Research Article
BibTex RIS Cite

CONSUMER PREFERENCES IN THE REAL PROPERTY SECTOR WITH GOOGLE TRENDS

Year 2025, Volume: 21 Issue: 1, 1 - 29

Abstract

As technology has started to take its place in every area of life, it has become inevitable for the sectors to keep up with this change. The survival of businesses by changing the way they do business can be proportional to their adaptation to this age. In this context, it is seen that technology has also started to be used in the real property sector. Consumers who do real property research can also find the opportunity to evaluate their preferences from a broader perspective via search engines on the internet in order to access fast and detailed information. The aim of this study is to determine what the consumer's preferences are regarding real property in Turkey with Google Trends data. In order to achieve this goal, a literature review was conducted first. Subsequently, data was accessed using the terms "real property", "real estate", "real property for sale", "real property for rent", "real estate for sale", "real estate for rent", "housing for sale", "housing for rent", "land" and "field" via Google Trends. According to the data, it has been determined that the consumer uses the concept of real estate more than real property in search engines. In the conclusion, an attempt has been made to create a perspective for both businesses and researchers. By taking into account popular concepts, businesses operating in the property sector can reach potential customers more easily and rank higher in search engines.

References

  • Ali, Z., S.,  Song, J. (2022). Digital platforms and real estate industry during COVID-19. International Real Estate Review, 25(4), 499 – 523.
  • Antczak, B. (2024). The influence of digital marketing and social media marketing on consumer buying behavior. Journal of Modern Science, 2(56), 310-335. https://doi.org/10.13166/jms/189429
  • Askitas, N.,  Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107-120.
  • Asur, S.,  Huberman, B. A. (2010). Predicting the future with social media. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 492-499. https://doi.org/10.1109/WI-IAT.2010.63
  • Babu, V., P.,  Ramamoorthy, R. (2020). A study on social media and digital marketing. Malaya Journal of Matematik, S(2), 3193-3195. https://doi.org/10.26637/MJM0S20/0821
  • Baker, S., R.,  Fradkin, A. (2017). The impact of unemployment insurance on job search: evidence from Google search data. The Review of Economics and Statistics, 99(5), 756-768. https://doi.org/10.1162/REST_a_00674
  • Bala, M.,  Verma, D. (2018). A critical review of digital marketing. International Journal of Management, IT & Engineering, 8(10), 321-339.
  • Beharay, A.  Tilak, P. (2021). A study on influence of social media on digital marketing. Turkish Online Journal of Qualitative Inquiry (TOJQI), 12(6), 4810-4816.
  • Bełej (2023). Predicting housing price trends in Poland: Online social engagement - Google Trends. Real Estate Management and Valuation, 31(4), 73-87. https://doi.org/10.2478/remav-2023-0032
  • Beracha, E.,  Wintoki, M., B. (2013). Forecasting residential real estate price changes from online search activity. Journal of Real Estate Research, 35(3), 283-312. https:/doi.org/10.1080/10835547.2013.12091364
  • Berthon, P., R., Pitt, L., F., Plangger, K.  Shapiro, D. (2012). Marketing meets Web 2.0, social media, and creative consumers: Implications for international marketing strategy. Business Horizons, 55, 261-271. https://doi.org/10.1080/10835547.2013.12091364
  • Brochado, A. (2020). Google search based sentiment indexes. IIMB Management Review, 32, 325 – 335. https://doi.org/10.1016/j.iimb.2019.10.015
  • Bulczak, G., M. (2021). Use of Google trends to predict the real estate market: Evidence from the United Kingdom. International Real Estate Review, 24(4), 613 – 631.
  • Campaign Monitor (2019). The new rules of email marketing. (campaignmonitor.com, 2025). https://www.campaignmonitor.com/resources/guides/email-marketing-new-rules/ (erişim tarihi: 02/06/2025)
  • Castelnuovo, E.,  Tran, T. D. (2017). Google it up! A Google Trends-based uncertainty index for the United States and Australia. Economics Letters, 161, 149-153. https://doi.org/10.1016/j.econlet.2017.09.032
  • Choi, H.,  Varian, H. (2009). Predicting initial claims for unemployment benefits. https://static.googleusercontent.com/media/research.google.com/tr//archive/papers/initialclaimsUS.pdf (erişim: 01/03/2025)
  • Çınar, B.,  Yenipınar, U. (2018). Türkiye Turistik Destinasyon İmajının Google Trends Yoluyla İncelenmesi. Birdir, K. (Ed.) 2. Uluslararası Turizmin Geleceği Kongresi: İnovasyon, Girişimcilik ve Sürdürebilirlik Kongresi (Futourism 2018) Bildiriler Kitabı, 683-690, içinde. Mersin Üniversitesi Yayınları Yayın No: 51.
  • Das, P., Ziobrowski, A.,  Coulson, N. E. (2015). Online information search, market fundamentals and apartment real estate. J Real Estate Finan Econ, 51, 480 – 502. https://doi.org/10.1007/s11146-015-9496-1
  • Dašić, D., Vučić, V., Turčinović, Ž.,  Tošić, M. (2023). Digital marketing - marketing opportunities and the power of digital consumers. Ekonomika poljoprivrede, 70(4), 1187-1199. https://doi.org/10.59267/ekoPolj23041187D
  • Dergiades, T., Milas, C.,  Panagiotidis, T. (2015). Tweets, Google trends, and sovereign spreads in the GIIPS. Oxford Economic Papers, 67(2), 406-432. https://doi.org/10.1093/oep/gpu0466
  • Desai, V. (2019). “Digital marketing: A review” published in International Journal of Trend in Scientific Research and Development, Special Issue Fostering Innovation, Integration and Inclusion Through Interdisciplinary Practices in Management, March 2019, 196-200. https://www.ijtsrd.com/papers/ijtsrd23100.pdf
  • Desembrianita, E., Mulyono, S., Putra, W. P., & Tarjono, T. (2024). Influence of digital marketing, consumer trust, and brand loyalty on purchase intention (Case study of green product consumers). International Journal of Business, Law, and Education, 5(2), 2003 - 2015. https://doi.org/10.56442/ijble.v5i2.775
  • Doğu-Öztürk, İ. (2023, 3 Ekim). Gayrimenkul Sektörü Dijital Dünyadan Nasıl Faydalanıyor?. (2024). https://emsal.com/gayrimenkul-sektoru-dijital-dunyadan-nasil-faydalaniyor/ (erişim tarihi: 20/12/2024)
  • Durai, T.  King, R. (2015). Impact of digital marketing on the growth of consumerism, Madras University Journal Of Business And Finance, 3(2), 94-103.
  • Eser, N.  Kanca, B. (2022). Google trendler verileri ile ekoturizm kavramının incelenmesi. Manas Sosyal Araştırmalar Dergisi, 11(2), 798-814.
  • Ettredge, M., Gerdes, J.,  Karuga, G. (2005). Using Web-based search data to predict macroeconomic statistics. Communications of the Acm, 48(11), 87-92.
  • Feng, Y., Li, G., Sun, X.,  Li, J. (2019). Forecasting the number of inbound tourists with Google Trends. Procedia Computer Science, 162, 628–633. https://doi.org/10.1016/j.procs.2019.12.032
  • Franzén, A. (2023). Big data, big problems: Why scientists should refrain from using Google Trends. Acta Sociologica, 66(3), 343 – 347. https://doi.org/10.1177/00016993221151118
  • Gajera, D., & Malek, M. (2018). A Study on consumer behaviour in real estate for Vadodara city. Univers Rev, 7(12), 956-969.
  • Goel, S., Hofman, J.M., Lahaie, S., Pennock, D., M.,  Watts,D., J. (2010). Predicting consumer behavior with Web search. PNAS, 107(41), 17486-17490. https://doi.org/10.1073/pnas.1005962107
  • Hohenstatt, R., Kasbauer, M.,  Schcifers, W. (2011). “Geco” and its potential for real estate research: evidence from the U.S. housing market. The Journal of Real Estate Research, 33(4), 471-506.
  • Hollander, J., B., Potts, R., Hartt, M., Situ, M.,  Seto, A. (2023). The role of bots in U.S. real estate development online communication, Computers, Environment and Urban Systems, 99, 1-9. https://doi.org/10.1016/j.compenvurbsys.2022.101918
  • Hölzl, J., Keusch, F.,  Sajons, C. (2025). The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations. Social Science Research, 126, 1-22, 103099. https://doi.org/10.1016/j.ssresearch.2024.103099
  • Kanat, B. (2022, 22 Mart). Gayrimenkul Sektöründe Dijital Pazarlama Uygulamaları. https://www.emlakcilikegitimi.com/gayrimenkul-sektorunde-dijital-pazarlama-uygulamalari/ (Erişim tarihi: 20/12/2024).
  • Koç, M. (2025, 20 Şubat). En iyi arama motorları (2025 için 25+ arama motoru). İkas. https://ikas.com/tr/blog/en-iyi-arama-motorlari (Erişim tarihi: 26/02/2025)
  • Likos, M., Nakip, M.,  Gökmen, A. (2019). Real estate marketing and factors impacting real estate purchasing: An application on Turkey. International Journal of Applied Management Sciences and Engineering, 6(2), 15-35. https://doi.org/10.4018/IJAMSE.2019070102
  • Limnios, A., C.,  You, H. (2021). Can google trends improve housing market forecasts?. Curiosity: Interdisciplinary Journal of Research and Innovation, 2, 1-18. https://doi.org/10.36898/001c.21987 Liu, K. (2024). The measurement errors of google trends data. Discover Data, 2(7). https://doi.org/10.1007/s44248-024-00013-3
  • Mellon, J. (2014). Internet search data and issue salience: The properties of Google Trends as a measure of issue salience. Journal of Elections, Public Opinion & Parties, 24(1), 45-72. https://doi.org/10.1080/17457289.2013.846346
  • National Association of Realtors, (2024). Profile of home Buyers and Sellers 2024. https://www.nar.realtor/sites/default/files/2024-11/2024-profile-of-home-buyers-and-sellers-highlights-11-04-2024_2.pdf (Erişim tarihi:20/04/2025)
  • Nguyen, N. T, Nguyen, A., T.  Nguyen, D., T. (2024). The growth of the real estate corporate bond market in Vietnam: The role of investor sentiment. Review of Behavioral Finance, 16(4), 712-732. https://doi.org/10.1108/RBF-10-2023-0280
  • Ologunebi, J.,  Ebenezer, T. (2023). Digital marketing strategies, plan and implementations: A case study of Jumia Group and ASDA UK, Munich Personal RePEc Archive (MPRA) Paper No. 118771, 1-45. https://mpra.ub.uni-muenchen.de/118771/ (Erişim Tarihi: 07/05/2025).
  • Oust, A.,  Eidjord, O., M. (2020). Can Google search data be used as a housing bubble indicator?. International Real Estate Review, 23(2), 267-308.
  • Petrosyan, A. (2024, 12 Aralık). Global number of internet users 2005-2024. Statista. https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/#:~:text=As%20of%202024%2C%20the%20estimated,percent%20of%20the%20global%20population (Erişim tarihi: 27/04/2025).
  • Rakić, M.,  Rakić, B. (2019). The market power of digital consumers in 24/7/365 connected world. Megatrend Review, 16(2), 79-100. https://doi.org/10.5937/MegRev1902079R
  • Rizun ve Baj-Rogowska (2021). Can web search queries predict prices change on the real estate market?. 9, 70095-70117. IEEE Access, https://doi.org/10.1109/ACCESS.2021.3077860
  • Silvia, S. (2019). The importance of social media and digital marketing to attract millennials’ behavior as a consumer. Journal of International Business Research and Marketing, 4(2), 7-10. http://dx.doi.org/10.18775/jibrm.1849-8558.2015.42.3001
  • Silva, E., S., Hassani, H., Madsen, D., Ø.,  Gee, L. (2019). Googling fashion: Forecasting fashion consumer behaviour using google trends. Social Sciences, 8(111), 1-23. https://doi.org/10.3390/socsci8040111
  • Tandon, N., Kaur, S.,  Verma, R. (2020). Analysis of relationship between digital marketing and customer relationship management. International Journal of Advanced Science and Technology. 29(8) 412-418.
  • Truong, H., T. (2022). Theoretical foundations of real estate market behavior. Cogent Business & Management, 9(1), 2132590. https://doi.org/10.1080/23311975.2022.2132590
  • Türk Dil Kurumu Sözlükleri. (2022). https://sozluk.gov.tr (Erişim tarihi: 06.03.2025).
  • Türkiye İşveren Sendikaları Konfederasyonu. (2024). Dijital 2024: Küresel Görünüm Raporu, [Pdf belgesi]. https://www.tisk.org.tr/dokuman/dijital-2024-kuresel-gorunum-raporu.pdf (Erişim tarihi: 26/02/2025)
  • UAB Strateji Geliştirme Başkanlığı. (2024,Temmuz 12). Nüfusumuzun yüzde 86,5’i çevrimiç; yüzde 93,8’i Mobil. (2025). https://sgb.uab.gov.tr/haberler/nufusumuzun-yuzde-86-5-i-cevrimici-yuzde-93-8-i-mobil (Erişim tarihi: 26/02/2025).
  • Ullah, F., Sepasgozar, S., M., E.,  Wang, C. (2018). A systematic review of smart real estate technology: Drivers of, and barriers to, the use of digital disruptive technologies and online platforms. Sustainability, 10, 3142. https://doi:10.3390/su10093142
  • Ünvan, Y. A., & Badlo, Y. (2021). Digital marketing and social media: A review: Digital marketing and social media. E-Business Technologies Conference Proceedings, 1(1), 61–66. https://ebt.rs/journals/index.php/conf-proc/article/view/83
  • Venkataraman, M., Panchapagesan, V., & Jalan, E. (2018). Does internet search intensity predict house prices in emerging markets? A case of India. Property Management, 36(1), 103-118. https://doi.org/10.1108/PM-01-2017-0003
  • Vikipedi. (2025, Nisan 23). https://tr.wikipedia.org/wiki/Twitter (Erişim tarihi:31/05/2025)
  • Vikipedi. (2024, Aralık 5). https://tr.wikipedia.org/wiki/İnternet_sitesi (Erişim tarihi: 03/06/2025)
  • Vikipedi. (2024, Kasım 5). https://tr.wikipedia.org/wiki/Gayrimenkul (Erişim tarihi: 03/06/2025)
  • Wu, L.,  Brynjolfsson, E. (2015). The future of prediction: How google searches foreshadow housing prices and sales. Economic Analysis of the Digital Economy içinde, 89-118, National Bureau of Economic Research.
  • Yannopoulos, P., (2011). Impact of the internet on marketing strategy formulation. International Journal of Business and Social Science, 2(18), 1-7).
  • Yu-Cheong Yeung, T. (2019). Measuring Christian religiosity by google trends. Review of Religious Research, 61, 235–257. https://doi.org/10.1007/s13644-019-00379-w https://trends.google.com/trends (Erişim tarihi: 28/05/2025;31/05/2025)

GAYRİMENKUL SEKTÖRÜNDE GOOGLE TRENDS İLE TÜKETİCİ TERCİHLERİ

Year 2025, Volume: 21 Issue: 1, 1 - 29

Abstract

ÖZET
Teknolojinin hayatın içinde her alanda yerini almaya başlamasıyla birlikte sektörlerin de bu değişime ayak uydurması kaçınılmaz olmuştur. İşletmelerin iş yapma şekillerini değiştirerek hayatta kalabilmeleri bu çağa uyum sağlamalarıyla orantılı olabilmektedir. Bu bağlamda gayrimenkul sektöründe de teknolojinin kullanılmaya başlandığı görülmektedir. Gayrimenkul araştırması yapan tüketiciler de hızlı ve detaylı bilgilere erişebilmek adına internetten arama motorları üzerinden tercihlerini daha geniş bir bakış açısıyla değerlendirme imkanı bulabilmektedirler. Bu çalışmanın amacı, Türkiye’de Google Trends verileriyle tüketicinin gayrimenkul konusunda tercihlerinin neler olduğunun tespit edilmesidir. Bu amaca ulaşabilmek için öncelikli olarak literatür araştırması yapılmıştır. Akabinde Google Trends üzerinden “gayrimenkul”, “emlak”,“satılık gayrimenkul”, “kiralık gayrimenkul”, “satılık konut”, “kiralık konut”, “satılık emlak”, “kiralık emlak”, “arsa” ve “tarla” ifadelerini kullanarak verilere ulaşılmıştır. Verilere göre, tüketicinin arama motorlarında gayrimenkul yerine emlak kavramını daha çok kullandığı tespit edilmiştir. Sonuç kısmında hem işletmeler hem de araştırmacılar için bir bakış açısı oluşturulmaya çalışılmıştır. Gayrimenkul sektöründe faaliyette bulunan işletmelerin popüler kavramları dikkate alarak potansiyel müşterilere ulaşmaları kolaylaşırken arama motorlarında üst sıralarda yer alabilmeleri mümkündür.

Ethical Statement

İkincil verilerin kullanılması nedeniyle etik kurul izni gerektirmeyen çalışmalar kapsamındadır.

References

  • Ali, Z., S.,  Song, J. (2022). Digital platforms and real estate industry during COVID-19. International Real Estate Review, 25(4), 499 – 523.
  • Antczak, B. (2024). The influence of digital marketing and social media marketing on consumer buying behavior. Journal of Modern Science, 2(56), 310-335. https://doi.org/10.13166/jms/189429
  • Askitas, N.,  Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107-120.
  • Asur, S.,  Huberman, B. A. (2010). Predicting the future with social media. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 492-499. https://doi.org/10.1109/WI-IAT.2010.63
  • Babu, V., P.,  Ramamoorthy, R. (2020). A study on social media and digital marketing. Malaya Journal of Matematik, S(2), 3193-3195. https://doi.org/10.26637/MJM0S20/0821
  • Baker, S., R.,  Fradkin, A. (2017). The impact of unemployment insurance on job search: evidence from Google search data. The Review of Economics and Statistics, 99(5), 756-768. https://doi.org/10.1162/REST_a_00674
  • Bala, M.,  Verma, D. (2018). A critical review of digital marketing. International Journal of Management, IT & Engineering, 8(10), 321-339.
  • Beharay, A.  Tilak, P. (2021). A study on influence of social media on digital marketing. Turkish Online Journal of Qualitative Inquiry (TOJQI), 12(6), 4810-4816.
  • Bełej (2023). Predicting housing price trends in Poland: Online social engagement - Google Trends. Real Estate Management and Valuation, 31(4), 73-87. https://doi.org/10.2478/remav-2023-0032
  • Beracha, E.,  Wintoki, M., B. (2013). Forecasting residential real estate price changes from online search activity. Journal of Real Estate Research, 35(3), 283-312. https:/doi.org/10.1080/10835547.2013.12091364
  • Berthon, P., R., Pitt, L., F., Plangger, K.  Shapiro, D. (2012). Marketing meets Web 2.0, social media, and creative consumers: Implications for international marketing strategy. Business Horizons, 55, 261-271. https://doi.org/10.1080/10835547.2013.12091364
  • Brochado, A. (2020). Google search based sentiment indexes. IIMB Management Review, 32, 325 – 335. https://doi.org/10.1016/j.iimb.2019.10.015
  • Bulczak, G., M. (2021). Use of Google trends to predict the real estate market: Evidence from the United Kingdom. International Real Estate Review, 24(4), 613 – 631.
  • Campaign Monitor (2019). The new rules of email marketing. (campaignmonitor.com, 2025). https://www.campaignmonitor.com/resources/guides/email-marketing-new-rules/ (erişim tarihi: 02/06/2025)
  • Castelnuovo, E.,  Tran, T. D. (2017). Google it up! A Google Trends-based uncertainty index for the United States and Australia. Economics Letters, 161, 149-153. https://doi.org/10.1016/j.econlet.2017.09.032
  • Choi, H.,  Varian, H. (2009). Predicting initial claims for unemployment benefits. https://static.googleusercontent.com/media/research.google.com/tr//archive/papers/initialclaimsUS.pdf (erişim: 01/03/2025)
  • Çınar, B.,  Yenipınar, U. (2018). Türkiye Turistik Destinasyon İmajının Google Trends Yoluyla İncelenmesi. Birdir, K. (Ed.) 2. Uluslararası Turizmin Geleceği Kongresi: İnovasyon, Girişimcilik ve Sürdürebilirlik Kongresi (Futourism 2018) Bildiriler Kitabı, 683-690, içinde. Mersin Üniversitesi Yayınları Yayın No: 51.
  • Das, P., Ziobrowski, A.,  Coulson, N. E. (2015). Online information search, market fundamentals and apartment real estate. J Real Estate Finan Econ, 51, 480 – 502. https://doi.org/10.1007/s11146-015-9496-1
  • Dašić, D., Vučić, V., Turčinović, Ž.,  Tošić, M. (2023). Digital marketing - marketing opportunities and the power of digital consumers. Ekonomika poljoprivrede, 70(4), 1187-1199. https://doi.org/10.59267/ekoPolj23041187D
  • Dergiades, T., Milas, C.,  Panagiotidis, T. (2015). Tweets, Google trends, and sovereign spreads in the GIIPS. Oxford Economic Papers, 67(2), 406-432. https://doi.org/10.1093/oep/gpu0466
  • Desai, V. (2019). “Digital marketing: A review” published in International Journal of Trend in Scientific Research and Development, Special Issue Fostering Innovation, Integration and Inclusion Through Interdisciplinary Practices in Management, March 2019, 196-200. https://www.ijtsrd.com/papers/ijtsrd23100.pdf
  • Desembrianita, E., Mulyono, S., Putra, W. P., & Tarjono, T. (2024). Influence of digital marketing, consumer trust, and brand loyalty on purchase intention (Case study of green product consumers). International Journal of Business, Law, and Education, 5(2), 2003 - 2015. https://doi.org/10.56442/ijble.v5i2.775
  • Doğu-Öztürk, İ. (2023, 3 Ekim). Gayrimenkul Sektörü Dijital Dünyadan Nasıl Faydalanıyor?. (2024). https://emsal.com/gayrimenkul-sektoru-dijital-dunyadan-nasil-faydalaniyor/ (erişim tarihi: 20/12/2024)
  • Durai, T.  King, R. (2015). Impact of digital marketing on the growth of consumerism, Madras University Journal Of Business And Finance, 3(2), 94-103.
  • Eser, N.  Kanca, B. (2022). Google trendler verileri ile ekoturizm kavramının incelenmesi. Manas Sosyal Araştırmalar Dergisi, 11(2), 798-814.
  • Ettredge, M., Gerdes, J.,  Karuga, G. (2005). Using Web-based search data to predict macroeconomic statistics. Communications of the Acm, 48(11), 87-92.
  • Feng, Y., Li, G., Sun, X.,  Li, J. (2019). Forecasting the number of inbound tourists with Google Trends. Procedia Computer Science, 162, 628–633. https://doi.org/10.1016/j.procs.2019.12.032
  • Franzén, A. (2023). Big data, big problems: Why scientists should refrain from using Google Trends. Acta Sociologica, 66(3), 343 – 347. https://doi.org/10.1177/00016993221151118
  • Gajera, D., & Malek, M. (2018). A Study on consumer behaviour in real estate for Vadodara city. Univers Rev, 7(12), 956-969.
  • Goel, S., Hofman, J.M., Lahaie, S., Pennock, D., M.,  Watts,D., J. (2010). Predicting consumer behavior with Web search. PNAS, 107(41), 17486-17490. https://doi.org/10.1073/pnas.1005962107
  • Hohenstatt, R., Kasbauer, M.,  Schcifers, W. (2011). “Geco” and its potential for real estate research: evidence from the U.S. housing market. The Journal of Real Estate Research, 33(4), 471-506.
  • Hollander, J., B., Potts, R., Hartt, M., Situ, M.,  Seto, A. (2023). The role of bots in U.S. real estate development online communication, Computers, Environment and Urban Systems, 99, 1-9. https://doi.org/10.1016/j.compenvurbsys.2022.101918
  • Hölzl, J., Keusch, F.,  Sajons, C. (2025). The (mis)use of Google Trends data in the social sciences - A systematic review, critique, and recommendations. Social Science Research, 126, 1-22, 103099. https://doi.org/10.1016/j.ssresearch.2024.103099
  • Kanat, B. (2022, 22 Mart). Gayrimenkul Sektöründe Dijital Pazarlama Uygulamaları. https://www.emlakcilikegitimi.com/gayrimenkul-sektorunde-dijital-pazarlama-uygulamalari/ (Erişim tarihi: 20/12/2024).
  • Koç, M. (2025, 20 Şubat). En iyi arama motorları (2025 için 25+ arama motoru). İkas. https://ikas.com/tr/blog/en-iyi-arama-motorlari (Erişim tarihi: 26/02/2025)
  • Likos, M., Nakip, M.,  Gökmen, A. (2019). Real estate marketing and factors impacting real estate purchasing: An application on Turkey. International Journal of Applied Management Sciences and Engineering, 6(2), 15-35. https://doi.org/10.4018/IJAMSE.2019070102
  • Limnios, A., C.,  You, H. (2021). Can google trends improve housing market forecasts?. Curiosity: Interdisciplinary Journal of Research and Innovation, 2, 1-18. https://doi.org/10.36898/001c.21987 Liu, K. (2024). The measurement errors of google trends data. Discover Data, 2(7). https://doi.org/10.1007/s44248-024-00013-3
  • Mellon, J. (2014). Internet search data and issue salience: The properties of Google Trends as a measure of issue salience. Journal of Elections, Public Opinion & Parties, 24(1), 45-72. https://doi.org/10.1080/17457289.2013.846346
  • National Association of Realtors, (2024). Profile of home Buyers and Sellers 2024. https://www.nar.realtor/sites/default/files/2024-11/2024-profile-of-home-buyers-and-sellers-highlights-11-04-2024_2.pdf (Erişim tarihi:20/04/2025)
  • Nguyen, N. T, Nguyen, A., T.  Nguyen, D., T. (2024). The growth of the real estate corporate bond market in Vietnam: The role of investor sentiment. Review of Behavioral Finance, 16(4), 712-732. https://doi.org/10.1108/RBF-10-2023-0280
  • Ologunebi, J.,  Ebenezer, T. (2023). Digital marketing strategies, plan and implementations: A case study of Jumia Group and ASDA UK, Munich Personal RePEc Archive (MPRA) Paper No. 118771, 1-45. https://mpra.ub.uni-muenchen.de/118771/ (Erişim Tarihi: 07/05/2025).
  • Oust, A.,  Eidjord, O., M. (2020). Can Google search data be used as a housing bubble indicator?. International Real Estate Review, 23(2), 267-308.
  • Petrosyan, A. (2024, 12 Aralık). Global number of internet users 2005-2024. Statista. https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/#:~:text=As%20of%202024%2C%20the%20estimated,percent%20of%20the%20global%20population (Erişim tarihi: 27/04/2025).
  • Rakić, M.,  Rakić, B. (2019). The market power of digital consumers in 24/7/365 connected world. Megatrend Review, 16(2), 79-100. https://doi.org/10.5937/MegRev1902079R
  • Rizun ve Baj-Rogowska (2021). Can web search queries predict prices change on the real estate market?. 9, 70095-70117. IEEE Access, https://doi.org/10.1109/ACCESS.2021.3077860
  • Silvia, S. (2019). The importance of social media and digital marketing to attract millennials’ behavior as a consumer. Journal of International Business Research and Marketing, 4(2), 7-10. http://dx.doi.org/10.18775/jibrm.1849-8558.2015.42.3001
  • Silva, E., S., Hassani, H., Madsen, D., Ø.,  Gee, L. (2019). Googling fashion: Forecasting fashion consumer behaviour using google trends. Social Sciences, 8(111), 1-23. https://doi.org/10.3390/socsci8040111
  • Tandon, N., Kaur, S.,  Verma, R. (2020). Analysis of relationship between digital marketing and customer relationship management. International Journal of Advanced Science and Technology. 29(8) 412-418.
  • Truong, H., T. (2022). Theoretical foundations of real estate market behavior. Cogent Business & Management, 9(1), 2132590. https://doi.org/10.1080/23311975.2022.2132590
  • Türk Dil Kurumu Sözlükleri. (2022). https://sozluk.gov.tr (Erişim tarihi: 06.03.2025).
  • Türkiye İşveren Sendikaları Konfederasyonu. (2024). Dijital 2024: Küresel Görünüm Raporu, [Pdf belgesi]. https://www.tisk.org.tr/dokuman/dijital-2024-kuresel-gorunum-raporu.pdf (Erişim tarihi: 26/02/2025)
  • UAB Strateji Geliştirme Başkanlığı. (2024,Temmuz 12). Nüfusumuzun yüzde 86,5’i çevrimiç; yüzde 93,8’i Mobil. (2025). https://sgb.uab.gov.tr/haberler/nufusumuzun-yuzde-86-5-i-cevrimici-yuzde-93-8-i-mobil (Erişim tarihi: 26/02/2025).
  • Ullah, F., Sepasgozar, S., M., E.,  Wang, C. (2018). A systematic review of smart real estate technology: Drivers of, and barriers to, the use of digital disruptive technologies and online platforms. Sustainability, 10, 3142. https://doi:10.3390/su10093142
  • Ünvan, Y. A., & Badlo, Y. (2021). Digital marketing and social media: A review: Digital marketing and social media. E-Business Technologies Conference Proceedings, 1(1), 61–66. https://ebt.rs/journals/index.php/conf-proc/article/view/83
  • Venkataraman, M., Panchapagesan, V., & Jalan, E. (2018). Does internet search intensity predict house prices in emerging markets? A case of India. Property Management, 36(1), 103-118. https://doi.org/10.1108/PM-01-2017-0003
  • Vikipedi. (2025, Nisan 23). https://tr.wikipedia.org/wiki/Twitter (Erişim tarihi:31/05/2025)
  • Vikipedi. (2024, Aralık 5). https://tr.wikipedia.org/wiki/İnternet_sitesi (Erişim tarihi: 03/06/2025)
  • Vikipedi. (2024, Kasım 5). https://tr.wikipedia.org/wiki/Gayrimenkul (Erişim tarihi: 03/06/2025)
  • Wu, L.,  Brynjolfsson, E. (2015). The future of prediction: How google searches foreshadow housing prices and sales. Economic Analysis of the Digital Economy içinde, 89-118, National Bureau of Economic Research.
  • Yannopoulos, P., (2011). Impact of the internet on marketing strategy formulation. International Journal of Business and Social Science, 2(18), 1-7).
  • Yu-Cheong Yeung, T. (2019). Measuring Christian religiosity by google trends. Review of Religious Research, 61, 235–257. https://doi.org/10.1007/s13644-019-00379-w https://trends.google.com/trends (Erişim tarihi: 28/05/2025;31/05/2025)
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Consumer Behaviour
Journal Section Articles
Authors

Ruşen Sezen Kışlalıoğlu

Early Pub Date July 2, 2025
Publication Date
Submission Date June 3, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 21 Issue: 1

Cite

APA Sezen Kışlalıoğlu, R. (n.d.). GAYRİMENKUL SEKTÖRÜNDE GOOGLE TRENDS İLE TÜKETİCİ TERCİHLERİ. Paradoks Ekonomi Sosyoloji Ve Politika Dergisi, 21(1), 1-29.