Research Article
BibTex RIS Cite

Yüksek Güçlü Bir Konut Yükünün Güç Kalitesi Değerlendirmesi: Deneysel Bir Çalışma

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1636446

Abstract

Dünyadaki enerji talebi, sanayileşme, teknolojik gelişmeler ve nüfus artışı gibi faktörler nedeniyle her geçen gün artmaktadır. Bu artan talebi karşılamak için yalnızca yeni enerji kaynaklarının araştırılması yeterli olmamakta, aynı zamanda enerji verimliliği ve güç kalitesi gibi konular da giderek önem kazanmaktadır. Güç kalitesinin en kritik parametrelerinden biri olan harmonikler, elektrikli cihazların enerji sistemlerinde oluşturduğu bozulmaları ifade eder ve enerji sisteminin verimli ve güvenli çalışmasını doğrudan etkileyebilir. Evlerde yaygın olarak kullanılan klima, bilgisayar, televizyon, çamaşır makinesi ve bulaşık makinesi gibi cihazlar da harmonik kirliliğine katkıda bulunan önemli kaynaklar arasında yer almaktadır. Bu çalışmada, farklı yıllarda üretilmiş üç farklı çamaşır makinesinin harmonik etkileri incelenmiştir. Çalışmanın temel amacı, çamaşır makinelerinin farklı yıkama sıcaklıklarında güç kalitesi üzerindeki etkilerini ortaya koyarak harmonik üretim seviyelerini karşılaştırmaktır. Çalışma kapsamında, her bir çamaşır makinesi için farklı sıcaklıklarda (30°C, 60°C ve 90°C) gerçekleştirilen yıkama döngülerinde oluşan harmonikler detaylı olarak analiz edilmiştir. Ölçümler, Fluke 435 güç kalitesi analizörü kullanılarak alınmış ve elde edilen veriler MATLAB yazılımı yardımıyla işlenerek detaylı analizler gerçekleştirilmiştir. Yapılan ölçümler sonucunda, çamaşır makinelerinin harmonik seviyelerinin model yılına, motor tipine ve yıkama sıcaklığına bağlı olarak değiştiği gözlemlenmiştir. Eski model makinelerin daha düşük harmonik ürettiği, ancak modern inverter motorlu çamaşır makinelerinin daha yüksek harmonik seviyelerine sahip olduğu tespit edilmiştir. Ayrıca, yıkama sıcaklığı arttıkça harmonik bozulmanın da değiştiği belirlenmiştir. Elde edilen sonuçlar, elektrikli ev aletlerinin harmonik üretimini azaltmaya yönelik tasarım değişikliklerinin ve enerji verimliliğini artıran tekniklerin önemini vurgulamaktadır. Bu çalışma, tüketicilerin ve mühendislerin güç kalitesi ve harmonik yönetimi konusunda bilinçlenmesine katkı sağlayarak daha verimli ve çevre dostu elektrikli cihazların geliştirilmesine ışık tutmayı amaçlamaktadır.

References

  • [1] X. Xie, and D. Chen, “Data-driven dynamic harmonic model for modern household appliances”, Applied Energy, vol. 312, no. 118759, pp. 1-11, (2022).
  • [2] S. Yanchenko, and J. Meyer, “Harmonic emission of household devices in presence of typical voltage distortions”, 2015 IEEE Eindhoven PowerTech (PowerTech 2015), Eindhoven, Netherlands, (2015).
  • [3] Kabalcı, E., & Taşdemir, O. Mikro şebekelerde güç kalitesinin iyileştirilmesi için D-STATCOM tasarımı ve analizi. Politeknik Dergisi, 24(2), 361-372., (2021).
  • [4] M. T. Ahammed, and I. Khan, “Ensuring power quality and demand-side management through IoT-based smart meters in a developing country”, Energy, 250: 123747, 1-19, (2022).
  • [5] S. Elphick, V. Smith, V. Gosbell, G. Drury, and S. Perera, “Voltage sag susceptibility of 230 V equipment” IET Generation, Transmission & Distribution, 7: 6, 576-583, (2013).
  • [6] T. V. Myateg, “Analysis of Higher Harmonic Components Influence on the Electric Circuit at Induction Motor Functioning Equipped with Adjustable-Frequency Electric Drive”, Applied Mechanics and Materials, 698, 173-177, (2015).
  • [7] H. Markiewicz, and A. Klajn, “Voltage disturbances standard en 50160-voltage characteristics in public distribution systems”, Wroclaw University of Technology, 21, 215-224, (2004).
  • [8] V. Jacome, N. Klugman, C. Wolfram, B. Grunfeld, D. Callaway, and I. Ray, “Power quality and modern energy for all”, Proceedings of the National Academy of Sciences, 116, 16308-16313, (2019).
  • [9] Donuk, H., & Gümüş, B., Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/Simulink Ortak Benzetimi. Politeknik Dergisi, 1-1., (2023).
  • [10] Y. Sun, X. Xie, Q. Wang, L. Zhang, Y. Li, and Z. Jin, “A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas” Applied Energy, 259: 114207, 1-14, (2020).
  • [11] M. N. Iqbal, and L. Kütt, “End-user electricity consumption modelling for power quality analysis in residential building”, 19th International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, (2018).
  • [12] Battal, F. , Yalıtım transformatörlerinde ara-harmoniklerin transformatör nüve titreşimi üzerine etkisi. Politeknik Dergisi, 27(3), 1147-1159., (2023).
  • [13] P. Khetarpal, and M. M. Tripathi, “A critical and comprehensive review on power quality disturbance detection and classification”, Sustainable Computing: Informatics and Systems, 28: 100417, 1-11, (2020).
  • [14] H. G. Beleiu, I. N. Beleiu, S. G. Pavel, and C. P. Darab, “Management of power quality issues from an economic point of view”, Sustainability, 10: 2326, 1-16, (2018).
  • [15] R. Saxena, and K. Nikum, “Comparative study of different residential illumination appliances based on power quality”, IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, (2012).
  • [16] T. T. Thentral, R. Palanisamy, S. Usha, M. Bajaj, H. M. Zawbaa, and S. Kamel, “Analysis of Power Quality issues of different types of household applications”, Energy Reports, 8, 5370-5386, (2022).
  • [17] V. Ioniţă, E. Cazacu, and L. Petrescu, “Effect of voltage harmonics on iron losses in magnetic cores with hysteresis” 18th International conference on harmonics and quality of power (ICHQP), Ljubljana, Slovenia, (2018).
  • [18] A. Kalair, N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, “Review of harmonic analysis, modeling and mitigation techniques”, Renewable and Sustainable Energy Reviews, 78, 1152-1187, (2017).
  • [19] D. Kumar, and F. Zare, “Harmonic analysis of grid connected power electronic systems in low voltage distribution networks”, IEEE Journal of Emerging and selected topics in Power Electronics, 4, 70-79, (2015).
  • [20] S. Elphick, P. Ciufo, G. Drury, V. Smith, S. Perera, and V. Gosbell, “Large scale proactive power-quality monitoring: An example from Australia”, IEEE Transactions on Power Delivery, 32, 881-889, (2016).
  • [21] A. H. Bonnett, “The impact that voltage and frequency variations have on AC induction motor performance and life in accordance with NEMA MG-1 standards”, In Conference record of 1999 annual pulp and paper industry technical conference, Seattle, WA, USA, (1999).
  • [22] M. M. Rahman, A. Arefi, G. M. Shafiullah, and S. Hettiwatte, “A new approach to voltage management in unbalanced low voltage networks using demand response and OLTC considering consumer preference”, International journal of electrical power & energy systems, 99, 11-27, (2018).
  • [23] S. Torres, I. Durán, A. Marulanda, A. Pavas, and J. Quirós-Tortós, “Electric vehicles and power quality in low voltage networks: Real data analysis and modeling”, Applied Energy, 305: 117718, (2022).
  • [24] M. J. Rawa, D. W. Thomas, and M. Sumner, “Experimental measurements and computer simulations of home appliances loads for harmonic studies” 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, (2014).
  • [25] A. Çiçek, A. K. Erenoğlu, O. Erdinç, A. Bozkurt, A. Taşcıkaraoğlu, and J. Catalão, “Implementing a demand side management strategy for harmonics mitigation in a smart home using real measurements of household appliances”, International Journal of Electrical Power & Energy Systems, 125: 106528. (2021).
  • [26] J. Niitsoo, J. Kilter, I. Palu, P. Taklaja, and L. Kütt, “Harmonic levels of domestic and electrical vehicle loads in residential distribution networks”. In 2013 Africon, Pointe aux Piments, Mauritius, (2013).
  • [27] S. Djordjevic, and M. Simic, “Nonintrusive identification of residential appliances using harmonic analysis”, Turkish Journal of Electrical Engineering and Computer Sciences, 26: 2, 780-791, (2018).
  • [28] M. Y. Kit, C. N. Tse, and W. H. Lau, “A study on the effects of voltage distortion on current harmonics generated by modern smps driven home appliances in smart grid network”, 9th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2012), Hong Kong, (2012).
  • [29] H. Farooq, C. Zhou, and M. E. Farrag, “Analyzing the harmonic distortion in a distribution system caused by the non-linear residential loads”, International Journal of Smart Grid and Clean Energy, 2, 46-51, (2013).
  • [30] K. Nikum, R. Saxena, and A. Wagh, “Effect on power quality by large penetration of household non linear load”, IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India , (2016).
  • [31] A. B. Nassif, J. Yong, W. Xu, and C. Y. Chung, “Indices for comparative assessment of the harmonic effect of different home appliances”, International Transactions on Electrical Energy Systems, 23: 5, 638-654, (2013).
  • [32] M. M. Swamy, “An electronically isolated 12-pulse autotransformer rectification scheme to improve input power factor and lower harmonic distortion in variable-frequency drives”, IEEE Transactions on industry applications, 51: 5, 3986-3994, (2015).
  • [33] M. Rodrigues, A. Ferreira, P. Barbosa, and H. Braga, “Flexible Operation of Grid-Connected Electric Vehicle Powertrain Converters: Power Conditioning and Consumed Energy Management in Household Networks”, Journal of Control, Automation and Electrical Systems, 33: 6, 1792-1806, (2022).
  • [34] G. K. Hood, “The effects of voltage variation on the power consumption and running cost of domestic appliances” In Australasian Universities Power Engineering Conference (AUPEC), Brisbane, Australia, (2004).
  • [35] J. Roy, and B. Mather, “Study of voltage-dependent harmonic characteristics of residential appliances”, IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, (2019).
  • [36] A. V. Mayorov, and N.E. Yaytseva, “Determination of optimal technological parameters of a washing machine on the basis of its energy studies”, IOP Conference Series: Materials Science and Engineering, 457: 1, 1-6, (2018).
  • [37] G. Jacobs, and J. C. Maun, “Identifying washing machine consumption in supervised global electric consumption”, Power Tech Conference, Milan, Italy, (2019).
  • [38] V. Y. Olhovskiy, S. V. Myateg, and T. V. Myateg, “Analyzes of high harmonics generation and power losses of low power consumers within 1000 V networks”, 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM),Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, (2016).
  • [39] J.Descheemaeker, J. V. Ryckeghem, C. Steenberge, C. Debruyne, and J. Desmet, J., “Incentives and technical considerations related to increased voltage tolerance in low voltage distribution grids”, International Conference on Harmonics and Quality of Power, Bucharest, Romania, (2014).
  • [40] Q.Zhou, J. Wei, M. Sun, C. Wang, J. Rong, J. Hu, and T. Yang, “Feature Extraction for Non-intrusive Load Monitoring System”, Power and Electrical Engineering (ACPEE), 5th Asia Conference on, Chongqing, China, (2021).

Power Quality Evaluation of a High-Power Residential Load: An Experimental Study

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1636446

Abstract

The global energy demand is increasing day by day due to factors such as industrialization, technological advancements, and population growth. In order to meet this growing demand, merely exploring new energy sources is not sufficient; issues such as energy efficiency and power quality are also gaining increasing importance. Harmonics, one of the most critical parameters of power quality, refer to the distortions caused by electrical devices in power systems and can directly affect the efficiency and safety of energy systems. Household appliances such as air conditioners, computers, televisions, washing machines, and dishwashers are among the major contributors to harmonic pollution. In this study, the harmonic effects of three different washing machines manufactured in different years were examined. The primary objective of this study is to analyze the impact of washing machines on power quality at different washing temperatures and to compare their harmonic generation levels. Within the scope of the study, harmonics generated during washing cycles at different temperatures (30°C, 60°C, and 90°C) were analyzed in detail for each washing machine. Measurements were conducted using a Fluke 435 power quality analyzer, and the obtained data were processed using MATLAB software for detailed analysis. The measurements revealed that the harmonic levels of washing machines vary depending on the model year, motor type, and washing temperature. It was observed that older models produced lower harmonic levels, whereas modern inverter motor washing machines exhibited higher harmonic levels. Additionally, it was determined that harmonic distortion changes as the washing temperature increases. The results highlight the significance of design modifications aimed at reducing the harmonic generation of electrical household appliances and the importance of techniques that enhance energy efficiency. This study aims to contribute to raising awareness among consumers and engineers regarding power quality and harmonic management, thereby guiding the development of more efficient and environmentally friendly electrical devices.

References

  • [1] X. Xie, and D. Chen, “Data-driven dynamic harmonic model for modern household appliances”, Applied Energy, vol. 312, no. 118759, pp. 1-11, (2022).
  • [2] S. Yanchenko, and J. Meyer, “Harmonic emission of household devices in presence of typical voltage distortions”, 2015 IEEE Eindhoven PowerTech (PowerTech 2015), Eindhoven, Netherlands, (2015).
  • [3] Kabalcı, E., & Taşdemir, O. Mikro şebekelerde güç kalitesinin iyileştirilmesi için D-STATCOM tasarımı ve analizi. Politeknik Dergisi, 24(2), 361-372., (2021).
  • [4] M. T. Ahammed, and I. Khan, “Ensuring power quality and demand-side management through IoT-based smart meters in a developing country”, Energy, 250: 123747, 1-19, (2022).
  • [5] S. Elphick, V. Smith, V. Gosbell, G. Drury, and S. Perera, “Voltage sag susceptibility of 230 V equipment” IET Generation, Transmission & Distribution, 7: 6, 576-583, (2013).
  • [6] T. V. Myateg, “Analysis of Higher Harmonic Components Influence on the Electric Circuit at Induction Motor Functioning Equipped with Adjustable-Frequency Electric Drive”, Applied Mechanics and Materials, 698, 173-177, (2015).
  • [7] H. Markiewicz, and A. Klajn, “Voltage disturbances standard en 50160-voltage characteristics in public distribution systems”, Wroclaw University of Technology, 21, 215-224, (2004).
  • [8] V. Jacome, N. Klugman, C. Wolfram, B. Grunfeld, D. Callaway, and I. Ray, “Power quality and modern energy for all”, Proceedings of the National Academy of Sciences, 116, 16308-16313, (2019).
  • [9] Donuk, H., & Gümüş, B., Paralel Aktif Güç Filtresinin Döngüde Donanım Destekli (DDD) Matlab/Simulink Ortak Benzetimi. Politeknik Dergisi, 1-1., (2023).
  • [10] Y. Sun, X. Xie, Q. Wang, L. Zhang, Y. Li, and Z. Jin, “A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas” Applied Energy, 259: 114207, 1-14, (2020).
  • [11] M. N. Iqbal, and L. Kütt, “End-user electricity consumption modelling for power quality analysis in residential building”, 19th International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, (2018).
  • [12] Battal, F. , Yalıtım transformatörlerinde ara-harmoniklerin transformatör nüve titreşimi üzerine etkisi. Politeknik Dergisi, 27(3), 1147-1159., (2023).
  • [13] P. Khetarpal, and M. M. Tripathi, “A critical and comprehensive review on power quality disturbance detection and classification”, Sustainable Computing: Informatics and Systems, 28: 100417, 1-11, (2020).
  • [14] H. G. Beleiu, I. N. Beleiu, S. G. Pavel, and C. P. Darab, “Management of power quality issues from an economic point of view”, Sustainability, 10: 2326, 1-16, (2018).
  • [15] R. Saxena, and K. Nikum, “Comparative study of different residential illumination appliances based on power quality”, IEEE 5th India International Conference on Power Electronics (IICPE), Delhi, India, (2012).
  • [16] T. T. Thentral, R. Palanisamy, S. Usha, M. Bajaj, H. M. Zawbaa, and S. Kamel, “Analysis of Power Quality issues of different types of household applications”, Energy Reports, 8, 5370-5386, (2022).
  • [17] V. Ioniţă, E. Cazacu, and L. Petrescu, “Effect of voltage harmonics on iron losses in magnetic cores with hysteresis” 18th International conference on harmonics and quality of power (ICHQP), Ljubljana, Slovenia, (2018).
  • [18] A. Kalair, N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, “Review of harmonic analysis, modeling and mitigation techniques”, Renewable and Sustainable Energy Reviews, 78, 1152-1187, (2017).
  • [19] D. Kumar, and F. Zare, “Harmonic analysis of grid connected power electronic systems in low voltage distribution networks”, IEEE Journal of Emerging and selected topics in Power Electronics, 4, 70-79, (2015).
  • [20] S. Elphick, P. Ciufo, G. Drury, V. Smith, S. Perera, and V. Gosbell, “Large scale proactive power-quality monitoring: An example from Australia”, IEEE Transactions on Power Delivery, 32, 881-889, (2016).
  • [21] A. H. Bonnett, “The impact that voltage and frequency variations have on AC induction motor performance and life in accordance with NEMA MG-1 standards”, In Conference record of 1999 annual pulp and paper industry technical conference, Seattle, WA, USA, (1999).
  • [22] M. M. Rahman, A. Arefi, G. M. Shafiullah, and S. Hettiwatte, “A new approach to voltage management in unbalanced low voltage networks using demand response and OLTC considering consumer preference”, International journal of electrical power & energy systems, 99, 11-27, (2018).
  • [23] S. Torres, I. Durán, A. Marulanda, A. Pavas, and J. Quirós-Tortós, “Electric vehicles and power quality in low voltage networks: Real data analysis and modeling”, Applied Energy, 305: 117718, (2022).
  • [24] M. J. Rawa, D. W. Thomas, and M. Sumner, “Experimental measurements and computer simulations of home appliances loads for harmonic studies” 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, (2014).
  • [25] A. Çiçek, A. K. Erenoğlu, O. Erdinç, A. Bozkurt, A. Taşcıkaraoğlu, and J. Catalão, “Implementing a demand side management strategy for harmonics mitigation in a smart home using real measurements of household appliances”, International Journal of Electrical Power & Energy Systems, 125: 106528. (2021).
  • [26] J. Niitsoo, J. Kilter, I. Palu, P. Taklaja, and L. Kütt, “Harmonic levels of domestic and electrical vehicle loads in residential distribution networks”. In 2013 Africon, Pointe aux Piments, Mauritius, (2013).
  • [27] S. Djordjevic, and M. Simic, “Nonintrusive identification of residential appliances using harmonic analysis”, Turkish Journal of Electrical Engineering and Computer Sciences, 26: 2, 780-791, (2018).
  • [28] M. Y. Kit, C. N. Tse, and W. H. Lau, “A study on the effects of voltage distortion on current harmonics generated by modern smps driven home appliances in smart grid network”, 9th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2012), Hong Kong, (2012).
  • [29] H. Farooq, C. Zhou, and M. E. Farrag, “Analyzing the harmonic distortion in a distribution system caused by the non-linear residential loads”, International Journal of Smart Grid and Clean Energy, 2, 46-51, (2013).
  • [30] K. Nikum, R. Saxena, and A. Wagh, “Effect on power quality by large penetration of household non linear load”, IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India , (2016).
  • [31] A. B. Nassif, J. Yong, W. Xu, and C. Y. Chung, “Indices for comparative assessment of the harmonic effect of different home appliances”, International Transactions on Electrical Energy Systems, 23: 5, 638-654, (2013).
  • [32] M. M. Swamy, “An electronically isolated 12-pulse autotransformer rectification scheme to improve input power factor and lower harmonic distortion in variable-frequency drives”, IEEE Transactions on industry applications, 51: 5, 3986-3994, (2015).
  • [33] M. Rodrigues, A. Ferreira, P. Barbosa, and H. Braga, “Flexible Operation of Grid-Connected Electric Vehicle Powertrain Converters: Power Conditioning and Consumed Energy Management in Household Networks”, Journal of Control, Automation and Electrical Systems, 33: 6, 1792-1806, (2022).
  • [34] G. K. Hood, “The effects of voltage variation on the power consumption and running cost of domestic appliances” In Australasian Universities Power Engineering Conference (AUPEC), Brisbane, Australia, (2004).
  • [35] J. Roy, and B. Mather, “Study of voltage-dependent harmonic characteristics of residential appliances”, IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, (2019).
  • [36] A. V. Mayorov, and N.E. Yaytseva, “Determination of optimal technological parameters of a washing machine on the basis of its energy studies”, IOP Conference Series: Materials Science and Engineering, 457: 1, 1-6, (2018).
  • [37] G. Jacobs, and J. C. Maun, “Identifying washing machine consumption in supervised global electric consumption”, Power Tech Conference, Milan, Italy, (2019).
  • [38] V. Y. Olhovskiy, S. V. Myateg, and T. V. Myateg, “Analyzes of high harmonics generation and power losses of low power consumers within 1000 V networks”, 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM),Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, (2016).
  • [39] J.Descheemaeker, J. V. Ryckeghem, C. Steenberge, C. Debruyne, and J. Desmet, J., “Incentives and technical considerations related to increased voltage tolerance in low voltage distribution grids”, International Conference on Harmonics and Quality of Power, Bucharest, Romania, (2014).
  • [40] Q.Zhou, J. Wei, M. Sun, C. Wang, J. Rong, J. Hu, and T. Yang, “Feature Extraction for Non-intrusive Load Monitoring System”, Power and Electrical Engineering (ACPEE), 5th Asia Conference on, Chongqing, China, (2021).
There are 40 citations in total.

Details

Primary Language English
Subjects Power Plants
Journal Section Research Article
Authors

Altuğ Bozkurt 0000-0001-6458-1260

Erşan Ömer Yüzer 0000-0002-9089-1358

Early Pub Date April 27, 2025
Publication Date
Submission Date February 9, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Bozkurt, A., & Yüzer, E. Ö. (2025). Power Quality Evaluation of a High-Power Residential Load: An Experimental Study. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1636446
AMA Bozkurt A, Yüzer EÖ. Power Quality Evaluation of a High-Power Residential Load: An Experimental Study. Politeknik Dergisi. Published online April 1, 2025:1-1. doi:10.2339/politeknik.1636446
Chicago Bozkurt, Altuğ, and Erşan Ömer Yüzer. “Power Quality Evaluation of a High-Power Residential Load: An Experimental Study”. Politeknik Dergisi, April (April 2025), 1-1. https://doi.org/10.2339/politeknik.1636446.
EndNote Bozkurt A, Yüzer EÖ (April 1, 2025) Power Quality Evaluation of a High-Power Residential Load: An Experimental Study. Politeknik Dergisi 1–1.
IEEE A. Bozkurt and E. Ö. Yüzer, “Power Quality Evaluation of a High-Power Residential Load: An Experimental Study”, Politeknik Dergisi, pp. 1–1, April 2025, doi: 10.2339/politeknik.1636446.
ISNAD Bozkurt, Altuğ - Yüzer, Erşan Ömer. “Power Quality Evaluation of a High-Power Residential Load: An Experimental Study”. Politeknik Dergisi. April 2025. 1-1. https://doi.org/10.2339/politeknik.1636446.
JAMA Bozkurt A, Yüzer EÖ. Power Quality Evaluation of a High-Power Residential Load: An Experimental Study. Politeknik Dergisi. 2025;:1–1.
MLA Bozkurt, Altuğ and Erşan Ömer Yüzer. “Power Quality Evaluation of a High-Power Residential Load: An Experimental Study”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1636446.
Vancouver Bozkurt A, Yüzer EÖ. Power Quality Evaluation of a High-Power Residential Load: An Experimental Study. Politeknik Dergisi. 2025:1-.