Research Article
BibTex RIS Cite

HSPB7 and tetranectin levels are associated with severity of COVID-19

Year 2025, Volume: 18 Issue: 3, 696 - 705, 02.07.2025
https://doi.org/10.31362/patd.1685453

Abstract

Purpose: COVID-19 may have acute and chronic adverse effects on the cardiovascular system. Heat shock protein beta-7 (HSPB7) is a cardiovascular heat-shock protein, and tetranectin is a type-C calcium (Ca)-binding lectin. The present study was conducted to investigate the relationship between HSPB7, tetranectin, disease severity and myocardial injury in COVID-19.
Materials and methods: This study included 26 COVID-19 patients and 26 age and sex-matched healthy controls. Demographic characteristics, routine hemograms, and biochemical parameters were recorded. COVID-19 patients were classified as having mild to moderate and severe COVID-19 using clinical and laboratory data. HSPB7 and tetranectin levels were measured using commercial ELISA kits.
Results: C-reactive protein, fasting glucose, ferritin, neutrophil-to-lymphocyte, monocyte-to-lymphocyte, and platelet-to-lymphocyte ratios were significantly elevated, whereas calcium, and albumin were decreased in COVID-19 patients (p<0.05). Respiratory rate, D-dimer, and ferritin were higher while SO2 and lymphocyte counts were lower in severe COVID-19 patients (p<0.05). Serum HSPB7 levels were higher in COVID-19 patients vs healthy controls (p<0.01), whereas tetranectin concentration was lower (p<0.001). When the cases were evaluated according to the severity of the disease it was observed that, HSPB7 level was increased in patients with severe COVID-19 and tetranectin was decreased parallel to the severity of the disease (p<0.001 and p<0.001, respectively). HSPB7 concentration was positively correlated with ferritin (p=0.002). Tetranectin was negatively correlated with HSPB7, ferritin and troponin (p=0.041, p<0.01, and p=0.005, respectively).
Conclusion: The consequence of the present study indicates tetranectin as a potential biomarker for an accurate and more comprehensive understanding severity of cardiac damage in COVID-19 patients.

Ethical Statement

Permission date (03.08.2021), Number: E-60116787-020-90354 (NO: 14)

Supporting Institution

Pamukkale University Non-Interventional Clinical Research Ethics Committee

References

  • Petersen E, Koopmans M, Go U, Hamer DH, et al. SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020;20(9):e238-e244. doi:10.1016/s1473-3099(20)30484-9
  • Gates B. Responding to covid-19 — a once-in-a-century pandemic? N Engl J Med. 2020;382(18):1677-1679. doi:10.1056/nejmp2003762
  • Guo T, Fan Y, Chen M, et al. Cardiovascular ımplications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-818. doi:10.1001/jamacardio.2020.1017
  • Kampinga HH, Hageman J, Vos MJ, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105-111. doi:10.1007/s12192-008-0068-7
  • Wu T, Mu Y, Bogomolovas J, et al. HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci USA. 2017;114(45):11956-11961. doi:10.1073/pnas.1713763114
  • Chiu TF, Li CH, Chen CC, et al. Association of plasma concentration of small heat shock protein B7 with acute coronary syndrome. Circ J. 2013;76(9):2226-2233. doi:10.1253/circj.cj-12-0238
  • Mogues T, Etzerodt M, Hall C, Engelich G, Graversen JH, Hartshorn KL. Tetranectin binds to the kringle 1-4 form of angiostatin and modifies its functional activity. J Biomed Biotechnol. 2004;2004(2):73-78. doi:10.1155/s1110724304307096
  • Yin X, Subramanian S, Hwang SJ, et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler Thromb Vasc Biol. 2014;34(4):939-945. doi:10.1161/ATVBAHA.113.30291
  • Chen Y, Han H, Yan X, et al. Tetranectin as a potential biomarker for stable coronary artery disease. Sci Rep. 2015;5:1-8. doi:10.1038/srep17632
  • Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-260. doi:10.1038/s41569-020-0360-5
  • Moutchia J, Pokharel P, Kerri A, et al. Clinical laboratory parameters associated with severe or critical novel coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. PLoS One. 2020;15(10):1-25. doi:10.1371/journal.pone.0239802
  • Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164. doi:10.1016/B978-0-12-385885-6.00009-2
  • Djordjevic D, Rondovic G, Surbatovic M, et al. Neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume-to-platelet count ratio as biomarkers in critically Ill and Injured patients: Which ratio to choose to predict outcome and nature of bacte. Mediators Inflamm. 2018:3758068. doi:10.1155%2F2018%2F3758068
  • Karimi A, Shobeiri P, Kulasinghe A, Rezaei N. Novel systemic ınflammation markers to predict COVID-19 prognosis. Front Immunol. 2021;12:741061. doi:10.3389/fimmu.2021.741061
  • Budzianowski J, Pieszko K, Burchardt P, Rzeźniczak J, Hiczkiewicz J. The role of hematological ındices in patients with acute coronary syndrome. Dis Markers. 2017;2017:3041565. doi:10.1155/2017/3041565
  • Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205-1208. doi:10.1007/s00277-020-04019-0
  • Naess A, Nilssen SS, Mo R, Eide GE, Sjursen H. Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever. Infection. 2017;45(3):299-307. doi:10.1007/s15010-016-0972-1
  • Silvin A, Chapuis N, Dunsmore G, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell. 2020;182(6):1401-1418. doi:10.1016/j.cell.2020.08.002
  • Frater JL, Zini G, d'Onofrio G, Rogers HJ. COVID-19 and the clinical hematology laboratory. Int J Lab Hematol. 2020;42:11-18.
  • Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-103. doi:10.1111/j.1365-2249.2004.02415.x
  • Li L, Zhou Q, Xu J. Changes of laboratory cardiac markers and mechanisms of cardiac ınjury in coronavirus disease 2019. Biomed Res Int. 2020;7413673. doi:10.1155%2F2020%2F7413673
  • Deng Y, Liu W, Liu K, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: A retrospective study. Chin Med J (Engl). 2020;133(11):1261-1267. doi:10.1097/cm9.0000000000000824
  • Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8(5):518-526. doi:10.1016/S2213-2600(20)30121-1
  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. doi:10.1001/jamainternmed.2020.0994
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/s0140-6736(20)30566-3
  • Xiong Y, Sun D, Liu Y, et al. Clinical and high-resolution CT features of the COVID-19 infection: Comparison of the initial and follow-up changes. Invest Radiol. 2020;55(6):332-339. doi:10.1097/rli.0000000000000674
  • Krief S, Faivre JF, Robert P. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem. 1999;274(51):36592-36600. doi:10.1074/jbc.274.51.36592
  • Sun Y, MacRae TH. The small heat shock proteins and their role in human disease. FEBS J. 2005;272(11):2613-2627. doi:10.1111/j.1742-4658.2005.04708.x
  • Rüdebusch J, Benkner A, Poesch A, et al. Dynamic adaptation of myocardial proteome during heart failure development. PLoS One. 2017;12(10):1-13. doi:10.1371%2Fjournal.pone.0185915
  • McDonald K, Glezeva N, Collier P, et al. Tetranectin, a potential novel diagnostic biomarker of heart failure, is expressed within the myocardium and associates with cardiac fibrosis. Sci Rep. 2020;10(1):7507. doi:10.1038%2Fs41598-020-64558-4
  • Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020;41(22):2070-2079. doi:10.1093/eurheartj/ehaa408
  • Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi:10.1001/jamacardio.2020.0950
  • Babapoor Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. doi:10.1016/j.lfs.2020.117723.
  • Li Y, Hu Y, Yu J, et al. Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Lab Investig. 2020;100(6):794-800. doi:10.1038%2Fs41374-020-0431-6
  • Giamarellos Bourboulis EJ, Netea MG, Rovina N, et al. Complex ımmune dysregulation in COVID-19 patients with severe respiratory failure clinical and translational report complex ımmune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992-1000. doi:10.1016/j.chom.2020.04.009
  • Basu Ray I, Almaddah NK, Vaqar S, Soos MP. Cardiac Manifestations of Coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls Publishing; February 12, 2024.
  • Giustino G, Croft LB, Oates CP, Rahman K, Lerakis S, Reddy VY, Goldman M. Takotsubo cardiomyopathy in COVID-19. J Am Coll Cardiol. 2020;76(5):628-629. doi:10.1016/j.jacc.2020.05.068
  • Tobler DL, Pruzansky AJ, Naderi S, Ambrosy AP, Slade JJ. Long-term cardiovascular effects of COVID-19: Emerging data relevant to the cardiovascular clinician. Curr Atheroscler Rep. 2022;24(7):563-570. doi:10.1007/s11883-022-01032-8

DHSPB7 ve tetranektin düzeyleri COVID-19’un şiddeti ile ilişkilidir

Year 2025, Volume: 18 Issue: 3, 696 - 705, 02.07.2025
https://doi.org/10.31362/patd.1685453

Abstract

Amaç: COVID-19'un kardiyovasküler sistem üzerinde akut ve kronik olumsuz etkileri olabilmektedir. Isı şoku proteini beta-7 (HSPB7), kardiyovasküler bir ısı şoku proteinidir ve tetranektin, tip-C kalsiyum (Ca) bağlayıcı bir lektindir. Bu çalışmanın amacı, COVID-19'da HSPB7, tetranektin, hastalık şiddeti ve miyokardiyal hasar arasındaki ilişkiyi tespit etmektir.
Gereç ve yöntem: Bu çalışmaya 26 COVID-19 hastası ve 26 yaşı ile cinsiyeti eşleştirilmiş sağlıklı kontrol dahil edildi. Demografik özellikler, rutin hemogramlar ve biyokimyasal parametreler kaydedildi. COVID-19 hastalarının klinik ve laboratuvar verileri kullanılarak hafif, orta ve şiddetli COVID-19 hastası olarak sınıflandırıldı. HSPB7 ve tetranektin seviyeleri ticari ELISA kitleri kullanılarak ölçüldü.
Bulgular: COVID-19 hastalarında C-reaktif protein, açlık glukozu, ferritin, nötrofil-lenfosit, monosit-lenfosit ve trombosit-lenfosit oranları anlamlı olarak artarken, kalsiyum ve albümin ise azaldı (p<0,05). Şiddetli COVID-19 hastalarında solunum sayısı, D-dimer ve ferritin daha yüksekken, SO2 ve lenfosit sayıları daha düşüktü (p<0,05). Serum HSPB7 düzeyleri COVID-19 hastalarında sağlıklı kontrollere göre daha yüksekti (p<0,01), tetranektin düzeyi ise daha düşüktü (p<0,001). Hastalığın şiddetine göre değerlendirildiğinde, HSPB7 düzeyinin şiddetli COVID-19 hastalarında arttığı, tetranektin düzeyinin ise hastalığın şiddetine paralel olarak azaldığı görüldü (sırasıyla p<0,001 ve p<0,001). HSPB7 konsantrasyonunun ferritin ile pozitif korelasyon gösterdiği görüldü (p=0,002). Tetranektin, HSPB7, ferritin ve troponin ile negatif korelasyon gösterdi (sırasıyla p=0,041, p<0,01 ve p=0,005).
Sonuç: Mevcut çalışmanın sonuçları, tetranektini COVID-19 hastalarında, kardiyak hasarın ciddiyetinin belirlenmesinde ve daha kapsamlı bir şekilde anlaşılması için potansiyel bir biyobelirteç olabileceğini göstermektedir.

References

  • Petersen E, Koopmans M, Go U, Hamer DH, et al. SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020;20(9):e238-e244. doi:10.1016/s1473-3099(20)30484-9
  • Gates B. Responding to covid-19 — a once-in-a-century pandemic? N Engl J Med. 2020;382(18):1677-1679. doi:10.1056/nejmp2003762
  • Guo T, Fan Y, Chen M, et al. Cardiovascular ımplications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-818. doi:10.1001/jamacardio.2020.1017
  • Kampinga HH, Hageman J, Vos MJ, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105-111. doi:10.1007/s12192-008-0068-7
  • Wu T, Mu Y, Bogomolovas J, et al. HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci USA. 2017;114(45):11956-11961. doi:10.1073/pnas.1713763114
  • Chiu TF, Li CH, Chen CC, et al. Association of plasma concentration of small heat shock protein B7 with acute coronary syndrome. Circ J. 2013;76(9):2226-2233. doi:10.1253/circj.cj-12-0238
  • Mogues T, Etzerodt M, Hall C, Engelich G, Graversen JH, Hartshorn KL. Tetranectin binds to the kringle 1-4 form of angiostatin and modifies its functional activity. J Biomed Biotechnol. 2004;2004(2):73-78. doi:10.1155/s1110724304307096
  • Yin X, Subramanian S, Hwang SJ, et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler Thromb Vasc Biol. 2014;34(4):939-945. doi:10.1161/ATVBAHA.113.30291
  • Chen Y, Han H, Yan X, et al. Tetranectin as a potential biomarker for stable coronary artery disease. Sci Rep. 2015;5:1-8. doi:10.1038/srep17632
  • Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-260. doi:10.1038/s41569-020-0360-5
  • Moutchia J, Pokharel P, Kerri A, et al. Clinical laboratory parameters associated with severe or critical novel coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. PLoS One. 2020;15(10):1-25. doi:10.1371/journal.pone.0239802
  • Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164. doi:10.1016/B978-0-12-385885-6.00009-2
  • Djordjevic D, Rondovic G, Surbatovic M, et al. Neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume-to-platelet count ratio as biomarkers in critically Ill and Injured patients: Which ratio to choose to predict outcome and nature of bacte. Mediators Inflamm. 2018:3758068. doi:10.1155%2F2018%2F3758068
  • Karimi A, Shobeiri P, Kulasinghe A, Rezaei N. Novel systemic ınflammation markers to predict COVID-19 prognosis. Front Immunol. 2021;12:741061. doi:10.3389/fimmu.2021.741061
  • Budzianowski J, Pieszko K, Burchardt P, Rzeźniczak J, Hiczkiewicz J. The role of hematological ındices in patients with acute coronary syndrome. Dis Markers. 2017;2017:3041565. doi:10.1155/2017/3041565
  • Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 2020;99(6):1205-1208. doi:10.1007/s00277-020-04019-0
  • Naess A, Nilssen SS, Mo R, Eide GE, Sjursen H. Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever. Infection. 2017;45(3):299-307. doi:10.1007/s15010-016-0972-1
  • Silvin A, Chapuis N, Dunsmore G, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell. 2020;182(6):1401-1418. doi:10.1016/j.cell.2020.08.002
  • Frater JL, Zini G, d'Onofrio G, Rogers HJ. COVID-19 and the clinical hematology laboratory. Int J Lab Hematol. 2020;42:11-18.
  • Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-103. doi:10.1111/j.1365-2249.2004.02415.x
  • Li L, Zhou Q, Xu J. Changes of laboratory cardiac markers and mechanisms of cardiac ınjury in coronavirus disease 2019. Biomed Res Int. 2020;7413673. doi:10.1155%2F2020%2F7413673
  • Deng Y, Liu W, Liu K, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: A retrospective study. Chin Med J (Engl). 2020;133(11):1261-1267. doi:10.1097/cm9.0000000000000824
  • Ramanathan K, Antognini D, Combes A, et al. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020;8(5):518-526. doi:10.1016/S2213-2600(20)30121-1
  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. doi:10.1001/jamainternmed.2020.0994
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/s0140-6736(20)30566-3
  • Xiong Y, Sun D, Liu Y, et al. Clinical and high-resolution CT features of the COVID-19 infection: Comparison of the initial and follow-up changes. Invest Radiol. 2020;55(6):332-339. doi:10.1097/rli.0000000000000674
  • Krief S, Faivre JF, Robert P. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem. 1999;274(51):36592-36600. doi:10.1074/jbc.274.51.36592
  • Sun Y, MacRae TH. The small heat shock proteins and their role in human disease. FEBS J. 2005;272(11):2613-2627. doi:10.1111/j.1742-4658.2005.04708.x
  • Rüdebusch J, Benkner A, Poesch A, et al. Dynamic adaptation of myocardial proteome during heart failure development. PLoS One. 2017;12(10):1-13. doi:10.1371%2Fjournal.pone.0185915
  • McDonald K, Glezeva N, Collier P, et al. Tetranectin, a potential novel diagnostic biomarker of heart failure, is expressed within the myocardium and associates with cardiac fibrosis. Sci Rep. 2020;10(1):7507. doi:10.1038%2Fs41598-020-64558-4
  • Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020;41(22):2070-2079. doi:10.1093/eurheartj/ehaa408
  • Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi:10.1001/jamacardio.2020.0950
  • Babapoor Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. doi:10.1016/j.lfs.2020.117723.
  • Li Y, Hu Y, Yu J, et al. Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Lab Investig. 2020;100(6):794-800. doi:10.1038%2Fs41374-020-0431-6
  • Giamarellos Bourboulis EJ, Netea MG, Rovina N, et al. Complex ımmune dysregulation in COVID-19 patients with severe respiratory failure clinical and translational report complex ımmune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992-1000. doi:10.1016/j.chom.2020.04.009
  • Basu Ray I, Almaddah NK, Vaqar S, Soos MP. Cardiac Manifestations of Coronavirus (COVID-19). In: StatPearls. Treasure Island (FL): StatPearls Publishing; February 12, 2024.
  • Giustino G, Croft LB, Oates CP, Rahman K, Lerakis S, Reddy VY, Goldman M. Takotsubo cardiomyopathy in COVID-19. J Am Coll Cardiol. 2020;76(5):628-629. doi:10.1016/j.jacc.2020.05.068
  • Tobler DL, Pruzansky AJ, Naderi S, Ambrosy AP, Slade JJ. Long-term cardiovascular effects of COVID-19: Emerging data relevant to the cardiovascular clinician. Curr Atheroscler Rep. 2022;24(7):563-570. doi:10.1007/s11883-022-01032-8
There are 38 citations in total.

Details

Primary Language English
Subjects Medical Physiology (Other)
Journal Section Research Article
Authors

Özgen Kılıç Erkek 0000-0001-8037-099X

Gülşah Gündoğdu 0000-0002-9924-5176

Davut Akın 0000-0002-9567-7940

Z. Melek Küçükatay 0000-0002-9366-0205

Early Pub Date June 13, 2025
Publication Date July 2, 2025
Submission Date April 28, 2025
Acceptance Date June 3, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

AMA Kılıç Erkek Ö, Gündoğdu G, Akın D, Küçükatay ZM. HSPB7 and tetranectin levels are associated with severity of COVID-19. Pam Med J. July 2025;18(3):696-705. doi:10.31362/patd.1685453

Creative Commons Lisansı
Pamukkale Medical Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License