Research Article
BibTex RIS Cite

Zika Virüsü Temelli Doğrusal Olmayan SEIR Sisteminin Sürüklenmiş Yapay Sinir Ağı (ANN) Tabanlı Sayısal Tedavisi

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1543179

Abstract

Mevcut çalışmanın amacı, Zika virüsü temelli doğrusal olmayan bir SEIR matematiksel modelinin sayısal çözümünü, Meksika Şapkası Dalga Dönüşümü (MHW) tabanlı ileri beslemeli yapay sinir ağı (ANN) ile birlikte, küresel arama optimizasyon şeması olan Parçacık Sürüsü Optimizasyonu (PSO) ve yerel arama olan Ardışık Kuadratik Programlama (SQP) kullanarak sunmaktır. Zika virüsü, Aedes adı verilen virüsün taşınması yoluyla yayılan bir salgın hastalıktır ve bu model, virüsün yayılma dinamiklerini inceleyen Susceptible-Exposed-Infected-Recovered yani SEIR temellidir. Modeli çözmek için, hata tabanlı bir fitness fonksiyonu, MHW-ANN-PSO-SQP hibrit hesaplama şeması ile optimize edilmiştir. Tasarlanan çerçevenin doğruluğunu, güvenilirliğini, stabilitesini, hassasiyetini ve hesaplama karmaşıklığını doğrulamak için, virüsle ilgili çeşitli durumlar incelenmiştir. MHW-ANN-PSO-SQP'den elde edilen sonuçlar, doğruluğu teyit etmek için iyi bilinen RK sayısal çözücü ve ANN tabanlı (GA-ASA) ile karşılaştırılmıştır. Aynı zamanda, mutlak hata, tasarlanan şemanın doğruluğunu doğrulamaktadır. Ayrıca, istatistiksel analiz, MHW-ANN-PSO-SQP'nin stabilitesini, yakınsamasını ve güvenilirliğini doğrulamak için farklı istatistiksel operatörler aracılığıyla yapılmıştır. Dahası, sunulan şemanın karmaşıklığı, Ortalama Çalışma Süresi (MET) ile analiz edilmiştir.

References

  • [1] S. Suantai, Z. Sabir, M. A. Z. Raja, and W. Cholamjiak, "Numerical Computation of SEIR Model for the Zika Virus Spreading," Cmc-Computers Materials & Continua, no. 1, vol. 75, pp. 2155-2170, (2023).
  • [2] Y. M. Rangkuti, S. Side, and M. S. M. Noorani, "Numerical analytic solution of SIR model of dengue fever disease in south Sulawesi using homotopy perturbation method and variational iteration method," Journal of Mathematical and Fundamental Sciences, no. 1, vol. 46, pp. 91-105, (2014).
  • [3] D. E. Kirschner, "" Dynamics of HIV Infection of CD4+ T cells," SMR, vol. 780, p. 18, (1993).
  • [4] K. S. Nisar, M. W. Anjum, M. A. Z. Raja, and M. Shoaib, "Design of a novel intelligent computing framework for predictive solutions of malaria propagation model," Plos one, no. 4, vol. 19, p. e0298451, (2024).
  • [5] I. Cooper, A. Mondal, and C. G. Antonopoulos, "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, vol. 139, p. 110057, (2020).
  • [6] M. F. Khan et al., "A new fractional model for vector-host disease with saturated treatment function via singular and non-singular operators," Alexandria Engineering Journal, no. 1, vol. 60, pp. 629-645, (2021).
  • [7] D. I. Simpson, "Zika virus infection in man," Transactions of the Royal Society of Tropical Medicine and Hygiene, no. 4, vol. 58, pp. 335-8, (1964).
  • [8] A. A. Al-Qahtani, N. Nazir, M. R. Al-Anazi, S. Rubino, and M. N. Al-Ahdal, "Zika virus: a new pandemic threat," The Journal of Infection in Developing Countries, no. 03, vol. 10, pp. 201-207, (2016).
  • [9] E. Bonyah and K. O. Okosun, "Mathematical modeling of Zika virus," Asian Pacific Journal of Tropical Disease,no. 9, vol. 6, pp. 673-679, (2016).
  • [10] F. Agusto, S. Bewick, and W. Fagan, "Mathematical model for Zika virus dynamics with sexual transmission route," Ecological Complexity, vol. 29, pp. 61-81, (2017).
  • [11] F. B. Agusto, S. Bewick, and W. Fagan, "Mathematical model of Zika virus with vertical transmission," Infectious Disease Modelling, no. 2, vol. 2, pp. 244-267, (2017).
  • [12] A. Wiratsudakul, P. Suparit, and C. Modchang, "Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches," PeerJ, vol. 6, p. e4526, (2018).
  • [13] S. Rezapour, H. Mohammadi, and A. Jajarmi, "A new mathematical model for Zika virus transmission," Advances in difference equations, no. 1, vol. 2020, pp. 1-15, (2020).
  • [14] A. Ali, Q. Iqbal, J. K. K. Asamoah, and S. Islam, "Mathematical modeling for the transmission potential of Zika virus with optimal control strategies," The European Physical Journal Plus, no. 1, vol. 137, p. 146, (2022).
  • [15] S. A. Jose et al., "Mathematical modeling on co-infection: transmission dynamics of Zika virus and Dengue fever," Nonlinear Dynamics, no. 5, vol. 111, pp. 4879-4914, (2023).
  • [16] S. K. Biswas, U. Ghosh, and S. Sarkar, "A mathematical model of Zika virus transmission with saturated incidence and optimal control: A case study of 2016 zika outbreak in Puerto Rico," International Journal of Modelling and Simulation, no. 3, vol. 44, pp. 172-189, (2024).
  • [17] L. Wang, Q. Jia, G. Zhu, G. Ou, and T. Tang, "Transmission dynamics of Zika virus with multiple infection routes and a case study in Brazil," Scientific Reports, no. 1, vol. 14, p. 7424, (2024).
  • [18] S. Suantai, Z. Sabir, M. A. Z. Raja, and W. Cholamjiak, "Swarming Computational Procedures for the Coronavirus-Based Mathematical SEIR-NDC Model," Journal of Mathematics, vol. 2022, (2022).
  • [19] Z. Sabir, M. A. Z. Raja, S. E. Alhazmi, M. Gupta, A. Arbi, and I. A. Baba, "Applications of artificial neural network to solve the nonlinear COVID-19 mathematical model based on the dynamics of SIQ," Journal of Taibah University for Science, no. 1, vol. 16, pp. 874-884, (2022).
  • [20] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, and Y. G. Sánchez, "A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics," Symmetry, no. 10, vol. 12, p. 1628, (2020).
  • [21] M. Umar et al., "Numerical investigations through ANNs for solving COVID-19 model," International Journal of Environmental Research and Public Health, no. 22, vol. 18, p. 12192, (2021).
  • [22] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, and Y. Guerrero-Sanchez, "Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19," Alexandria Engineering Journal, no. 3, vol. 60, pp. 2811-2824, (2021).
  • [23] Y. G. Sánchez, Z. Sabir, and J. L. Guirao, "Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19)," Fractals, no. 08, vol. 28, p. 2040026, (2020).
  • [24] Z. Sabir, M. A. Z. Raja, H. M. Baskonus, and A. Ciancio, "Numerical performance using the neural networks to solve the nonlinear biological quarantined based COVID-19 model," Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, no. 1, vol. 1, p. 10, (2023).
  • [25] A. Elsonbaty, Z. Sabir, R. Ramaswamy, and W. Adel, "Dynamical analysis of a novel discrete fractional SITRS model for COVID-19," Fracta ls, no. 08, vol. 29,p. 2140035, (2021).
  • [26] T. Botmart, Z. Sabir, S. Javeed, R. A. S. Núñez, M. R. Ali, and R. Sadat, "Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses," Informatics in Medicine Unlocked, vol. 32, p. 101028, (2022).
  • [27] A. N. Akkilic, Z. Sabir, M. A. Z. Raja, and H. Bulut, "Numerical treatment on the new fractional-order SIDARTHE COVID-19 pandemic differential model via neural networks," The European Physical Journal Plus, no. 3, vol. 137, p. 334, (2022).
  • [28] M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, S.-W. Yao, and E. Ilhan, "A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells," Results in Physics, vol. 25, p. 104235, (2021).
  • [29] Z. Sabir, M. Umar, M. A. Z. Raja, H. M. Baskonus, and W. Gao, "Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system," International Journal of Biomathematics, no. 04, vol. 15, p. 2250012, (2022).
  • [30] Z. Sabir, M. Umar, M. A. Z. Raja, and D. Baleanu, "Numerical solutions of a novel designed prevention class in the HIV nonlinear model "CMES-Computer Modeling in Engineering & Sciences, no. 1,129, (2021).
  • [31] M. Umar, Z. Sabir, M. A. Zahoor Raja, K. Al-Basyouni, S. Mahmoud, and Y. G. Sánchez, "An advance computing numerical heuristic of nonlinear SIR dengue fever system using the Morlet wavelet kernel," Journal of Healthcare Engineering, vol. 2022, 1, (2022).
  • [32] M. Umar, Z. Sabir, M. A. Z. Raja, and Y. G. Sánchez, "A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever," Results in Physics, vol. 19, p. 103585, (2020).
  • [33] M. Umar, Kusen, M. A. Z. Raja, Z. Sabir, and Q. Al-Mdallal, "A computational framework to solve the nonlinear dengue fever SIR system," Computer Methods in Biomechanics and Biomedical Engineering, no. 16, vol. 25, pp. 1821-1834, (2022).
  • [34] Z. Sabir, M. A. Z. Raja, S. Javeed, and Y. G.-S. Nchez, "Numerical investigations of a fractional nonlinear dengue model using artificial neural networks," Fractals (fractals), no. 10, vol. 30, pp. 1-12, (2022).
  • [35] P. Junsawang et al., "Numerical simulations of vaccination and Wolbachia on dengue transmission dynamics in the nonlinear model," IEEE Access, vol. 10, pp. 31116-31144, (2022).
  • [36] Z. Sabir, S. B. Said, and Q. Al-Mdallal, "A fractional order numerical study for the influenza disease mathematical model," Alexandria Engineering Journal, vol. 65, pp. 615-626, (2023).
  • [37] Z. Sabir et al., "Artificial neural network scheme to solve the nonlinear influenza disease model," Biomedical Signal Processing and Control, vol. 75, p. 103594, (2022).
  • [38] S. Noinang et al., "Swarming Computational Techniques for the Influenza Disease System," Cmc-Computers Materials & Continua, no. 3, vol. 73, pp. 4851-4868, (2022).
  • [39] F. M. Riaz, S. Ahmad, J. A. Khan, S. Altaf, Z. ur Rehman, and S. K. Memon, "Numerical Treatment of Non-Linear System for Latently Infected CD4+ T Cells: A Swarm-Optimized Neural Network Approach," IEEE Access, (2024).
  • [40] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, and Y. G. Sanchez, "Design of intelligent computing solver with Morlet wavelet neural networks for nonlinear predator-prey model," Applied Soft Computing, vol. 134, p. 109975, (2023).
  • [41] Z. Sabir, M. A. Z. Raja, M. R. Ali, and R. Sadat, "An advanced computational intelligent approach to solve the third kind of nonlinear pantograph Lane–Emden differential system," Evolving Systems, pp. 1-20, (2022).
  • [42] W. Adel, Z. Sabir, H. Rezazadeh, and A. Aldurayhim, "Application of a Novel Collocation Approach for Simulating a Class of Nonlinear Third-Order Lane–Emden Model," Mathematical Problems in Engineering, vol. 2022, (2022).
  • [43] M. A. Z. Raja, J. A. Khan, and T. Haroon, "Stochastic numerical treatment for thin film flow of third-grade fluid using unsupervised neural networks," Journal of the Taiwan Institute of Chemical Engineers, vol. 48, pp. 26-39, (2015).
  • [44] T. Botmart, Z. Sabir, M. A. Z. Raja, R. Sadat, and M. R. Ali, "Stochastic procedures to solve the nonlinear mass and heat transfer model of Williamson nanofluid past over a stretching sheet," Annals of Nuclear Energy, vol. 181, p. 109564, (2023).
  • [45] F. Chaudhry, M. Amin, M. Iqbal, R. Khan, and J. A. Khan, "A novel chaotic differential evolution hybridized with quadratic programming for short-term hydrothermal coordination," Neural Computing and Applications, vol. 30, pp. 3533-3544, (2018).
  • [46] A. J. Joshy, R. Dunn, M. Sperry, V. E. Gandarillas, and J. T. Hwang, "An SQP algorithm based on a hybrid architecture for accelerating optimization of large-scale systems," in Aiaa Aviation 2023 Forum, p. 4263, (2023).
  • [47] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, and A. M. Wazwaz, "Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory," Connection Science, vol. 27, no. 4, pp. 377-396, (2015).
  • [48] Q. Nguyen, M. Onur, and F. O. Alpak, "Nonlinearly Constrained Life-Cycle Production Optimization Using Sequential Quadratic Programming (SQP) With Stochastic Simplex Approximated Gradients (StoSAG)," in SPE Reservoir Simulation Conference, : SPE, p. D011S002R001, (2023).
  • [49] M. A. Z. Raja, J. A. Khan, A. Zameer, N. A. Khan, and M. A. Manzar, "Numerical treatment of nonlinear singular Flierl–Petviashivili systems using neural networks models," Neural Computing and Applications, vol. 31, pp. 2371-2394, (2019).
  • [50] M. A. Z. Raja, J. A. Khan, N. I. Chaudhary, and E. Shivanian, "Reliable numerical treatment of nonlinear singular Flierl–Petviashivili equations for unbounded domain using ANN, GAs, and SQP," Applied Soft Computing, vol. 38, pp. 617-636, (2016).
  • [51] Z. Sabir, D. Baleanu, M. R. Ali, and R. Sadat, "A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems," International Journal of Computer Mathematics, no. 10, vol. 99, pp. 2091-2104, (2022).
  • [52] Z. Sabir, T. Botmart, M. A. Z. Raja, and W. Weera, "An advanced computing scheme for the numerical investigations of an infection-based fractional-order nonlinear prey-predator system," Plos one, no. 3, vol. 17, p. e0265064, (2022).
  • [53] Z. Sabir, M. A. Z. Raja, A. S. Alnahdi, M. B. Jeelani, and M. Abdelkawy, "Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks," Math. Biosci. Eng, no. 1, vol. 19, pp. 351-370, (2022).
  • [54] Z. Sabir et al., "A novel design of morlet wavelet to solve the dynamics of nervous stomach nonlinear model," International Journal of Computational Intelligence Systems, no. 1, vol. 15, p. 4, (2022).
  • [55] Z. Sabir, M. A. Z. Raja, M. Shoaib, R. Sadat, and M. R. Ali, "A novel design of a sixth-order nonlinear modeling for solving engineering phenomena based on neuro intelligence algorithm," Engineering with Computers, pp. 1-16, (2022).
  • [56] Z. Sabir, T. Saeed, J. L. Guirao, J. M. Sánchez, and A. Valverde, "A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods," Axioms, no. 5, vol. 12, p. 456, (2023).
  • [57] Z. Sabir and S. B. Said, "A fractional order nonlinear model of the love story of Layla and Majnun," Scientific Reports, no. 1, vol. 13, p. 5402, (2023).
  • [58] Z. Sabir, D. Baleanu, M. A. Z. Raja, A. S. Alshomrani, and E. Hincal, "Computational Performances of Morlet Wavelet Neural Network for Solving a Nonlinear Dynamic Based on the Mathematical Model of the Affection of Layla and Majnun," Fractals, no. 02, vol. 31, p. 2340016, (2023).
  • [59] Z. Masood, K. Majeed, R. Samar, and M. A. Z. Raja, "Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems," Neurocomputing, vol. 221, pp. 1-14, (2017).
  • [60] A. G. Gad, "Particle swarm optimization algorithm and its applications: a systematic review," Archives of computational methods in engineering, no. 5, vol. 29, pp. 2531-2561, (2022).
  • [61] M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, "An overview of variants and advancements of PSO algorithm," Applied Sciences, no. 17, vol. 12, p. 8392, (2022).
  • [62] E. Garcia-Gonzalo and J. L. Fernandez-Martinez, "A brief historical review of particle swarm optimization (PSO)," Journal of Bioinformatics and Intelligent Control, no. 1, vol. 1, pp. 3-16, (2012).
  • [63] S. G. Andrab, A. Hekmat, and Z. B. Yusop, "A review: evolutionary computations (GA and PSO) in geotechnical engineering," Computational Water, Energy, and Environmental Engineering, no. 2, vol. 6, pp. 154-179, (2017).
  • [64] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Transactions on evolutionary computation, no. 3, vol. 10, pp. 281-295, (2006).
  • [65] S. H. E. A. Aleem, A. F. Zobaa, and M. M. A. Aziz, "Optimal $ C $-type passive filter based on minimization of the voltage harmonic distortion for nonlinear loads," IEEE Transactions on Industrial Electronics, no. 1, vol. 59, pp. 281-289, (2011).
  • [66] S. Sivasubramani and K. Swarup, "Sequential quadratic programming based differential evolution algorithm for optimal power flow problem," IET generation, transmission & distribution, no. 11, vol. 5, pp. 1149-1154, (2011).
  • [67] J. Nocedal and S. J. Wright, Numerical optimization. Springer, (1999).
  • [68] M. A. Z. Raja, "Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP," Connection Science, no. 3, vol. 26, pp. 195-214, (2014).
  • [69] Z. Sabir, S. A. Bhat, M. A. Z. Raja, and S. E. Alhazmi, "A swarming neural network computing approach to solve the Zika virus model," Engineering Applications of Artificial Intelligence, vol. 126, p. 106924, (2023).

A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1543179

Abstract

The purpose of the current study is to present the numerical treatment of a nonlinear mathematical SEIR model based on the Zika virus using the Mexican Hat Wavelet-based feed-forward artificial neural network (MHW-ANN) together with the optimization scheme of global search, Particle Swarm Optimization (PSO) and local search Sequential Quadratic Programming (SQP), i.e. MHW-ANN-PSO-SQP. The Zika virus is an epidemic disease that can spread through the transmission of the virus known as Aedes, its model is based on susceptible-exposed-infected-recovered, i.e. SEIR that investigated the dynamics of virus spread. To solve the model an error-based fitness function is optimized through a hybrid computing scheme of MHW-ANN-PSO-SQP. To validate the precision, accuracy, stability, reliability, and computational complexity of the designed framework various cases have been taken for the virus. The results obtained from the MHW-ANN-PSO-SQP are compared to the well-known RK numerical solver and ANN-based (GA-ASA) to confirm the accuracy. At the same time, the absolute error validated the precision of the designed scheme. Additionally, the statistical analysis through different statistical operators is performed to validate the stability, convergence, and reliability of the MHW-ANN-PSO-SQP. Furthermore, the complexity of the presented scheme is analyzed through the Mean Execution Time (MET).

References

  • [1] S. Suantai, Z. Sabir, M. A. Z. Raja, and W. Cholamjiak, "Numerical Computation of SEIR Model for the Zika Virus Spreading," Cmc-Computers Materials & Continua, no. 1, vol. 75, pp. 2155-2170, (2023).
  • [2] Y. M. Rangkuti, S. Side, and M. S. M. Noorani, "Numerical analytic solution of SIR model of dengue fever disease in south Sulawesi using homotopy perturbation method and variational iteration method," Journal of Mathematical and Fundamental Sciences, no. 1, vol. 46, pp. 91-105, (2014).
  • [3] D. E. Kirschner, "" Dynamics of HIV Infection of CD4+ T cells," SMR, vol. 780, p. 18, (1993).
  • [4] K. S. Nisar, M. W. Anjum, M. A. Z. Raja, and M. Shoaib, "Design of a novel intelligent computing framework for predictive solutions of malaria propagation model," Plos one, no. 4, vol. 19, p. e0298451, (2024).
  • [5] I. Cooper, A. Mondal, and C. G. Antonopoulos, "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, vol. 139, p. 110057, (2020).
  • [6] M. F. Khan et al., "A new fractional model for vector-host disease with saturated treatment function via singular and non-singular operators," Alexandria Engineering Journal, no. 1, vol. 60, pp. 629-645, (2021).
  • [7] D. I. Simpson, "Zika virus infection in man," Transactions of the Royal Society of Tropical Medicine and Hygiene, no. 4, vol. 58, pp. 335-8, (1964).
  • [8] A. A. Al-Qahtani, N. Nazir, M. R. Al-Anazi, S. Rubino, and M. N. Al-Ahdal, "Zika virus: a new pandemic threat," The Journal of Infection in Developing Countries, no. 03, vol. 10, pp. 201-207, (2016).
  • [9] E. Bonyah and K. O. Okosun, "Mathematical modeling of Zika virus," Asian Pacific Journal of Tropical Disease,no. 9, vol. 6, pp. 673-679, (2016).
  • [10] F. Agusto, S. Bewick, and W. Fagan, "Mathematical model for Zika virus dynamics with sexual transmission route," Ecological Complexity, vol. 29, pp. 61-81, (2017).
  • [11] F. B. Agusto, S. Bewick, and W. Fagan, "Mathematical model of Zika virus with vertical transmission," Infectious Disease Modelling, no. 2, vol. 2, pp. 244-267, (2017).
  • [12] A. Wiratsudakul, P. Suparit, and C. Modchang, "Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches," PeerJ, vol. 6, p. e4526, (2018).
  • [13] S. Rezapour, H. Mohammadi, and A. Jajarmi, "A new mathematical model for Zika virus transmission," Advances in difference equations, no. 1, vol. 2020, pp. 1-15, (2020).
  • [14] A. Ali, Q. Iqbal, J. K. K. Asamoah, and S. Islam, "Mathematical modeling for the transmission potential of Zika virus with optimal control strategies," The European Physical Journal Plus, no. 1, vol. 137, p. 146, (2022).
  • [15] S. A. Jose et al., "Mathematical modeling on co-infection: transmission dynamics of Zika virus and Dengue fever," Nonlinear Dynamics, no. 5, vol. 111, pp. 4879-4914, (2023).
  • [16] S. K. Biswas, U. Ghosh, and S. Sarkar, "A mathematical model of Zika virus transmission with saturated incidence and optimal control: A case study of 2016 zika outbreak in Puerto Rico," International Journal of Modelling and Simulation, no. 3, vol. 44, pp. 172-189, (2024).
  • [17] L. Wang, Q. Jia, G. Zhu, G. Ou, and T. Tang, "Transmission dynamics of Zika virus with multiple infection routes and a case study in Brazil," Scientific Reports, no. 1, vol. 14, p. 7424, (2024).
  • [18] S. Suantai, Z. Sabir, M. A. Z. Raja, and W. Cholamjiak, "Swarming Computational Procedures for the Coronavirus-Based Mathematical SEIR-NDC Model," Journal of Mathematics, vol. 2022, (2022).
  • [19] Z. Sabir, M. A. Z. Raja, S. E. Alhazmi, M. Gupta, A. Arbi, and I. A. Baba, "Applications of artificial neural network to solve the nonlinear COVID-19 mathematical model based on the dynamics of SIQ," Journal of Taibah University for Science, no. 1, vol. 16, pp. 874-884, (2022).
  • [20] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, and Y. G. Sánchez, "A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics," Symmetry, no. 10, vol. 12, p. 1628, (2020).
  • [21] M. Umar et al., "Numerical investigations through ANNs for solving COVID-19 model," International Journal of Environmental Research and Public Health, no. 22, vol. 18, p. 12192, (2021).
  • [22] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, and Y. Guerrero-Sanchez, "Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19," Alexandria Engineering Journal, no. 3, vol. 60, pp. 2811-2824, (2021).
  • [23] Y. G. Sánchez, Z. Sabir, and J. L. Guirao, "Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19)," Fractals, no. 08, vol. 28, p. 2040026, (2020).
  • [24] Z. Sabir, M. A. Z. Raja, H. M. Baskonus, and A. Ciancio, "Numerical performance using the neural networks to solve the nonlinear biological quarantined based COVID-19 model," Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, no. 1, vol. 1, p. 10, (2023).
  • [25] A. Elsonbaty, Z. Sabir, R. Ramaswamy, and W. Adel, "Dynamical analysis of a novel discrete fractional SITRS model for COVID-19," Fracta ls, no. 08, vol. 29,p. 2140035, (2021).
  • [26] T. Botmart, Z. Sabir, S. Javeed, R. A. S. Núñez, M. R. Ali, and R. Sadat, "Artificial neural network-based heuristic to solve COVID-19 model including government strategies and individual responses," Informatics in Medicine Unlocked, vol. 32, p. 101028, (2022).
  • [27] A. N. Akkilic, Z. Sabir, M. A. Z. Raja, and H. Bulut, "Numerical treatment on the new fractional-order SIDARTHE COVID-19 pandemic differential model via neural networks," The European Physical Journal Plus, no. 3, vol. 137, p. 334, (2022).
  • [28] M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, S.-W. Yao, and E. Ilhan, "A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells," Results in Physics, vol. 25, p. 104235, (2021).
  • [29] Z. Sabir, M. Umar, M. A. Z. Raja, H. M. Baskonus, and W. Gao, "Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system," International Journal of Biomathematics, no. 04, vol. 15, p. 2250012, (2022).
  • [30] Z. Sabir, M. Umar, M. A. Z. Raja, and D. Baleanu, "Numerical solutions of a novel designed prevention class in the HIV nonlinear model "CMES-Computer Modeling in Engineering & Sciences, no. 1,129, (2021).
  • [31] M. Umar, Z. Sabir, M. A. Zahoor Raja, K. Al-Basyouni, S. Mahmoud, and Y. G. Sánchez, "An advance computing numerical heuristic of nonlinear SIR dengue fever system using the Morlet wavelet kernel," Journal of Healthcare Engineering, vol. 2022, 1, (2022).
  • [32] M. Umar, Z. Sabir, M. A. Z. Raja, and Y. G. Sánchez, "A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever," Results in Physics, vol. 19, p. 103585, (2020).
  • [33] M. Umar, Kusen, M. A. Z. Raja, Z. Sabir, and Q. Al-Mdallal, "A computational framework to solve the nonlinear dengue fever SIR system," Computer Methods in Biomechanics and Biomedical Engineering, no. 16, vol. 25, pp. 1821-1834, (2022).
  • [34] Z. Sabir, M. A. Z. Raja, S. Javeed, and Y. G.-S. Nchez, "Numerical investigations of a fractional nonlinear dengue model using artificial neural networks," Fractals (fractals), no. 10, vol. 30, pp. 1-12, (2022).
  • [35] P. Junsawang et al., "Numerical simulations of vaccination and Wolbachia on dengue transmission dynamics in the nonlinear model," IEEE Access, vol. 10, pp. 31116-31144, (2022).
  • [36] Z. Sabir, S. B. Said, and Q. Al-Mdallal, "A fractional order numerical study for the influenza disease mathematical model," Alexandria Engineering Journal, vol. 65, pp. 615-626, (2023).
  • [37] Z. Sabir et al., "Artificial neural network scheme to solve the nonlinear influenza disease model," Biomedical Signal Processing and Control, vol. 75, p. 103594, (2022).
  • [38] S. Noinang et al., "Swarming Computational Techniques for the Influenza Disease System," Cmc-Computers Materials & Continua, no. 3, vol. 73, pp. 4851-4868, (2022).
  • [39] F. M. Riaz, S. Ahmad, J. A. Khan, S. Altaf, Z. ur Rehman, and S. K. Memon, "Numerical Treatment of Non-Linear System for Latently Infected CD4+ T Cells: A Swarm-Optimized Neural Network Approach," IEEE Access, (2024).
  • [40] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, and Y. G. Sanchez, "Design of intelligent computing solver with Morlet wavelet neural networks for nonlinear predator-prey model," Applied Soft Computing, vol. 134, p. 109975, (2023).
  • [41] Z. Sabir, M. A. Z. Raja, M. R. Ali, and R. Sadat, "An advanced computational intelligent approach to solve the third kind of nonlinear pantograph Lane–Emden differential system," Evolving Systems, pp. 1-20, (2022).
  • [42] W. Adel, Z. Sabir, H. Rezazadeh, and A. Aldurayhim, "Application of a Novel Collocation Approach for Simulating a Class of Nonlinear Third-Order Lane–Emden Model," Mathematical Problems in Engineering, vol. 2022, (2022).
  • [43] M. A. Z. Raja, J. A. Khan, and T. Haroon, "Stochastic numerical treatment for thin film flow of third-grade fluid using unsupervised neural networks," Journal of the Taiwan Institute of Chemical Engineers, vol. 48, pp. 26-39, (2015).
  • [44] T. Botmart, Z. Sabir, M. A. Z. Raja, R. Sadat, and M. R. Ali, "Stochastic procedures to solve the nonlinear mass and heat transfer model of Williamson nanofluid past over a stretching sheet," Annals of Nuclear Energy, vol. 181, p. 109564, (2023).
  • [45] F. Chaudhry, M. Amin, M. Iqbal, R. Khan, and J. A. Khan, "A novel chaotic differential evolution hybridized with quadratic programming for short-term hydrothermal coordination," Neural Computing and Applications, vol. 30, pp. 3533-3544, (2018).
  • [46] A. J. Joshy, R. Dunn, M. Sperry, V. E. Gandarillas, and J. T. Hwang, "An SQP algorithm based on a hybrid architecture for accelerating optimization of large-scale systems," in Aiaa Aviation 2023 Forum, p. 4263, (2023).
  • [47] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, and A. M. Wazwaz, "Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory," Connection Science, vol. 27, no. 4, pp. 377-396, (2015).
  • [48] Q. Nguyen, M. Onur, and F. O. Alpak, "Nonlinearly Constrained Life-Cycle Production Optimization Using Sequential Quadratic Programming (SQP) With Stochastic Simplex Approximated Gradients (StoSAG)," in SPE Reservoir Simulation Conference, : SPE, p. D011S002R001, (2023).
  • [49] M. A. Z. Raja, J. A. Khan, A. Zameer, N. A. Khan, and M. A. Manzar, "Numerical treatment of nonlinear singular Flierl–Petviashivili systems using neural networks models," Neural Computing and Applications, vol. 31, pp. 2371-2394, (2019).
  • [50] M. A. Z. Raja, J. A. Khan, N. I. Chaudhary, and E. Shivanian, "Reliable numerical treatment of nonlinear singular Flierl–Petviashivili equations for unbounded domain using ANN, GAs, and SQP," Applied Soft Computing, vol. 38, pp. 617-636, (2016).
  • [51] Z. Sabir, D. Baleanu, M. R. Ali, and R. Sadat, "A novel computing stochastic algorithm to solve the nonlinear singular periodic boundary value problems," International Journal of Computer Mathematics, no. 10, vol. 99, pp. 2091-2104, (2022).
  • [52] Z. Sabir, T. Botmart, M. A. Z. Raja, and W. Weera, "An advanced computing scheme for the numerical investigations of an infection-based fractional-order nonlinear prey-predator system," Plos one, no. 3, vol. 17, p. e0265064, (2022).
  • [53] Z. Sabir, M. A. Z. Raja, A. S. Alnahdi, M. B. Jeelani, and M. Abdelkawy, "Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks," Math. Biosci. Eng, no. 1, vol. 19, pp. 351-370, (2022).
  • [54] Z. Sabir et al., "A novel design of morlet wavelet to solve the dynamics of nervous stomach nonlinear model," International Journal of Computational Intelligence Systems, no. 1, vol. 15, p. 4, (2022).
  • [55] Z. Sabir, M. A. Z. Raja, M. Shoaib, R. Sadat, and M. R. Ali, "A novel design of a sixth-order nonlinear modeling for solving engineering phenomena based on neuro intelligence algorithm," Engineering with Computers, pp. 1-16, (2022).
  • [56] Z. Sabir, T. Saeed, J. L. Guirao, J. M. Sánchez, and A. Valverde, "A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods," Axioms, no. 5, vol. 12, p. 456, (2023).
  • [57] Z. Sabir and S. B. Said, "A fractional order nonlinear model of the love story of Layla and Majnun," Scientific Reports, no. 1, vol. 13, p. 5402, (2023).
  • [58] Z. Sabir, D. Baleanu, M. A. Z. Raja, A. S. Alshomrani, and E. Hincal, "Computational Performances of Morlet Wavelet Neural Network for Solving a Nonlinear Dynamic Based on the Mathematical Model of the Affection of Layla and Majnun," Fractals, no. 02, vol. 31, p. 2340016, (2023).
  • [59] Z. Masood, K. Majeed, R. Samar, and M. A. Z. Raja, "Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems," Neurocomputing, vol. 221, pp. 1-14, (2017).
  • [60] A. G. Gad, "Particle swarm optimization algorithm and its applications: a systematic review," Archives of computational methods in engineering, no. 5, vol. 29, pp. 2531-2561, (2022).
  • [61] M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, "An overview of variants and advancements of PSO algorithm," Applied Sciences, no. 17, vol. 12, p. 8392, (2022).
  • [62] E. Garcia-Gonzalo and J. L. Fernandez-Martinez, "A brief historical review of particle swarm optimization (PSO)," Journal of Bioinformatics and Intelligent Control, no. 1, vol. 1, pp. 3-16, (2012).
  • [63] S. G. Andrab, A. Hekmat, and Z. B. Yusop, "A review: evolutionary computations (GA and PSO) in geotechnical engineering," Computational Water, Energy, and Environmental Engineering, no. 2, vol. 6, pp. 154-179, (2017).
  • [64] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Transactions on evolutionary computation, no. 3, vol. 10, pp. 281-295, (2006).
  • [65] S. H. E. A. Aleem, A. F. Zobaa, and M. M. A. Aziz, "Optimal $ C $-type passive filter based on minimization of the voltage harmonic distortion for nonlinear loads," IEEE Transactions on Industrial Electronics, no. 1, vol. 59, pp. 281-289, (2011).
  • [66] S. Sivasubramani and K. Swarup, "Sequential quadratic programming based differential evolution algorithm for optimal power flow problem," IET generation, transmission & distribution, no. 11, vol. 5, pp. 1149-1154, (2011).
  • [67] J. Nocedal and S. J. Wright, Numerical optimization. Springer, (1999).
  • [68] M. A. Z. Raja, "Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP," Connection Science, no. 3, vol. 26, pp. 195-214, (2014).
  • [69] Z. Sabir, S. A. Bhat, M. A. Z. Raja, and S. E. Alhazmi, "A swarming neural network computing approach to solve the Zika virus model," Engineering Applications of Artificial Intelligence, vol. 126, p. 106924, (2023).
There are 69 citations in total.

Details

Primary Language English
Subjects Neural Networks, Mathematical Optimisation, Numerical and Computational Mathematics (Other)
Journal Section Research Article
Authors

Farhad Muhammad Riaz 0000-0001-9167-8690

Junaid Ali Khan 0009-0004-0967-1211

Early Pub Date February 17, 2025
Publication Date
Submission Date September 4, 2024
Acceptance Date January 12, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Riaz, F. M., & Khan, J. A. (2025). A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1543179
AMA Riaz FM, Khan JA. A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus. Politeknik Dergisi. Published online February 1, 2025:1-1. doi:10.2339/politeknik.1543179
Chicago Riaz, Farhad Muhammad, and Junaid Ali Khan. “A Swarm Optimized ANN-Based Numerical Treatment of Nonlinear SEIR System Based on Zika Virus”. Politeknik Dergisi, February (February 2025), 1-1. https://doi.org/10.2339/politeknik.1543179.
EndNote Riaz FM, Khan JA (February 1, 2025) A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus. Politeknik Dergisi 1–1.
IEEE F. M. Riaz and J. A. Khan, “A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus”, Politeknik Dergisi, pp. 1–1, February 2025, doi: 10.2339/politeknik.1543179.
ISNAD Riaz, Farhad Muhammad - Khan, Junaid Ali. “A Swarm Optimized ANN-Based Numerical Treatment of Nonlinear SEIR System Based on Zika Virus”. Politeknik Dergisi. February 2025. 1-1. https://doi.org/10.2339/politeknik.1543179.
JAMA Riaz FM, Khan JA. A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus. Politeknik Dergisi. 2025;:1–1.
MLA Riaz, Farhad Muhammad and Junaid Ali Khan. “A Swarm Optimized ANN-Based Numerical Treatment of Nonlinear SEIR System Based on Zika Virus”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1543179.
Vancouver Riaz FM, Khan JA. A Swarm Optimized ANN-based Numerical Treatment of Nonlinear SEIR System based on Zika Virus. Politeknik Dergisi. 2025:1-.