Research Article
BibTex RIS Cite

Technology in Physiotherapy: A Bibliometric Analysis of Artificial Intelligence in Physiotherapy and Rehabilitation

Year 2025, Volume: 10 Issue: 2, 145 - 152, 30.06.2025
https://doi.org/10.26453/otjhs.1659222

Abstract

Objective: This study aimed to perform quantitative and qualitative evaluations of the state of artificial intelligence (AI) for physiotherapy and rehabilitation.
Materials and Methods: The bibliometric data have been collected using title and abstract keyword searches from the Web of Science database for AI applications in the physiotherapy field. A total of 187 articles were identified using keywords such as machine learning, deep learning, artificial neural network, artificial intelligence, natural language processing, and physiotherapy.
Results: A total of 187 articles published between 2001 and 2024 were analyzed. The year 2023 had the highest publication volume (47 articles). “Engineering Electrical Electronic” was the most productive research field. Frequently occurring terms included “Machine Learning,” “Rehabilitation,” and “Artificial Intelligence.”
Conclusions: Publications on artificial intelligence and physiotherapy have significantly increased in recent years. These findings underscore the increasing relevance of AI-driven technologies for clinical practice, therapeutic decision-making, and rehabilitation research. For physiotherapists, healthcare professionals, and interdisciplinary researchers, this study provides valuable insight into emerging trends and areas of concentration. Future work can benefit from bibliometric analyses across different databases to support multidisciplinary research.

References

  • Jakhar D, Kaur I. Artificial intelligence, machine learning and deep learning: definitions and differences. Clin Exp Dermatol. 2020;45(1):131-132. doi: 10.1111/ced.14029
  • Park CW, Lee J, Lee JH, et al. Artificial intelligence in health care: current applications and issues. J Korean Med Sci. 2020;35(42). doi: 10.3346/jkms.2020.35.e379
  • Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317-1318. doi: 10.1001/jama.2017.18391
  • Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320(11):1101-1102. doi: 10.1001/jama.2018.11100
  • Smye SW, Frangi AF. Interdisciplinary research: shaping the healthcare of the future. Future Healthc J. 2021;8(2):e218-e223. doi: 10.7861/fhj.2021-0025
  • Bhatt C, Naik N, Bhatia MS, et al. The state of the art of deep learning models in medical science and their challenges. Multimedia Syst. 2021;27(4):599-613. doi: 10.1007/s00530-020-00694-1
  • Khosravi M, Frizzo-Barker J, Nguyen Q, et al. Artificial intelligence and decision-making in healthcare: a thematic analysis of a systematic review of reviews. Health Serv Res Manag Epidemiol. 2024;11:23333928241234863. doi: 10.1177/23333928241234863
  • Wang F, Preininger A. AI in health: state of the art, challenges, and future directions. Yearb Med Inform. 2019;28(1):016-026. doi: 10.1055/s-0039-1677908
  • Kocyigit BF, Assylbek MI, Yessirkepov M. Telerehabilitation: lessons from the COVID-19 pandemic and future perspectives. Rheumatol Int. 2024;44(4):577-582. doi: 10.1007/s00296-024-05537-0
  • Sardari S, Marzbanrad F, Toosizadeh N, et al. Artificial intelligence for skeleton-based physical rehabilitation action evaluation: a systematic review. Comput Biol Med. 2023;158:106835. doi: 10.1016/j.compbiomed.2023.106835
  • Debnath B, Dhar M, Mondal B, et al. A review of computer vision-based approaches for physical rehabilitation and assessment. Multimedia Syst. 2022;28(1):209-239. doi: 10.1007/s10462-025-11180-3
  • Kulkarni SA, Ganu P, Acharya B, et al. A brief analysis of key machine learning methods for predicting Medicare payments related to physical therapy practices in the United States. Information. 2021;12(2):57. doi: 10.3390/info12020057
  • Bai Y, Liu F, Zhang H. Artificial intelligence limb rehabilitation system on account of virtual reality technology on long-term health management of stroke patients in the context of the internet. Comput Math Methods Med. 2022;2022:2688003. doi: 10.1155/2022/2688003
  • Zhang X, Rong X, Luo H. Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics. Front Rehabil Sci. 2024;5:1246773. doi: 10.3389/fresc.2024.1246773
  • Aderinto N, Onwusuru I, Chukwuneke F, et al. Exploring the efficacy of virtual reality-based rehabilitation in stroke: a narrative review of current evidence. Ann Med. 2023;55(2):2285907. doi: 10.1080/07853890.2023.2285907
  • Godse SP, Patel S, Bhatt B, et al. Musculoskeletal physiotherapy using artificial intelligence and machine learning. Int J Innov Sci Res Technol. 2019;4(11):592-598.
  • Kaczmarczyk K, Wit A, Krawczyk M, Zaborski L. Artificial neural networks (ANN) applied for gait classification and physiotherapy monitoring in post-stroke patients. In: Artificial neural networks—methodological advances and biomedical applications. InTech; 2011. doi: 10.5772/15363
  • Tack C. Artificial intelligence and machine learning: applications in musculoskeletal physiotherapy. Musculoskelet Sci Pract. 2019;39:164-169. doi: 10.1016/j.msksp.2018.11.012
  • Ramanandi VH. Role and scope of artificial intelligence in physiotherapy: a scientific review of literature. Int J Adv Sci Res. 2021;6(1):11-14. doi: 10.36478/makrjms.2024.12.399.412
  • Donthu N, Kumar S, Mukherjee D, et al. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-296. doi:10.1016/j.jbusres.2021.04.070
  • Aria M, Cuccurullo C, Aria MM. Package ‘bibliometrix’. CRAN. https://cran.r-project.org/web/packages/bibliometrix/bibliometrix.pdf. Published 2022. Accessed January 2, 2025.
  • Lord Ferguson S. Is the end of the pandemic the end of telerehabilitation? Phys Ther. 2022;102(4). doi: 10.1093/ptj/pzac004
  • Nogales A, Rodríguez-Aragón M, García-Tejedor ÁJ. A systematic review of the application of deep learning techniques in the physiotherapeutic therapy of musculoskeletal pathologies. Comput Biol Med. 2024;172:108082. doi: 10.1016/j.compbiomed.2024.108082
  • Sam RY, Nordin NAM, Kaur H, et al. Types, functions and mechanisms of robot-assisted intervention for fall prevention: a systematic scoping review. Arch Gerontol Geriatr. 2023:105117. doi: 10.1016/j.archger.2023.105117.
  • Usmani S, Khusro S, Arif M, et al. Latest research trends in fall detection and prevention using machine learning: a systematic review. Sensors (Basel). 2021;21(15):5134. doi: 10.3390/s21155134
  • Yenişehir S. Artificial intelligence based on falling in older people: a bibliometric analysis. Aging Med (Milton). 2024;7(2):162-170. doi: 10.1002/agm2.12302
  • Fernandes FG, de Santana EM. Machine learning applied to neurorehabilitation: a systematic mapping. J Adv Theor Appl Inform. 2020;5(1). doi: 10.26729/jadi.v5i1.3072
  • Díaz-Mohedo E, Odriozola Aguirre I, Molina García E, Infantes-Rosales MA, Hita-Contreras F. Functional exercise versus specific pelvic floor exercise: observational pilot study in female university students. Healthcare (Basel). 2023;11(4):561. doi:10.3390/healthcare11040561
  • Sumner J, Lim HW, Chong LS, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: a systematic review. Artif Intell Med. 2023;146:102693. doi:10.1016/j.artmed.2023.102693
  • Abedi A, Colella TJ, Pakosh M, Khan SS. Artificial intelligence-driven virtual rehabilitation for people living in the community: a scoping review. NPJ Digit Med. 2024;7(1):25. doi:10.1038/s41746-024-00939-4

Fizyoterapide Teknoloji: Fizyoterapi ve Rehabilitasyonda Yapay Zekâya Dair Bibliyometrik Bir Analiz

Year 2025, Volume: 10 Issue: 2, 145 - 152, 30.06.2025
https://doi.org/10.26453/otjhs.1659222

Abstract

Amaç: Bu çalışma, fizyoterapi ve rehabilitasyon alanında yapay zekânın mevcut durumunu nicel ve nitel olarak değerlendirmeyi amaçlamaktadır.
Materyal ve Metot: Bibliyometrik veriler, Web of Science veri tabanında başlık ve özet anahtar kelime aramaları yapılarak toplanmıştır. “Makine öğrenimi,” “derin öğrenme,” “yapay sinir ağı,” “yapay zekâ,” “doğal dil işleme” ve “fizyoterapi” gibi anahtar kelimeler kullanılarak toplam 187 makaleye ulaşılmıştır.
Bulgular: 2001–2024 yılları arasında yayımlanan toplam 187 makale analiz edilmiştir. En fazla yayının yapıldığı yıl 2023 olup, bu yıl içinde 47 makale yayımlanmıştır. En üretken araştırma alanı “Elektrik Elektronik Mühendisliği” olarak belirlenmiştir. En sık karşılaşılan terimler arasında “Makine Öğrenimi,” “Rehabilitasyon” ve “Yapay Zekâ” yer almaktadır.
Sonuç: Yapay zekâ ve fizyoterapi üzerine yapılan yayınlar son yıllarda önemli ölçüde artmıştır. Bu bulgular, klinik uygulamalar, tedaviye yönelik karar verme süreçleri ve rehabilitasyon araştırmaları açısından yapay zekâ destekli teknolojilerin artan önemini vurgulamaktadır. Fizyoterapistler, sağlık profesyonelleri ve disiplinler arası araştırmacılar için bu çalışma, yükselen eğilimler ve odaklanılan alanlar hakkında değerli içgörüler sunmaktadır. Multidisipliner çalışma yapan araştırmacılar için Scopus ve PubMed gibi farklı veri tabanlarından çıkarılacak bibliyometrik analizler gelecekteki çalışmalara yön verebilir.

References

  • Jakhar D, Kaur I. Artificial intelligence, machine learning and deep learning: definitions and differences. Clin Exp Dermatol. 2020;45(1):131-132. doi: 10.1111/ced.14029
  • Park CW, Lee J, Lee JH, et al. Artificial intelligence in health care: current applications and issues. J Korean Med Sci. 2020;35(42). doi: 10.3346/jkms.2020.35.e379
  • Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317-1318. doi: 10.1001/jama.2017.18391
  • Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320(11):1101-1102. doi: 10.1001/jama.2018.11100
  • Smye SW, Frangi AF. Interdisciplinary research: shaping the healthcare of the future. Future Healthc J. 2021;8(2):e218-e223. doi: 10.7861/fhj.2021-0025
  • Bhatt C, Naik N, Bhatia MS, et al. The state of the art of deep learning models in medical science and their challenges. Multimedia Syst. 2021;27(4):599-613. doi: 10.1007/s00530-020-00694-1
  • Khosravi M, Frizzo-Barker J, Nguyen Q, et al. Artificial intelligence and decision-making in healthcare: a thematic analysis of a systematic review of reviews. Health Serv Res Manag Epidemiol. 2024;11:23333928241234863. doi: 10.1177/23333928241234863
  • Wang F, Preininger A. AI in health: state of the art, challenges, and future directions. Yearb Med Inform. 2019;28(1):016-026. doi: 10.1055/s-0039-1677908
  • Kocyigit BF, Assylbek MI, Yessirkepov M. Telerehabilitation: lessons from the COVID-19 pandemic and future perspectives. Rheumatol Int. 2024;44(4):577-582. doi: 10.1007/s00296-024-05537-0
  • Sardari S, Marzbanrad F, Toosizadeh N, et al. Artificial intelligence for skeleton-based physical rehabilitation action evaluation: a systematic review. Comput Biol Med. 2023;158:106835. doi: 10.1016/j.compbiomed.2023.106835
  • Debnath B, Dhar M, Mondal B, et al. A review of computer vision-based approaches for physical rehabilitation and assessment. Multimedia Syst. 2022;28(1):209-239. doi: 10.1007/s10462-025-11180-3
  • Kulkarni SA, Ganu P, Acharya B, et al. A brief analysis of key machine learning methods for predicting Medicare payments related to physical therapy practices in the United States. Information. 2021;12(2):57. doi: 10.3390/info12020057
  • Bai Y, Liu F, Zhang H. Artificial intelligence limb rehabilitation system on account of virtual reality technology on long-term health management of stroke patients in the context of the internet. Comput Math Methods Med. 2022;2022:2688003. doi: 10.1155/2022/2688003
  • Zhang X, Rong X, Luo H. Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics. Front Rehabil Sci. 2024;5:1246773. doi: 10.3389/fresc.2024.1246773
  • Aderinto N, Onwusuru I, Chukwuneke F, et al. Exploring the efficacy of virtual reality-based rehabilitation in stroke: a narrative review of current evidence. Ann Med. 2023;55(2):2285907. doi: 10.1080/07853890.2023.2285907
  • Godse SP, Patel S, Bhatt B, et al. Musculoskeletal physiotherapy using artificial intelligence and machine learning. Int J Innov Sci Res Technol. 2019;4(11):592-598.
  • Kaczmarczyk K, Wit A, Krawczyk M, Zaborski L. Artificial neural networks (ANN) applied for gait classification and physiotherapy monitoring in post-stroke patients. In: Artificial neural networks—methodological advances and biomedical applications. InTech; 2011. doi: 10.5772/15363
  • Tack C. Artificial intelligence and machine learning: applications in musculoskeletal physiotherapy. Musculoskelet Sci Pract. 2019;39:164-169. doi: 10.1016/j.msksp.2018.11.012
  • Ramanandi VH. Role and scope of artificial intelligence in physiotherapy: a scientific review of literature. Int J Adv Sci Res. 2021;6(1):11-14. doi: 10.36478/makrjms.2024.12.399.412
  • Donthu N, Kumar S, Mukherjee D, et al. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-296. doi:10.1016/j.jbusres.2021.04.070
  • Aria M, Cuccurullo C, Aria MM. Package ‘bibliometrix’. CRAN. https://cran.r-project.org/web/packages/bibliometrix/bibliometrix.pdf. Published 2022. Accessed January 2, 2025.
  • Lord Ferguson S. Is the end of the pandemic the end of telerehabilitation? Phys Ther. 2022;102(4). doi: 10.1093/ptj/pzac004
  • Nogales A, Rodríguez-Aragón M, García-Tejedor ÁJ. A systematic review of the application of deep learning techniques in the physiotherapeutic therapy of musculoskeletal pathologies. Comput Biol Med. 2024;172:108082. doi: 10.1016/j.compbiomed.2024.108082
  • Sam RY, Nordin NAM, Kaur H, et al. Types, functions and mechanisms of robot-assisted intervention for fall prevention: a systematic scoping review. Arch Gerontol Geriatr. 2023:105117. doi: 10.1016/j.archger.2023.105117.
  • Usmani S, Khusro S, Arif M, et al. Latest research trends in fall detection and prevention using machine learning: a systematic review. Sensors (Basel). 2021;21(15):5134. doi: 10.3390/s21155134
  • Yenişehir S. Artificial intelligence based on falling in older people: a bibliometric analysis. Aging Med (Milton). 2024;7(2):162-170. doi: 10.1002/agm2.12302
  • Fernandes FG, de Santana EM. Machine learning applied to neurorehabilitation: a systematic mapping. J Adv Theor Appl Inform. 2020;5(1). doi: 10.26729/jadi.v5i1.3072
  • Díaz-Mohedo E, Odriozola Aguirre I, Molina García E, Infantes-Rosales MA, Hita-Contreras F. Functional exercise versus specific pelvic floor exercise: observational pilot study in female university students. Healthcare (Basel). 2023;11(4):561. doi:10.3390/healthcare11040561
  • Sumner J, Lim HW, Chong LS, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: a systematic review. Artif Intell Med. 2023;146:102693. doi:10.1016/j.artmed.2023.102693
  • Abedi A, Colella TJ, Pakosh M, Khan SS. Artificial intelligence-driven virtual rehabilitation for people living in the community: a scoping review. NPJ Digit Med. 2024;7(1):25. doi:10.1038/s41746-024-00939-4
There are 30 citations in total.

Details

Primary Language English
Subjects Rehabilitation
Journal Section Research article
Authors

Güzin Kaya Aytutuldu 0000-0002-0192-9861

İlhan Aytutuldu 0000-0003-4237-8442

Tansu Birinci Olgun 0000-0002-7993-3254

Yusuf Sinan Akgül 0000-0001-8501-4812

Early Pub Date June 24, 2025
Publication Date June 30, 2025
Submission Date March 16, 2025
Acceptance Date June 16, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

AMA Kaya Aytutuldu G, Aytutuldu İ, Birinci Olgun T, Akgül YS. Technology in Physiotherapy: A Bibliometric Analysis of Artificial Intelligence in Physiotherapy and Rehabilitation. OTJHS. June 2025;10(2):145-152. doi:10.26453/otjhs.1659222

Creative Commons License

Online Türk Sağlık Bilimleri Dergisi [Online Turkish Journal of Health Sciences (OTJHS)] is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an open-access journal distributed under the terms of the Creative Commons Attribution License (CC BY-NC 4.0). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Click here to get help about article submission processes and "Copyright Transfer Form".