The Importance of Representative Sampling and Homogenization in Designing the Reference Material Production Processes
Year 2025,
EARLY VIEW, 1 - 1
Berna Yüksel
,
Aysel Berkkan
,
Hakan Ateş
,
Çiğdem Güldür
Abstract
Rare earth elements (REE); constitutes the most important raw materials in renewable energy, aviation industry, electronics, defense industry and many other advanced technology fields. During the coal combustion (CC) in thermal power plants, huge amounts of by-products are released. These coal by-products contain a significant amount of REEs. For this reason, it is recommended to develop sustainable recycling technologies for the recovery of metals and REEs. While developing these technologies, accurate and precise analysis results in analytical chemical methods of REEs are required at every stage. The use of reference materials (RM) is a key activity to develop and maintain a consistent measurement system in the world. RM is used for various purposes such as deviation evaluation, calibration, method validation, etc. in measurement systems. RM production process is a process that includes some major multiple steps but the most important ones are Representative Sampling (RS) and assurance of Homogeneity (H) and Stability (S) of the sample. Also, this is a production process that needs to be designed with different algorithms for each different matrix. While conducting RM production activities, it is determined that RS and H have a crucial importance on the process, and this study aims to show the importance of these stages. In addition, the effects of sampling fly ash samples on different days and taking them into solution using two different dissolution methods were examined. It was observed that the REEs in the sampled coal fly ash could be taken into solution more efficiently by 3 acid dissolution method. It was seen that sampling with the accumulation method on 10 different days determined during RS was a correct approach, and that the REE analysis results of the relevant samples showed undeniable changes in the waste content according to the days and were not constant.
Project Number
FOA-2023-9027
References
- [1] Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W., Lee, Jin-Y., “Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste”, Journal of Cleaner Production, 267 (122048): 1-26, (2020).
- [2] Pan, J., Hassas, B. V., Rezaee, M., Zhou, C., Pisupati, S. V., “Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes”, Journal of Cleaner Production, 284 (124725): 1-9, (2021).
- [3] Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J., Honaker, R., “A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products”, Int. J. Coal Prep. Util. 35: 295-330, (2015).
- [4] Dong, Y., Sun, X., Wang, Y., Huang, C., Zhao, Z., “The sustainable and efficientionic liquid-type saponification strategy for rare earth separation processing”, ACS Sustain. Chem. Eng., 4: 1573-1580, (2016).
- [5] Lin, R., Howard, B.H., Roth, E.A., Bank, T.L., Granite, E.J., Soong, Y., “Enrichment of rare earth elements from coal and coal by-products by physical separations”, Fuel, 200: 506-520, (2017).
- [6] Huang, Z., Fan, M., Tiand, H., “Coal and coal byproducts: a large and developable unconventional resource for critical materials - rare earth elements”, Journal of Rare Earths, 36: 337-338, (2018).
- [7] Taggart, R.K., Hower, J.C., Dwyer, G.S., Hsu-Kim, H., “Trends in the rare earth element content of US based coal combustion fly ashes”, Environ. Sci. Technol., 50 (11): 5919–5926, (2016).
- [8] I.R.B. Olivares, G.B. Souza, A.R.A. Nogueira, G.T.K. Toledo, D.C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices”, Trends in Analytical Chemistry, 100: 53-64, (2018).
- [9] Seredin, V.V., “Rare earth element-bearing coals from the Russian far east deposits”, Int. J. Coal Geol., 30: 101-129, (1996).
- [10] Park, S., Kim, M., Lim, Y., Yu, J., Chen, S., Woo, S. W., Yoon, S., Bae, S., Kim, H. S., “Characterization of rare earth elements present in coal ash by sequential extraction”, Journal of Hazardous Materials, 402 (123760): 1-8, (2021).
- [11] Ramakrishna, C., Thenepalli, T., Nam, S.Y., Kim, C., Ahn, J.W., “The brief review on coal origin and distribution of rare earth elements in various coal ash samples”, KSEE 27, 2, 61–69, (2018).
- [12] Jayaranjan, M.L.D., Hullebusch, E.D., Annachhatre, A.P., “Reuse options for coal fired power plant bottom ash and fly ash”, Rev. Environ. Sci. Biotechnol., 13 (4): 467–486, (2014).
- [13] Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q., “A comprehensive review on the applications of coal fly ash” Earth-Sci. Rev., 141: 105–121, (2015).
- [14] Vaziri Hassas, B., Rezaee, M., Pisupati, S.V., “Precipitation of rare earth elements from Acid mine drainage by CO2 mineralization process”, Chem. Eng. J., 399: 125716, (2020).
- [15] Kolker, A., Scott, C., Hower, J.C., Vazquez, J.A., Lopano, C.L., Dai, S., “Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe” Int. J. Coal Geol., 184: 1-10, (2017).
- [16] Pan, J., Zhou, C., Liu, C., Tang, M., Cao, S., Hu, T., Ji, W., Luo, Y., Wen, M., Zhang, N., “Modes of occurrence of rare earth elements in coal fly ash: a case study”, Energy Fuels, 32 (9): 9738-9743, (2018).
- [17] Pan, J., Zhou, C., Tang, M., Cao, S., Liu, C., Zhang, N., Wen, M., Luo, Y., Hu, T., Ji, W., “Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure”, Fuel, 237: 555-565, (2019).
- [18] TS EN ISO/IEC 17025- General requirements for the competence of testing and calibration labs, (2017).
- [19] https://shop.nist.gov/ccrz__ProductList?categoryId=a0l3d0000005KpyAAE&cclcl=en_US, Son erişim tarihi:15.02.2025.
- [20] ISO Guide 30:2015 Reference Materials – Selected Terms and Definitions.
- [21] ISO Guide 31:2015 Reference Materials–Contents of sertificates, labels and accompanying documentation.
- [22] ISO Guide 32:1997 Calibration in analytical chemistry and use of CRM.
- [23] ISO Guide 33:2015 Reference Materials – Good practice in using RM.
- [24] ISO Guide 34:2009 General requirements for the competence of RM producers.
- [25] ISO Guide 35:2017 Reference Materials – Guidance for characterization and assessment of homogeneity and stability.
- [26] ISO 17034:2016 Reference Material Producer Accreditation.
- [27] EA-4/14 INF:2003 The Selection and Use of Reference Materials.
- [28] ILAC-G12:2000 Guidelines fort he Requirements for the Competence of RM Producers.
- [29] Shu, C., Volli, V., Gollakota, A.R.K., “Progressive utilisation prospects of coal fly ash: A review”, Science of the Total Environment, 672: 951–989, (2019).
- [30] Karayigit, A.I., Gayer, R.A., Querol, X., Onacak, T., “Contents of major and trace elements in feed coals from Turkish coal-fired power plants”, International Journal of Coal Geology, 44: 169–184, (2000).
- [31] Environment Agency of United Kingdom, Guidelines for Ash Sampling and Analysis Technical Guiadence Note (Monitoring) M4 (2016).
- [32] Finley, S., Hosseini, P., Wang, B., Ginder-Vogel, M., “Aqua regia-based digestion methods for trace rare earth element recovery from coal fly ash”, Resources, Conservation and Recycling, Volume 215 (108093): 1-8, (2025).
Referans Malzeme Üretim Süreçlerinin Tasarımında Temsili Örnekleme ve Homojenizasyonun Önemi
Year 2025,
EARLY VIEW, 1 - 1
Berna Yüksel
,
Aysel Berkkan
,
Hakan Ateş
,
Çiğdem Güldür
Abstract
Nadir toprak elementleri (NTE); yenilenebilir enerji, havacılık sanayi, elektronik, savunma sanayi ve daha birçok ileri teknoloji alanının en önemli hammaddelerini oluşturmaktadır. Termik santrallerde kömürün yanmasıyla büyük miktarlarda açığa çıkan yan ürünler önemli miktarda NTE içermektedir. Bu nedenle metallerin ve NTE’lerin geri kazanımına yönelik sürdürülebilir geri dönüşüm teknolojilerinin geliştirilmesi önerilmektedir. Bu teknolojiler geliştirilirken NTE’lerin analitik kimyasal yöntemlerle doğru ve kesin analiz sonuçlarına her aşamada ihtiyaç duyulmaktadır. Dünya çapında tutarlı bir ölçüm sisteminin geliştirilmesi ve sürdürülmesi için referans malzeme (RM) kullanımı anahtar bir faaliyettir. RM’ler, ölçüm proseslerinde kalibrasyon, metot validasyonu ve sistem yeterliliğinin gösterilmesi gibi çeşitli amaçlarla kullanılmaktadır. RM üretim süreci, en önemli adımları Temsiliyet, Homojenlik ve Kararlılık çalışmalarının güvence altına alınması olmak üzere birden fazla önemli adımı içeren ve her bir farklı matriks için farklı algoritmalarla tasarlanması gereken bir süreçtir. RM üretim faaliyetleri yürütülürken temsili örnekleme ve homojenliğin süreç üzerinde özel bir öneme sahip olduğu tespit edilmiş olup bu çalışmada bahse konu aşamaların öneminin gösterilmesi hedeflenmiştir. Ayrıca uçucu kül numunelerinin temsili olarak farklı günlerde örneklenmesinin ve iki farklı çözme yöntemi kullanılarak çözeltiye alınmasının etkileri incelenmiştir. Örneklenen uçucu kömür külü içinde bulunan NTE’lerin 3 asit çözme yöntemiyle daha verimli olarak çözeltiye alınabildiği gözlemlenmiştir. Temsili örnekleme sırasında belirlenen 10 farklı günde biriktirme yöntemiyle örnekleme yapılmasının doğru bir yaklaşım olduğu, ilgili örneklerin NTE analiz sonuçlarının atık içeriklerinde günlere göre yadsınamayacak değişiklikler gösterdiği ve sabit olmadığı görülmüştür.
Ethical Statement
Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.
Supporting Institution
Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
FOA-2023-9027
Thanks
FOA-2023-9027 numaralı proje ile vermiş oldukları destekten dolayı Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkür ederiz.
References
- [1] Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W., Lee, Jin-Y., “Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste”, Journal of Cleaner Production, 267 (122048): 1-26, (2020).
- [2] Pan, J., Hassas, B. V., Rezaee, M., Zhou, C., Pisupati, S. V., “Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes”, Journal of Cleaner Production, 284 (124725): 1-9, (2021).
- [3] Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J., Honaker, R., “A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products”, Int. J. Coal Prep. Util. 35: 295-330, (2015).
- [4] Dong, Y., Sun, X., Wang, Y., Huang, C., Zhao, Z., “The sustainable and efficientionic liquid-type saponification strategy for rare earth separation processing”, ACS Sustain. Chem. Eng., 4: 1573-1580, (2016).
- [5] Lin, R., Howard, B.H., Roth, E.A., Bank, T.L., Granite, E.J., Soong, Y., “Enrichment of rare earth elements from coal and coal by-products by physical separations”, Fuel, 200: 506-520, (2017).
- [6] Huang, Z., Fan, M., Tiand, H., “Coal and coal byproducts: a large and developable unconventional resource for critical materials - rare earth elements”, Journal of Rare Earths, 36: 337-338, (2018).
- [7] Taggart, R.K., Hower, J.C., Dwyer, G.S., Hsu-Kim, H., “Trends in the rare earth element content of US based coal combustion fly ashes”, Environ. Sci. Technol., 50 (11): 5919–5926, (2016).
- [8] I.R.B. Olivares, G.B. Souza, A.R.A. Nogueira, G.T.K. Toledo, D.C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices”, Trends in Analytical Chemistry, 100: 53-64, (2018).
- [9] Seredin, V.V., “Rare earth element-bearing coals from the Russian far east deposits”, Int. J. Coal Geol., 30: 101-129, (1996).
- [10] Park, S., Kim, M., Lim, Y., Yu, J., Chen, S., Woo, S. W., Yoon, S., Bae, S., Kim, H. S., “Characterization of rare earth elements present in coal ash by sequential extraction”, Journal of Hazardous Materials, 402 (123760): 1-8, (2021).
- [11] Ramakrishna, C., Thenepalli, T., Nam, S.Y., Kim, C., Ahn, J.W., “The brief review on coal origin and distribution of rare earth elements in various coal ash samples”, KSEE 27, 2, 61–69, (2018).
- [12] Jayaranjan, M.L.D., Hullebusch, E.D., Annachhatre, A.P., “Reuse options for coal fired power plant bottom ash and fly ash”, Rev. Environ. Sci. Biotechnol., 13 (4): 467–486, (2014).
- [13] Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q., “A comprehensive review on the applications of coal fly ash” Earth-Sci. Rev., 141: 105–121, (2015).
- [14] Vaziri Hassas, B., Rezaee, M., Pisupati, S.V., “Precipitation of rare earth elements from Acid mine drainage by CO2 mineralization process”, Chem. Eng. J., 399: 125716, (2020).
- [15] Kolker, A., Scott, C., Hower, J.C., Vazquez, J.A., Lopano, C.L., Dai, S., “Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe” Int. J. Coal Geol., 184: 1-10, (2017).
- [16] Pan, J., Zhou, C., Liu, C., Tang, M., Cao, S., Hu, T., Ji, W., Luo, Y., Wen, M., Zhang, N., “Modes of occurrence of rare earth elements in coal fly ash: a case study”, Energy Fuels, 32 (9): 9738-9743, (2018).
- [17] Pan, J., Zhou, C., Tang, M., Cao, S., Liu, C., Zhang, N., Wen, M., Luo, Y., Hu, T., Ji, W., “Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure”, Fuel, 237: 555-565, (2019).
- [18] TS EN ISO/IEC 17025- General requirements for the competence of testing and calibration labs, (2017).
- [19] https://shop.nist.gov/ccrz__ProductList?categoryId=a0l3d0000005KpyAAE&cclcl=en_US, Son erişim tarihi:15.02.2025.
- [20] ISO Guide 30:2015 Reference Materials – Selected Terms and Definitions.
- [21] ISO Guide 31:2015 Reference Materials–Contents of sertificates, labels and accompanying documentation.
- [22] ISO Guide 32:1997 Calibration in analytical chemistry and use of CRM.
- [23] ISO Guide 33:2015 Reference Materials – Good practice in using RM.
- [24] ISO Guide 34:2009 General requirements for the competence of RM producers.
- [25] ISO Guide 35:2017 Reference Materials – Guidance for characterization and assessment of homogeneity and stability.
- [26] ISO 17034:2016 Reference Material Producer Accreditation.
- [27] EA-4/14 INF:2003 The Selection and Use of Reference Materials.
- [28] ILAC-G12:2000 Guidelines fort he Requirements for the Competence of RM Producers.
- [29] Shu, C., Volli, V., Gollakota, A.R.K., “Progressive utilisation prospects of coal fly ash: A review”, Science of the Total Environment, 672: 951–989, (2019).
- [30] Karayigit, A.I., Gayer, R.A., Querol, X., Onacak, T., “Contents of major and trace elements in feed coals from Turkish coal-fired power plants”, International Journal of Coal Geology, 44: 169–184, (2000).
- [31] Environment Agency of United Kingdom, Guidelines for Ash Sampling and Analysis Technical Guiadence Note (Monitoring) M4 (2016).
- [32] Finley, S., Hosseini, P., Wang, B., Ginder-Vogel, M., “Aqua regia-based digestion methods for trace rare earth element recovery from coal fly ash”, Resources, Conservation and Recycling, Volume 215 (108093): 1-8, (2025).