Bending Test on Hybrid Bio Composite Materials," Indian Journal of Science and Technology, vol. 10, no. 7, 2017, doi: 10.17485/ijst/2017/v10i7/108478.
  • [9] B. Çetin, B. Mühendisliği, and A. Dalı, “Doğal lif ile güçlendirilmiş polilaktik asit/polipropilen kompozitlerin mekanik ve termal özellikleri,” 2019, Accessed: Jan. 24, 2024.
  • [10] F. G. H. K. İ. U. O. Mert, “(PDF) Kemik Tedavilerinde Kullanılan Biyobozunur İmplant Malzemeler,” 1. Uluslararası Plastik ve Kauçuk Teknolojileri Sempozyumu ve Sergisi, Ankara. Accessed: Jan. 01, 2024.
  • [11] V. DeStefano, S. Khan, and A. Tabada, “Applications of PLA in modern medicine,” Engineered Regeneration, vol. 1, pp. 76–87, Jan. 2020, doi: 10.1016/J.ENGREG.2020.08.002.
  • [12] S. Farah, D. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review,” Advanced Drug Delivery Reviews, vol. 107, pp. 367–392, 2016.
  • [13] Hutmacher, D., Hürzeler, M. B., & Schliephake, H. (1996). A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. The International Journal of Oral & Maxillofacial Implants, 11(5), 667–678.
  • [14] C. Chanlalit, J. Fitzsimmons, K.-N. An, and M. E. Morrey, “Stress shielding around radial head prostheses,” The Journal of Hand Surgery, vol. 37, no. 10, pp. 2118–2125, Oct. 2012, doi: 10.1016/j.jhsa.2012.06.020.
  • [15] K. A. Athanasiou, C. F. Zhu, D. R. Lanctot, C. M. Agrawal, and X. Wang, “Fundamentals of biomechanics in tissue engineering of bone,” Tissue Eng, vol. 6, no. 4, pp. 361–381, 2000, doi: 10.1089/107632700418083.
  • [16] M. J. Yaszemski, R. G. Payne, W. C. Hayes, R. Langer, and A. G. Mikos, “Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone,” Biomaterials, vol. 17, no. 2, pp. 175–185, 1996, doi: 10.1016/0142-9612(96)85762-0.
  • [17] D. Eglin and M. Alini, “Degradable polymeric materials for osteosynthesis: Tutorial,” European Cells and Materials, vol. 16, pp. 80–91, 2008, doi: 10.22203/eCM.v016a09.
  • [18] F. Tamimi, Z. Sheikh, and J. Barralet, “Dicalcium phosphate cements: Brushite and monetite,” Acta Biomater, vol. 8, no. 2, pp. 474–487, 2012, doi: 10.1016/J.ACTBIO.2011.08.005.
  • [19] L. E. Claes, “Mechanical characterization of biodegradable implants,” Clin Mater, vol. 10, no. 1–2, pp. 41–46, 1992, doi: 10.1016/0267-6605(92)90083-6.
  • [20] J. Blackburn, R. Hodgskinson, J. D. Currey, and J. E. Mason, “Mechanical properties of microcallus in human cancellous bone,” Journal of Orthopaedic Research, vol. 10, no. 2, pp. 237–246, 1992, doi: 10.1002/JOR.1100100211.
  • [21] L. Tan, X. Yu, P. Wan, and K. Yang, “Biodegradable Materials for Bone Repairs: A Review,” J Mater Sci Technol, vol. 29, no. 6, pp. 503–513, Jun. 2013, doi: 10.1016/J.JMST.2013.03.002.
  • [22] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review,” Polym Degrad Stab, vol. 95, no. 11, pp. 2126–2146, Nov. 2010, doi: 10.1016/J.POLYMDEGRADSTAB.2010.06.007.
  • [23] P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update.,” Injury, vol. 36 Suppl 3, 2005, doi: 10.1016/J.INJURY.2005.07.029.
  • [24] Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72. https://doi.org/10.1016/j.cossms.2009.04.001.
  • [25] F. Khoury, “Augmentation of the sinus floor with mandibular bone block and simultaneous implantation: A 6-year clinical investigation,” International Journal of Oral and Maxillofacial Implants, vol. 14, no. 4, pp. 557–564, 1999.
  • [26] M. S. Block and M. Degen, “Horizontal ridge augmentation using human mineralized particulate bone: Preliminary results,” Journal of Oral and Maxillofacial Surgery, vol. 62, no. SUPPL. 2, pp. 67–72, Sep. 2004, doi: 10.1016/J.JOMS.2004.05.209.
  • [27] M. Bolander and G. Balian, “The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins compared with autologous grafts,” Journal of Bone and Joint Surgery, vol. 68, no. 8, pp. 1264–1274, 1986.
  • [28] P. P. T. Araújo, K. P. Oliveira, S. C. L. Montenegro, A. F. P. Carreiro, J. S. P. Silva, and A. R. Germano, “Block allograft for reconstruction of alveolar bone ridge in implantology: A systematic review,” Implant Dent, vol. 22, no. 3, pp. 304–308, Jun. 2013, doi: 10.1097/ID.0B013E318289E311.
  • [29] T. W. Sterio, J. A. Katancik, S. B. Blanchard, P. Xenoudi, and B. L. Mealey, “A Prospective, Multicenter Study of Bovine Pericardium Membrane with Cancellous Particulate Allograft for Localized Alveolar Ridge Augmentation,” Int J Periodontics Restorative Dent, vol. 33, no. 4, pp. 499–507, Jul. 2013, doi: 10.11607/PRD.1704.
  • [30] J. M. Whittaker, R. A. James, and J. L. Lozada, “Histologic response and clinical evaluation of heterograft and allograft materials in the elevation of the maxillary sinus for the placement of endosteal implants,” Journal of Oral Implantology, vol. 15, no. 3, pp. 141–146, 1989.
  • [31] P. Valentini and D. Abensur, “Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss): A clinical study of 20 patients,” International Journal of Periodontics & Restorative Dentistry, vol. 17, no. 3, pp. 232–241, 1997.
  • [32] J. S. Guerrero and B. A. Al-Jandan, “Allograft for maxillary sinus floor augmentation: A retrospective study of 90 cases,” Implant Dent, vol. 21, no. 2, pp. 136–140, 2012, doi: 10.1097/ID.0B013E31824A023B.
  • [33] G. Avila et al., “Clinical and histologic outcomes after the use of a novel allograft for maxillary sinus augmentation: A case series,” Implant Dent, vol. 19, no. 4, pp. 330–341, Aug. 2010, doi: 10.1097/ID.0B013E3181E59B32.
  • [34] D. S. Sohn, J. K. Lee, K. M. An, and H. I. Shin, “Histomorphometric evaluation of mineralized cancellous allograft in the maxillary sinus augmentation: A 4-case report,” Implant Dent, vol. 18, no. 2, pp. 172–181, Apr. 2009, doi: 10.1097/ID.0B013E318199045D.
  • [35] X. Niu, Q. Feng, M. Wang, X. Guo, and Q. Zheng, “Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2,” Journal of Controlled Release, vol. 134, no. 2, pp. 111–117, Mar. 2009, doi: 10.1016/J.JCONREL.2008.11.020.
  • [36] Z. Xiong, Y. Yan, R. Zhang, and L. Sun, “Fabrication of porous poly (L-lactic acid) scaffolds for bone tissue engineering via precise extrusion,” Scr Mater, vol. 45, no. 7, pp. 773–779, Oct. 2001, doi: 10.1016/S1359-6462(01)01094-6.
  • [37] S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S. H. Hyon, and K. Jamshidi, “Polymer-hydroxyapatite composites for biodegradable bone fillers,” Biomaterials, vol. 7, no. 3, pp. 183–187, 1986, doi: 10.1016/0142-9612(86)90099-2.
  • [38] M. Vert, “Aliphatic polyesters: Great degradable polymers that cannot do everything,” Biomacromolecules, vol. 6, no. 2, pp. 538–546, Mar. 2005, doi: 10.1021/bm0494702.
  • [39] E. Nejati, H. Mirzadeh, and M. Zandi, “Synthesis and characterization of nano-hydroxyapatite rods/poly (l-lactide acid) composite scaffolds for bone tissue engineering,” Compos Part A Appl Sci Manuf, vol. 39, no. 10, pp. 1589–1596, Oct. 2008, doi: 10.1016/J.COMPOSITESA.2008.05.018.
  • [40] A. L. C. Lagoa, C. Wedemeyer, M. Von Knoch, F. Löer, and M. Epple, “A strut graft substitute consisting of a metal core and a polymer surface,” J Mater Sci Mater Med, vol. 19, no. 1, pp. 417–424, Jan. 2008, doi: 10.1007/S10856-006-0022-0.
  • [41] W. H. Warden, R. Friedman, L. M. Teresi, and D. W. Jackson, “Magnetic resonance imaging of bioabsorbable polylactic acid interference screws during the first 2 years after anterior cruciate ligament reconstruction,” Arthroscopy - Journal of Arthroscopic and Related Surgery, vol. 15, no. 5, pp. 474–480, 1999, doi: 10.1053/AR.1999.V15.015047.
  • [42] K. J. Bozic, L. E. Perez, D. R. Wilson, P. G. Fitzgibbons, and J. B. Jupiter, “Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation,” Journal of Hand Surgery, vol. 26, no. 4, pp. 755–761, 2001, doi: 10.1053/JHSU.2001.24145.
  • [43] A. A. Ignatius and L. E. Claes, “In vitro biocompatibility of bioresorbable polymers: Poly (L, DL-lactide) and poly(L-lactide-co-glycolide),” Biomaterials, vol. 17, no. 8, pp. 831–839, 1996, doi: 10.1016/0142-9612(96)81421-9.
  • [44] L. Nie, D. Chen, J. Fu, S. Yang, R. Hou, and J. Suo, “Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration,” Biochem Eng J, vol. 98, pp. 29–37, Jun. 2015, doi: 10.1016/J.BEJ.2015.02.026.
  • [45] Y. S. Nam and T. G. Park, “Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation,” Journal of Biomedical Materials Research, vol. 47, no. 1, pp. 8–17, Oct. 1999, doi: 10.1002/(SICI)1097-4636(199910)47:1<8: AID-JBM2>3.0.CO;2-L.
  • [46] S. Vainionpää, J. Kilpikari, J. Laiho, P. Helevirta, P. Rokkanen, and P. Törmälä, “Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation,” Biomaterials, vol. 8, no. 1, pp. 46–48, 1987, doi: 10.1016/0142-9612(87)90028-7.
  • [47] J. W. Leenslag, A. J. Pennings, R. R. M. Bos, F. R. Rozema, and G. Boering, “Resorbable materials of poly(l-lactide). VII. In vivo and in vitro degradation,” Biomaterials, vol. 8, no. 4, pp. 311–314, 1987, doi: 10.1016/0142-9612(87)90121-9.
  • [48] P. C.- Biomaterials and undefined 1980, “Biodegradable composites for internal fixation,” cir.nii.ac.jp, Accessed: Jan. 26, 2024.
  • [49] S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6. 2001. doi: 10.1089/107632701753337645.
  • [50] K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, Dec. 2000, doi: 10.1016/S0142-9612(00)00102-2.
  • [51] H. Zhang, X. Mao, D. Zhao, W. Jiang, Z. Du, and Q. Li, “Three-dimensional printed polylactic acid–hydroxyapatite composite scaffolds for prefabricating vascularized tissue-engineered bone: An in vivo bioreactor model,” Scientific Reports, vol. 7, no. 1, 2017.
  • [52] N. Top, İ. Şahin, H. Gökçe, and H. Gökçe, “Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art,” Journal of Materials Research 2021 36:19, vol. 36, no. 19, pp. 3725–3745, Mar. 2021, doi: 10.1557/S43578-021-00156-Y.
  • [53] Y. Wu, Y. Lu, M. Zhao, S. Bosiakov, and L. Li, “A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering,” Polymers 2022, Vol. 14, Page 2117, vol. 14, no. 10, p. 2117, May 2022, doi: 10.3390/POLYM14102117.
  • [54] J. Babak, wang Xinnan, and B. Amanda, “Additive Manufacturing Techniques for Fabrication of Bone Scaffolds for Tissue Engineering Applications,” Recent Progress in Materials 2020, Vol. 2, 021, vol. 2, no. 3, pp. 1–41, Sep. 2020, doi: 10.21926/RPM.2003021.
  • [55] M. Subramaniyan, S. Karuppan, S. Helaili, I. Ahmad, “Structural, mechanical, and in-vitro characterization of hydroxyapatite loaded PLA composites”, Journal of Molecular Structure., vol.1306, Jun 2024, doi: 10.1016 /j.molstruc.2024.137862.
  • [56] D. Qin, N. Wang, X. You, A. Zhang, X. Chen, Y. Liu “Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives”, Journal of Biomaterials Science., Issue 2, 2022, doi: https://doi.org/10.1039/D1BM01294K.
  • [57] Zarei, M., Shabani Dargah, M., Hasanzadeh Azar, M. et al. Enhanced bone tissue regeneration using a 3D-printed poly(lactic acid)/Ti6Al4V composite scaffold with plasma treatment modification. Sci Rep 13, 3139 (2023). https://doi.org/10.1038/s41598-023-30300-z.
  • [58] Dai, Jiamu, et al. "Electrospinning of PLA/pearl powder nanofibrous scaffold for bone tissue engineering." RSC advances 6.108 (2016): 106798-106805.
  • [59] A. Nadi, M. Khodaei, M. Javdani, A. Mirzaei, M. Soleimannejad, L. Tayebi, S. Asadpour “Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration.”, International Journal of Biological Macromolecules., vol. 219, pp. 1319-1336, Oct .2022, doi: 10.1016/ POLYM14102117

The use of poly(lactic acid) (PLA) in bone tissue engineering

Year 2025, Volume: 10 Issue: 1, 1 - 13
https://doi.org/10.56171/ojn.1611817

Abstract

Bone is a tissue that can regenerate and repair itself when minor damage occurs; however, it is insufficient to repair large defects. Today, various treatments to repair bone defects are limited due to risks such as lack of donors, genetic differences, infection, and tissue rejection. Although traditional metals are used extensively in bone treatments, these materials have many disadvantages. In recent years, biodegradable biopolymers such as poly(lactic) acid (PLA), polyetheretherketone (PEEK), polycaprolactone (PCL), and poly (glycolic acid) PGA have attracted growing interest due to their properties such as lightweight, high mechanical strength, biocompatibility, and high processability. In recent years, these polymer materials have been extensively used in the medical field. PLA is known to be preferred in bone tissue engineering applications as it is a biomaterial that supports cell processes, including migration, proliferation, distribution, and differentiation. In recent years, alongside traditional methods for producing bone scaffolds, innovative technological approaches have emerged. Traditional manufacturing methods, however, often lack precise control over scaffold porosity, prompting a shift towards advanced designs and rapid prototyping techniques. In bone scaffolds produced with additive manufacturing, it is possible to create 3D porous bone scaffolds with internal connections. In addition, PLA-based composite scaffolds have been studied to improve the mechanical and biological properties of pure PLA bone scaffolds, such as osteogenicity, porosity, and mechanical strength. This study presents a review of the PLA-based composite bone scaffolds in bone tissue engineering applications.

References

  • M. S. Alavi et al. (2023) Applications of poly (lactic acid) in bone tissue engineering: A review article,” Artificial Organs, vol. 47, no. 9. doi: 10.1111/aor.14612.
  • Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, and M. Glogauer (2015) Biodegradable Materials for Bone Repair and Tissue Engineering Applications,” Materials 2015, Vol. 8, Pages 5744-5794, vol. 8, no. 9, pp. 5744–5794, Aug. doi: 10.3390/MA8095273.
  • [3] N. İ. Büyük et al. (2023) Effect of different pore sizes of 3D printed PLA-based scaffold in bone tissue engineering International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 72, no. 13, pp.1021–1031.doi: 10.1080/00914037.2022.2075869.
  • [4] S. Salehi, H. Ghomi, S. A. Hassanzadeh-Tabrizi, N. Koupaei, and M. Khodaei, “The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering,” Int J Biol Macromol, vol. 221, pp. 1325–1334, Nov. 2022, doi: 10.1016/J.IJBIOMAC.2022.09.027.
  • [5] A. Haleem, M. Javaid, R. H. Khan, and R. Suman, “3D printing applications in bone tissue engineering,” J Clin Orthop Trauma, vol. 11, pp. S118–S124, Feb. 2020, doi: 10.1016/J.JCOT.2019.12.002.
  • [6] P. K. A. Terzioğlu, “(PDF) Kemik Doku Mühendisliği Uygulamaları için Polilaktik Asit-Hidroksiapatit Kompozitler.” Accessed: Jan. 01, 2024.
  • [7] M. Jouyandeh, H. Vahabi, N. Rabiee, M. Rabiee, M. Bagherzadeh, and M. R. Saeb, “Green composites in bone tissue engineering,” Emergent Materials 2021 5:3, vol. 5, no. 3, pp. 603–620, Aug. 2021, doi: 10.1007/S42247-021-00276-5.
  • [8] L. Ravikumar and D. Chandramohan, "Bending Test on Hybrid Bio Composite Materials," Indian Journal of Science and Technology, vol. 10, no. 7, 2017, doi: 10.17485/ijst/2017/v10i7/108478.
  • [9] B. Çetin, B. Mühendisliği, and A. Dalı, “Doğal lif ile güçlendirilmiş polilaktik asit/polipropilen kompozitlerin mekanik ve termal özellikleri,” 2019, Accessed: Jan. 24, 2024.
  • [10] F. G. H. K. İ. U. O. Mert, “(PDF) Kemik Tedavilerinde Kullanılan Biyobozunur İmplant Malzemeler,” 1. Uluslararası Plastik ve Kauçuk Teknolojileri Sempozyumu ve Sergisi, Ankara. Accessed: Jan. 01, 2024.
  • [11] V. DeStefano, S. Khan, and A. Tabada, “Applications of PLA in modern medicine,” Engineered Regeneration, vol. 1, pp. 76–87, Jan. 2020, doi: 10.1016/J.ENGREG.2020.08.002.
  • [12] S. Farah, D. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review,” Advanced Drug Delivery Reviews, vol. 107, pp. 367–392, 2016.
  • [13] Hutmacher, D., Hürzeler, M. B., & Schliephake, H. (1996). A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. The International Journal of Oral & Maxillofacial Implants, 11(5), 667–678.
  • [14] C. Chanlalit, J. Fitzsimmons, K.-N. An, and M. E. Morrey, “Stress shielding around radial head prostheses,” The Journal of Hand Surgery, vol. 37, no. 10, pp. 2118–2125, Oct. 2012, doi: 10.1016/j.jhsa.2012.06.020.
  • [15] K. A. Athanasiou, C. F. Zhu, D. R. Lanctot, C. M. Agrawal, and X. Wang, “Fundamentals of biomechanics in tissue engineering of bone,” Tissue Eng, vol. 6, no. 4, pp. 361–381, 2000, doi: 10.1089/107632700418083.
  • [16] M. J. Yaszemski, R. G. Payne, W. C. Hayes, R. Langer, and A. G. Mikos, “Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone,” Biomaterials, vol. 17, no. 2, pp. 175–185, 1996, doi: 10.1016/0142-9612(96)85762-0.
  • [17] D. Eglin and M. Alini, “Degradable polymeric materials for osteosynthesis: Tutorial,” European Cells and Materials, vol. 16, pp. 80–91, 2008, doi: 10.22203/eCM.v016a09.
  • [18] F. Tamimi, Z. Sheikh, and J. Barralet, “Dicalcium phosphate cements: Brushite and monetite,” Acta Biomater, vol. 8, no. 2, pp. 474–487, 2012, doi: 10.1016/J.ACTBIO.2011.08.005.
  • [19] L. E. Claes, “Mechanical characterization of biodegradable implants,” Clin Mater, vol. 10, no. 1–2, pp. 41–46, 1992, doi: 10.1016/0267-6605(92)90083-6.
  • [20] J. Blackburn, R. Hodgskinson, J. D. Currey, and J. E. Mason, “Mechanical properties of microcallus in human cancellous bone,” Journal of Orthopaedic Research, vol. 10, no. 2, pp. 237–246, 1992, doi: 10.1002/JOR.1100100211.
  • [21] L. Tan, X. Yu, P. Wan, and K. Yang, “Biodegradable Materials for Bone Repairs: A Review,” J Mater Sci Technol, vol. 29, no. 6, pp. 503–513, Jun. 2013, doi: 10.1016/J.JMST.2013.03.002.
  • [22] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J. M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review,” Polym Degrad Stab, vol. 95, no. 11, pp. 2126–2146, Nov. 2010, doi: 10.1016/J.POLYMDEGRADSTAB.2010.06.007.
  • [23] P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone substitutes: an update.,” Injury, vol. 36 Suppl 3, 2005, doi: 10.1016/J.INJURY.2005.07.029.
  • [24] Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5–6), 63–72. https://doi.org/10.1016/j.cossms.2009.04.001.
  • [25] F. Khoury, “Augmentation of the sinus floor with mandibular bone block and simultaneous implantation: A 6-year clinical investigation,” International Journal of Oral and Maxillofacial Implants, vol. 14, no. 4, pp. 557–564, 1999.
  • [26] M. S. Block and M. Degen, “Horizontal ridge augmentation using human mineralized particulate bone: Preliminary results,” Journal of Oral and Maxillofacial Surgery, vol. 62, no. SUPPL. 2, pp. 67–72, Sep. 2004, doi: 10.1016/J.JOMS.2004.05.209.
  • [27] M. Bolander and G. Balian, “The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins compared with autologous grafts,” Journal of Bone and Joint Surgery, vol. 68, no. 8, pp. 1264–1274, 1986.
  • [28] P. P. T. Araújo, K. P. Oliveira, S. C. L. Montenegro, A. F. P. Carreiro, J. S. P. Silva, and A. R. Germano, “Block allograft for reconstruction of alveolar bone ridge in implantology: A systematic review,” Implant Dent, vol. 22, no. 3, pp. 304–308, Jun. 2013, doi: 10.1097/ID.0B013E318289E311.
  • [29] T. W. Sterio, J. A. Katancik, S. B. Blanchard, P. Xenoudi, and B. L. Mealey, “A Prospective, Multicenter Study of Bovine Pericardium Membrane with Cancellous Particulate Allograft for Localized Alveolar Ridge Augmentation,” Int J Periodontics Restorative Dent, vol. 33, no. 4, pp. 499–507, Jul. 2013, doi: 10.11607/PRD.1704.
  • [30] J. M. Whittaker, R. A. James, and J. L. Lozada, “Histologic response and clinical evaluation of heterograft and allograft materials in the elevation of the maxillary sinus for the placement of endosteal implants,” Journal of Oral Implantology, vol. 15, no. 3, pp. 141–146, 1989.
  • [31] P. Valentini and D. Abensur, “Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss): A clinical study of 20 patients,” International Journal of Periodontics & Restorative Dentistry, vol. 17, no. 3, pp. 232–241, 1997.
  • [32] J. S. Guerrero and B. A. Al-Jandan, “Allograft for maxillary sinus floor augmentation: A retrospective study of 90 cases,” Implant Dent, vol. 21, no. 2, pp. 136–140, 2012, doi: 10.1097/ID.0B013E31824A023B.
  • [33] G. Avila et al., “Clinical and histologic outcomes after the use of a novel allograft for maxillary sinus augmentation: A case series,” Implant Dent, vol. 19, no. 4, pp. 330–341, Aug. 2010, doi: 10.1097/ID.0B013E3181E59B32.
  • [34] D. S. Sohn, J. K. Lee, K. M. An, and H. I. Shin, “Histomorphometric evaluation of mineralized cancellous allograft in the maxillary sinus augmentation: A 4-case report,” Implant Dent, vol. 18, no. 2, pp. 172–181, Apr. 2009, doi: 10.1097/ID.0B013E318199045D.
  • [35] X. Niu, Q. Feng, M. Wang, X. Guo, and Q. Zheng, “Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2,” Journal of Controlled Release, vol. 134, no. 2, pp. 111–117, Mar. 2009, doi: 10.1016/J.JCONREL.2008.11.020.
  • [36] Z. Xiong, Y. Yan, R. Zhang, and L. Sun, “Fabrication of porous poly (L-lactic acid) scaffolds for bone tissue engineering via precise extrusion,” Scr Mater, vol. 45, no. 7, pp. 773–779, Oct. 2001, doi: 10.1016/S1359-6462(01)01094-6.
  • [37] S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S. H. Hyon, and K. Jamshidi, “Polymer-hydroxyapatite composites for biodegradable bone fillers,” Biomaterials, vol. 7, no. 3, pp. 183–187, 1986, doi: 10.1016/0142-9612(86)90099-2.
  • [38] M. Vert, “Aliphatic polyesters: Great degradable polymers that cannot do everything,” Biomacromolecules, vol. 6, no. 2, pp. 538–546, Mar. 2005, doi: 10.1021/bm0494702.
  • [39] E. Nejati, H. Mirzadeh, and M. Zandi, “Synthesis and characterization of nano-hydroxyapatite rods/poly (l-lactide acid) composite scaffolds for bone tissue engineering,” Compos Part A Appl Sci Manuf, vol. 39, no. 10, pp. 1589–1596, Oct. 2008, doi: 10.1016/J.COMPOSITESA.2008.05.018.
  • [40] A. L. C. Lagoa, C. Wedemeyer, M. Von Knoch, F. Löer, and M. Epple, “A strut graft substitute consisting of a metal core and a polymer surface,” J Mater Sci Mater Med, vol. 19, no. 1, pp. 417–424, Jan. 2008, doi: 10.1007/S10856-006-0022-0.
  • [41] W. H. Warden, R. Friedman, L. M. Teresi, and D. W. Jackson, “Magnetic resonance imaging of bioabsorbable polylactic acid interference screws during the first 2 years after anterior cruciate ligament reconstruction,” Arthroscopy - Journal of Arthroscopic and Related Surgery, vol. 15, no. 5, pp. 474–480, 1999, doi: 10.1053/AR.1999.V15.015047.
  • [42] K. J. Bozic, L. E. Perez, D. R. Wilson, P. G. Fitzgibbons, and J. B. Jupiter, “Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation,” Journal of Hand Surgery, vol. 26, no. 4, pp. 755–761, 2001, doi: 10.1053/JHSU.2001.24145.
  • [43] A. A. Ignatius and L. E. Claes, “In vitro biocompatibility of bioresorbable polymers: Poly (L, DL-lactide) and poly(L-lactide-co-glycolide),” Biomaterials, vol. 17, no. 8, pp. 831–839, 1996, doi: 10.1016/0142-9612(96)81421-9.
  • [44] L. Nie, D. Chen, J. Fu, S. Yang, R. Hou, and J. Suo, “Macroporous biphasic calcium phosphate scaffolds reinforced by poly-L-lactic acid/hydroxyapatite nanocomposite coatings for bone regeneration,” Biochem Eng J, vol. 98, pp. 29–37, Jun. 2015, doi: 10.1016/J.BEJ.2015.02.026.
  • [45] Y. S. Nam and T. G. Park, “Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation,” Journal of Biomedical Materials Research, vol. 47, no. 1, pp. 8–17, Oct. 1999, doi: 10.1002/(SICI)1097-4636(199910)47:1<8: AID-JBM2>3.0.CO;2-L.
  • [46] S. Vainionpää, J. Kilpikari, J. Laiho, P. Helevirta, P. Rokkanen, and P. Törmälä, “Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation,” Biomaterials, vol. 8, no. 1, pp. 46–48, 1987, doi: 10.1016/0142-9612(87)90028-7.
  • [47] J. W. Leenslag, A. J. Pennings, R. R. M. Bos, F. R. Rozema, and G. Boering, “Resorbable materials of poly(l-lactide). VII. In vivo and in vitro degradation,” Biomaterials, vol. 8, no. 4, pp. 311–314, 1987, doi: 10.1016/0142-9612(87)90121-9.
  • [48] P. C.- Biomaterials and undefined 1980, “Biodegradable composites for internal fixation,” cir.nii.ac.jp, Accessed: Jan. 26, 2024.
  • [49] S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6. 2001. doi: 10.1089/107632701753337645.
  • [50] K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, Dec. 2000, doi: 10.1016/S0142-9612(00)00102-2.
  • [51] H. Zhang, X. Mao, D. Zhao, W. Jiang, Z. Du, and Q. Li, “Three-dimensional printed polylactic acid–hydroxyapatite composite scaffolds for prefabricating vascularized tissue-engineered bone: An in vivo bioreactor model,” Scientific Reports, vol. 7, no. 1, 2017.
  • [52] N. Top, İ. Şahin, H. Gökçe, and H. Gökçe, “Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art,” Journal of Materials Research 2021 36:19, vol. 36, no. 19, pp. 3725–3745, Mar. 2021, doi: 10.1557/S43578-021-00156-Y.
  • [53] Y. Wu, Y. Lu, M. Zhao, S. Bosiakov, and L. Li, “A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering,” Polymers 2022, Vol. 14, Page 2117, vol. 14, no. 10, p. 2117, May 2022, doi: 10.3390/POLYM14102117.
  • [54] J. Babak, wang Xinnan, and B. Amanda, “Additive Manufacturing Techniques for Fabrication of Bone Scaffolds for Tissue Engineering Applications,” Recent Progress in Materials 2020, Vol. 2, 021, vol. 2, no. 3, pp. 1–41, Sep. 2020, doi: 10.21926/RPM.2003021.
  • [55] M. Subramaniyan, S. Karuppan, S. Helaili, I. Ahmad, “Structural, mechanical, and in-vitro characterization of hydroxyapatite loaded PLA composites”, Journal of Molecular Structure., vol.1306, Jun 2024, doi: 10.1016 /j.molstruc.2024.137862.
  • [56] D. Qin, N. Wang, X. You, A. Zhang, X. Chen, Y. Liu “Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives”, Journal of Biomaterials Science., Issue 2, 2022, doi: https://doi.org/10.1039/D1BM01294K.
  • [57] Zarei, M., Shabani Dargah, M., Hasanzadeh Azar, M. et al. Enhanced bone tissue regeneration using a 3D-printed poly(lactic acid)/Ti6Al4V composite scaffold with plasma treatment modification. Sci Rep 13, 3139 (2023). https://doi.org/10.1038/s41598-023-30300-z.
  • [58] Dai, Jiamu, et al. "Electrospinning of PLA/pearl powder nanofibrous scaffold for bone tissue engineering." RSC advances 6.108 (2016): 106798-106805.
  • [59] A. Nadi, M. Khodaei, M. Javdani, A. Mirzaei, M. Soleimannejad, L. Tayebi, S. Asadpour “Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration.”, International Journal of Biological Macromolecules., vol. 219, pp. 1319-1336, Oct .2022, doi: 10.1016/ POLYM14102117
There are 59 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Reviews
Authors

Tarkan Akderya 0000-0001-6459-386X

Rumeysa İncesu 0000-0002-8781-2428

Cem Gök 0000-0002-8949-8129

Cemal Bilir 0000-0001-5034-2074

Gülbahar Tabakoğlu 0000-0003-0181-8165

Ataberk Kaplan 0000-0002-5446-1131

Publication Date
Submission Date January 9, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Akderya, T., İncesu, R., Gök, C., Bilir, C., et al. (n.d.). The use of poly(lactic acid) (PLA) in bone tissue engineering. Open Journal of Nano, 10(1), 1-13. https://doi.org/10.56171/ojn.1611817
AMA Akderya T, İncesu R, Gök C, Bilir C, Tabakoğlu G, Kaplan A. The use of poly(lactic acid) (PLA) in bone tissue engineering. Open J. Nano. 10(1):1-13. doi:10.56171/ojn.1611817
Chicago Akderya, Tarkan, Rumeysa İncesu, Cem Gök, Cemal Bilir, Gülbahar Tabakoğlu, and Ataberk Kaplan. “The Use of poly(lactic Acid) (PLA) in Bone Tissue Engineering”. Open Journal of Nano 10, no. 1 n.d.: 1-13. https://doi.org/10.56171/ojn.1611817.
EndNote Akderya T, İncesu R, Gök C, Bilir C, Tabakoğlu G, Kaplan A The use of poly(lactic acid) (PLA) in bone tissue engineering. Open Journal of Nano 10 1 1–13.
IEEE T. Akderya, R. İncesu, C. Gök, C. Bilir, G. Tabakoğlu, and A. Kaplan, “The use of poly(lactic acid) (PLA) in bone tissue engineering”, Open J. Nano, vol. 10, no. 1, pp. 1–13, doi: 10.56171/ojn.1611817.
ISNAD Akderya, Tarkan et al. “The Use of poly(lactic Acid) (PLA) in Bone Tissue Engineering”. Open Journal of Nano 10/1 (n.d.), 1-13. https://doi.org/10.56171/ojn.1611817.
JAMA Akderya T, İncesu R, Gök C, Bilir C, Tabakoğlu G, Kaplan A. The use of poly(lactic acid) (PLA) in bone tissue engineering. Open J. Nano.;10:1–13.
MLA Akderya, Tarkan et al. “The Use of poly(lactic Acid) (PLA) in Bone Tissue Engineering”. Open Journal of Nano, vol. 10, no. 1, pp. 1-13, doi:10.56171/ojn.1611817.
Vancouver Akderya T, İncesu R, Gök C, Bilir C, Tabakoğlu G, Kaplan A. The use of poly(lactic acid) (PLA) in bone tissue engineering. Open J. Nano. 10(1):1-13.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.