Research Article
BibTex RIS Cite

Lignin/su bazlı poliüretan kompozit kaplamaların PET/PA6 bikomponent dokunmamış kumaşların kopma mukavemeti ve UV koruma özelliklerine etkisi

Year 2025, Volume: 31 Issue: 2, 302 - 308, 29.04.2025

Abstract

Bu çalışma, dört farklı modifiye edilmemiş alkali lignin konsantrasyonunda (%1, %3, %5 ve %10) su bazlı poliüretan (WPU)/lignin kompozit kaplama formülasyonlarının hazırlanmasını ve poliester/poliamid (PET/PA6) bikomponent dokunmamış kumaşlara uygulanmasını içermektedir. Bu formülasyonlar, bir kaplama aplikatörü kullanılarak PET/PA6 bikomponent dokunmamış kumaşlara uygulanmış ve ardından ısı ile fikse edilmiştir. Kaplanmış ve ısıl olarak fikse edilen kumaşların kopma mukavemeti, hidrofobiklik ve ultraviyole ışığa (UV) karşı koruma özellikleri araştırılmıştır. Ayrıca, farklı lignin konsantrasyonlarına sahip formülasyonlarla hazırlanan kürlenmiş filmlerin karakterizasyonlarının analizi için Fourier Dönüşümü Kızılötesi (FTIR) spektroskopisi kullanılmıştır. Lignin konsantrasyonu arttıkça hem kopma mukavemetinde hem de UV koruma faktörlerinde (UPF) dikkate değer bir artış olmuştur. Su bazlı poliüretanın varlığı nedeniyle yüzeyin hidrofobikliği azalırken, yüksek lignin konsantrasyonları yüzey temas açısı değerlerinin artmasına neden olmuştur. Su bazlı poliüretan nedeniyle yüzey hidrofobikliğinin azalmasına rağmen, yüksek lignin konsantrasyonları daha yüksek yüzey temas açısı değerlerine katkıda bulunmuştur. Kaplamalı kumaşların UV koruma değerlerinde, işlem görmemiş dokunmamış kumaşlara göre önemli bir gelişme görülmüştür. En yüksek UPF değeri olan 30.16, en yüksek lignin konsantrasyonuna (%10) sahip olan formülasyonda elde edilmiştir. Bu araştırma, tekstil endüstrisinde umut verici uygulamalar sunan, çevre dostu ve sürdürülebilir çok işlevli WPU/lignin kaplamaları oluşturmak için basit bir yöntem sunmaktadır.

References

  • [1] Venkataraman D, Shabani E, Park JH. "Advancement of nonwoven fabrics in personal protective equipment". Materials, 16(11), 3964, 2023.
  • [2] Das D, Pradhan AK, Chattopadhyay R, Singh SN. "Composite nonwovens". Textile Progress, 44(1), 1-84, 2012.
  • [3] Yen MS, Kuo MC, Chen CW, Yeh CW. "Fabrication of novel multifunctional hybrid materials for PET/PA6 nonwoven fabrics finishing". Fibers and Polymers, 14, 772-780, 2013.
  • [4] Duo Y, Qian X, Zhao B, Gao L, Guo X, Zhang S, Bai H, Tang L. "Easily splittable hollow segmented-pie microfiber nonwoven material with excellent filtration and thermalwet comfort for energy savings". Journal of Materials Research and Technology, 17, 876-887, 2022.
  • [5] Zhao B, Han X, Hu C, Qian X, Duo Y, Wang Z, Feng Q, Yang Q, D. "Hydrophilic modification of polyester/polyamide 6 hollow segmented pie microfiber nonwovens by UV/TiO2/H2O2". Molecules, 28(9), 3826, 2023.
  • [6] Gupta M, Sheikh J, Annu, Singh A. "An eco-friendly route to develop cellulose-based multifunctional finished linen fabric using ZnO NPs and CS network". Journal of Industrial and Engineering Chemistry, 97, 383-389, 2021.
  • [7] Bergamasco S, Tamantini S, Zikeli F, Vinciguerra V, Mugnozza GS, Romagnoli M. "Synthesis and characterizations of eco-friendly organosolv lignin-based polyurethane coating films for the coating industry". Polymers, 14(3), 416, 2022.
  • [8] Baysal G. "Mechanical and UV protection performances of polylactic acid spunlace nonwoven fabrics coated by ecofriendly lignin/water-borne polyurethane composite coatings". Journal of Textile Institute, 115(11), 2185-2197, 2024.
  • [9] Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OL, Puglia D. "Multifunctional lignin-based nanocomposites and nanohybrids". Green Chemistry, 23(18), 6698-6760, 2021.
  • [10] Tanase-opedal M, Espinosa E, Rodr A, Chinga-carrasco G. "Lignin : A biopolymer from forestry biomass for biocomposites and 3D printing". Materials, 12(18), 3006, 2019.
  • [11] Gaynor JG, Szlek DB, Kwon S, Tiller PS, Byington MS, Argyropoulos DS. "Lignin use in nonwovens: A review". BioResources, 17(2), 3445-3488, 2022.
  • [12] Alinejad M, Henry C, Nikafshar S, Gondaliya A, Bagheri S, Chen N, Singh SK, Hodge DB, Nejad M. "Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings. and adhesives". Polymers, 11(7), 1202, 2019
  • [13] Klein SE, Rumpf J, Kusch P, Albach R, Rehahn M, Witzleben S, Schulze M. "Unmodified kraft lignin isolated at room temperature from aqueous solution for preparation of highly flexible transparent polyurethane coatings". RSC Advances, 8, 40765-40777, 2018.
  • [14] Lai Y, Qian Y, Yang D, Qiu X, Zhou M. "Preparation and performance of lignin-based waterborne polyurethane emulsion". Industrial Crops and Products, 170, 113739, 2021.
  • [15] Zimniewska M, Batog J, Bogacz E, Romanowska B. "Functionalization of natural fibres textiles by improvement of nanoparticles fixation on their surface". Journal of Fiber Bioengineering & Informatics, 5, 321-322, 2012.
  • [16] Zimniewska M, Kozłowski R, Batog, J. "Nanolignin modified linen fabric as a multifunctional product". Molecular Crystals and Liquid Crystals, 484(1), 43-50, 2008.
  • [17] Sunthornvarabhas J, Liengprayoon S, Suwonsichon T. "Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product". Industrial Crops and Products, 109, 857-861, 2017.
  • [18] Baysal G. "Sustainable polylactic acid spunlace nonwoven fabrics with lignin/zinc oxide/water-based polyurethane composite coatings", International Journal of Biological Macromolecules, 254, 127678, 2024.
  • [19] Mogul Nonwoven. “Polyester/Polyamide (PET/PA) Bicomponent TCS®, Trilobal Splittable Microfilament Spunbond Hydroentangeld Fabrics”. https://mogulsb.com/en/microfilaments/madalinemultilobal-pet-pa (02.12.2023).
  • [20] Ray A, Singha K, Pandit P, Maity S. Advances in Functional and Protective Textiles. Editors: Ul-Islam S, Butola BS. Advanced Ultraviolet Protective Agents for Textiles and Clothing, 243-260, Cambridge, USA, Woodhead Publishing, 2020.
  • [21] Ng QY, Low, JH, Pang MM, Idumah CI. “Properties enhancement of waterborne polyurethane bio-composite films with 3-aminopropyltriethoxy silane functionalized lignin”. Journal of Polymers and the Environment, 31, 688697, 2022.
  • [22] Ridho MR, Agustiany EA, Rahmi Dn M, Windra EM, Ghozali M, Restu WK, Falah F, Adly M, Lubis R, Syamani FA, Nurhamiyah Y, Hidayati S, Sohail A. "Lignin as green filler in polymer composites: development methods, characteristics, and potential applications". Advances in Materials Science & Engineering, 1363481, 2022.
  • [23] Zhang Z, Terrasson V, Guénin E. “Lignin nanoparticles and their nanocomposites”. Nanomaterials, 11(5), 1336, 2021.
  • [24] Ma X, Chen J, Zhu J, Yan N. "Lignin-based polyurethane: recent advances and future perspectives". Macromolecular Rapid Communications, 42(3), 2000492, 2021.
  • [25] Pandya H, Mahanwar P. "Fundamental insight into anionic aqueous polyurethane dispersions". Advanced Industrial and Engineering Polymer Research, 3(3), 102-110, 2020.
  • [26] Zhang N, Liu P, Yi Y, Gibril ME, Wang S, Kong F. "Application of polyvinyl acetate/lignin copolymer as biobased coating material and its effects on paper properties", Coatings, 11 (2), 192, 2021.
  • [27] Wang W, Guo T, Sun K, Jin Y, Gu F, Xiao H. "Lignin redistribution for enhancing barrier properties of cellulose-based materials". Polymers(Basel), 11(12), 1929, 2019.
  • [28] Henn KA, Forsman N, Zou T, Österberg M. "Colloidal lignin particles and epoxies for bio-based, durable, and multiresistant nanostructured coatings". ACS Applied Materials & Interfaces. 13(29), 34793-34806, 2021.
  • [29] Chen J, Fan X, Zhang L, Chen X, Sun S, Sun RC. "Research progress in lignin-based slow/controlled release fertilizer". ChemSusChem, 13(17), 4356-4366, 2020.

Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics

Year 2025, Volume: 31 Issue: 2, 302 - 308, 29.04.2025

Abstract

This study involves the preparation of water-borne polyurethane (WPU)/lignin composite coating formulations at four distinct unmodified alkali lignin concentrations (1%, 3%, 5%, and 10%) and their application to polyester/polyamide (PET/PA6) bicomponent nonwoven fabrics. These formulations were applied to PET/PA6 bicomponent nonwoven fabrics using a coating applicator and subsequently thermally cured. The properties of the coated and thermally cured fabrics, including tensile strength, hydrophobicity, and ultraviolet light (UV) protection, were investigated. Furthermore, Fourier Transform Infrared (FTIR) spectroscopy was employed to analyze the cured films prepared from formulations with varying lignin concentrations. As the lignin concentration increased, there was a notable enhancement in both tensile strength and UV protection factors (UPF). While the hydrophobicity of the surface diminished due to the presence of WPU, higher lignin concentrations resulted in increased surface contact angle values. Despite the decrease in surface hydrophobicity due to the water-based polyurethane, elevated lignin concentrations contributed to higher surface contact angle values. The UV protection values of coated fabrics exhibited a significant improvement compared to untreated nonwoven fabric. The highest UPF value of 30.16 was achieved with the formulation having the highest lignin concentration (10%). This research introduces a straightforward method for creating environmentally friendly and sustainable multifunctional WPU/lignin coatings, offering promising applications in the textile industry.

References

  • [1] Venkataraman D, Shabani E, Park JH. "Advancement of nonwoven fabrics in personal protective equipment". Materials, 16(11), 3964, 2023.
  • [2] Das D, Pradhan AK, Chattopadhyay R, Singh SN. "Composite nonwovens". Textile Progress, 44(1), 1-84, 2012.
  • [3] Yen MS, Kuo MC, Chen CW, Yeh CW. "Fabrication of novel multifunctional hybrid materials for PET/PA6 nonwoven fabrics finishing". Fibers and Polymers, 14, 772-780, 2013.
  • [4] Duo Y, Qian X, Zhao B, Gao L, Guo X, Zhang S, Bai H, Tang L. "Easily splittable hollow segmented-pie microfiber nonwoven material with excellent filtration and thermalwet comfort for energy savings". Journal of Materials Research and Technology, 17, 876-887, 2022.
  • [5] Zhao B, Han X, Hu C, Qian X, Duo Y, Wang Z, Feng Q, Yang Q, D. "Hydrophilic modification of polyester/polyamide 6 hollow segmented pie microfiber nonwovens by UV/TiO2/H2O2". Molecules, 28(9), 3826, 2023.
  • [6] Gupta M, Sheikh J, Annu, Singh A. "An eco-friendly route to develop cellulose-based multifunctional finished linen fabric using ZnO NPs and CS network". Journal of Industrial and Engineering Chemistry, 97, 383-389, 2021.
  • [7] Bergamasco S, Tamantini S, Zikeli F, Vinciguerra V, Mugnozza GS, Romagnoli M. "Synthesis and characterizations of eco-friendly organosolv lignin-based polyurethane coating films for the coating industry". Polymers, 14(3), 416, 2022.
  • [8] Baysal G. "Mechanical and UV protection performances of polylactic acid spunlace nonwoven fabrics coated by ecofriendly lignin/water-borne polyurethane composite coatings". Journal of Textile Institute, 115(11), 2185-2197, 2024.
  • [9] Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OL, Puglia D. "Multifunctional lignin-based nanocomposites and nanohybrids". Green Chemistry, 23(18), 6698-6760, 2021.
  • [10] Tanase-opedal M, Espinosa E, Rodr A, Chinga-carrasco G. "Lignin : A biopolymer from forestry biomass for biocomposites and 3D printing". Materials, 12(18), 3006, 2019.
  • [11] Gaynor JG, Szlek DB, Kwon S, Tiller PS, Byington MS, Argyropoulos DS. "Lignin use in nonwovens: A review". BioResources, 17(2), 3445-3488, 2022.
  • [12] Alinejad M, Henry C, Nikafshar S, Gondaliya A, Bagheri S, Chen N, Singh SK, Hodge DB, Nejad M. "Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings. and adhesives". Polymers, 11(7), 1202, 2019
  • [13] Klein SE, Rumpf J, Kusch P, Albach R, Rehahn M, Witzleben S, Schulze M. "Unmodified kraft lignin isolated at room temperature from aqueous solution for preparation of highly flexible transparent polyurethane coatings". RSC Advances, 8, 40765-40777, 2018.
  • [14] Lai Y, Qian Y, Yang D, Qiu X, Zhou M. "Preparation and performance of lignin-based waterborne polyurethane emulsion". Industrial Crops and Products, 170, 113739, 2021.
  • [15] Zimniewska M, Batog J, Bogacz E, Romanowska B. "Functionalization of natural fibres textiles by improvement of nanoparticles fixation on their surface". Journal of Fiber Bioengineering & Informatics, 5, 321-322, 2012.
  • [16] Zimniewska M, Kozłowski R, Batog, J. "Nanolignin modified linen fabric as a multifunctional product". Molecular Crystals and Liquid Crystals, 484(1), 43-50, 2008.
  • [17] Sunthornvarabhas J, Liengprayoon S, Suwonsichon T. "Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product". Industrial Crops and Products, 109, 857-861, 2017.
  • [18] Baysal G. "Sustainable polylactic acid spunlace nonwoven fabrics with lignin/zinc oxide/water-based polyurethane composite coatings", International Journal of Biological Macromolecules, 254, 127678, 2024.
  • [19] Mogul Nonwoven. “Polyester/Polyamide (PET/PA) Bicomponent TCS®, Trilobal Splittable Microfilament Spunbond Hydroentangeld Fabrics”. https://mogulsb.com/en/microfilaments/madalinemultilobal-pet-pa (02.12.2023).
  • [20] Ray A, Singha K, Pandit P, Maity S. Advances in Functional and Protective Textiles. Editors: Ul-Islam S, Butola BS. Advanced Ultraviolet Protective Agents for Textiles and Clothing, 243-260, Cambridge, USA, Woodhead Publishing, 2020.
  • [21] Ng QY, Low, JH, Pang MM, Idumah CI. “Properties enhancement of waterborne polyurethane bio-composite films with 3-aminopropyltriethoxy silane functionalized lignin”. Journal of Polymers and the Environment, 31, 688697, 2022.
  • [22] Ridho MR, Agustiany EA, Rahmi Dn M, Windra EM, Ghozali M, Restu WK, Falah F, Adly M, Lubis R, Syamani FA, Nurhamiyah Y, Hidayati S, Sohail A. "Lignin as green filler in polymer composites: development methods, characteristics, and potential applications". Advances in Materials Science & Engineering, 1363481, 2022.
  • [23] Zhang Z, Terrasson V, Guénin E. “Lignin nanoparticles and their nanocomposites”. Nanomaterials, 11(5), 1336, 2021.
  • [24] Ma X, Chen J, Zhu J, Yan N. "Lignin-based polyurethane: recent advances and future perspectives". Macromolecular Rapid Communications, 42(3), 2000492, 2021.
  • [25] Pandya H, Mahanwar P. "Fundamental insight into anionic aqueous polyurethane dispersions". Advanced Industrial and Engineering Polymer Research, 3(3), 102-110, 2020.
  • [26] Zhang N, Liu P, Yi Y, Gibril ME, Wang S, Kong F. "Application of polyvinyl acetate/lignin copolymer as biobased coating material and its effects on paper properties", Coatings, 11 (2), 192, 2021.
  • [27] Wang W, Guo T, Sun K, Jin Y, Gu F, Xiao H. "Lignin redistribution for enhancing barrier properties of cellulose-based materials". Polymers(Basel), 11(12), 1929, 2019.
  • [28] Henn KA, Forsman N, Zou T, Österberg M. "Colloidal lignin particles and epoxies for bio-based, durable, and multiresistant nanostructured coatings". ACS Applied Materials & Interfaces. 13(29), 34793-34806, 2021.
  • [29] Chen J, Fan X, Zhang L, Chen X, Sun S, Sun RC. "Research progress in lignin-based slow/controlled release fertilizer". ChemSusChem, 13(17), 4356-4366, 2020.
There are 29 citations in total.

Details

Primary Language English
Subjects Textile Sciences and Engineering (Other)
Journal Section Research Article
Authors

Gülçin Baysal

Publication Date April 29, 2025
Submission Date December 2, 2023
Acceptance Date June 11, 2024
Published in Issue Year 2025 Volume: 31 Issue: 2

Cite

APA Baysal, G. (2025). Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 302-308.
AMA Baysal G. Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. April 2025;31(2):302-308.
Chicago Baysal, Gülçin. “Effect of lignin/Water-Borne Polyurethane Composite Coatings on Tensile Strength and UV Protection Properties of PET/PA6 Bicomponent Nonwoven Fabrics”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 2 (April 2025): 302-8.
EndNote Baysal G (April 1, 2025) Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 2 302–308.
IEEE G. Baysal, “Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 2, pp. 302–308, 2025.
ISNAD Baysal, Gülçin. “Effect of lignin/Water-Borne Polyurethane Composite Coatings on Tensile Strength and UV Protection Properties of PET/PA6 Bicomponent Nonwoven Fabrics”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/2 (April 2025), 302-308.
JAMA Baysal G. Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:302–308.
MLA Baysal, Gülçin. “Effect of lignin/Water-Borne Polyurethane Composite Coatings on Tensile Strength and UV Protection Properties of PET/PA6 Bicomponent Nonwoven Fabrics”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 2, 2025, pp. 302-8.
Vancouver Baysal G. Effect of lignin/water-borne polyurethane composite coatings on tensile strength and UV protection properties of PET/PA6 bicomponent nonwoven fabrics. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(2):302-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.