Elektrodepozisyon Yöntemiyle Üretilen Ag-CdO Nanokompozit Kaplamalarda CdO Miktarının Mekanik ve Elektriksel Özelliklere Etkisi
Year 2025,
EARLY VIEW, 1 - 1
Ramazan Karslıoğlu
,
Dila Coşmuş
Abstract
Bu çalışmada, gümüş (Ag) ve kadmiyum oksit (CdO) takviyeli Ag matrisli nanokompozit kaplamalar, elektrodepozisyon yöntemi ile bakır altlıklar üzerine başarıyla kaplanmıştır. Kaplama elektrolitine eklenen CdO'nun miktarının, Ag matrisinin mikroyapı, mekanik ve elektriksel özellikleri üzerindeki etkisi araştırılmıştır. Mikroyapı karakterizasyonu, taramalı elektron mikroskobu (SEM), enerji saçınımlı X-ışınları spektroskopisi (EDS) ve X-ışınları difraktometresi (XRD) ile gerçekleştirilmiştir. Mekanik özellikler, mikrosertlik yöntemi kullanılarak değerlendirilmiş, elektriksel direnç ölçümleri ise katkısız Ag ve Ag-CdO nanokompozit kaplamalar üzerinde iki prop yöntemi kullanılarak yapılmıştır. Elde edilen sonuçlar, elektrodepozisyon banyosuna eklenen CdO miktarının mikro yapı üzerinde belirgin bir etkisi olduğunu göstermiştir. CdO ilavesi mekanik özellikleri önemli ölçüde iyileştirirken, matris malzemesinin elektriksel direncinde kayda değer bir artışa neden olmamıştır. Sonuç olarak, bu çalışmada 1,0 g/L CdO içeren Ag-CdO nanokompozit kaplamaların, en iyi mekanik ve mikroyapısal özellikleri sunduğu belirlenmiştir.
Ethical Statement
Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.
Supporting Institution
TENMAK BOREN
Project Number
TENMAK BOREN 2019-30-07-25-001
Thanks
Bu çalışma 2019-30-07-25-001 numaralı proje kapsamında ULUSAL BOR ARAŞTIRMA ENSTİTÜSÜ tarafından desteklenmiştir.
References
- [1] J. Ding, W. Tian, P. Zhang, M. Zhang, J. Chen, Y. Zhang, Z.M. Sun,, “Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging”, J. Adv. Ceram., 8(1): 90-101, (2019).
- [2] X. Zhang, Y. Zhang, B. Tian, J. An, Z. Zhao, A. A. Volinsky, “Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts”, Compos. Part B Eng., 160: 110-118, (2019).
- [3] X. Huang, Y. Feng, L. Li, ve Z. Li, “Erosion Behavior of a Cu-Ti3AlC2 Cathode by Multi-Electric Arc”, Materials, 12(18): 2947, (2019).
- [4] Z.-X. Qi, L.-H. Li, H. Yi, W.-G. Liang, J.-Q. Liu, ve M.-C. Wei, “Effect of SnO2 particulate characteristics on mechanical properties of Ag/SnO2 electrical contact materials”, Int. J. Solids Struct., 314: 113338 (2025).
- [5] J. Ding, W. Tian, P. Zhang, M. Zhang, J. Chen, Y. Zhang, Z.M. Sun, “Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge”, Corros. Sci., 156: 147-160, (2019).
- [6] S. Biyik, F. Arslan, ve M. Aydin, “Arc-Erosion Behavior of Boric Oxide-Reinforced Silver-Based Electrical Contact Materials Produced by Mechanical Alloying”, J. Electron. Mater., 44(1): 457-466 (2015).
- [7] H. Nie, Z. Wang, X. Xue, C. Yu, J. Wang, K. Wen, C. Xu, “Designing sandwich-structured Ag–SnO2 contact materials Overcoming the trade-off between erosion resistance and mechanical properties”, Ceram. Int., 50(2): 2950-2962, (2024).
- [8] T. Zhou, X. Wang, L Qin, W. Qiu, S. Li, Y. Jiang, Y. Jia, Zhou Li, “Electrical sliding friction wear behaviors and mechanisms of Cu–Sn matrix composites containing MoS2/graphite”, Wear, 548-549: 205388, (2024).
- [9] R. Karslıoğlu, “Akımsız Kaplama Yöntemi ile Üretilmiş Grafen Takviyeli Gümüş Matrisli Nanokompozitlerin Yapısal Özellikline Banyo Bileşiminin Etkisi”, Int. J. Eng. Res. Dev., 11(2): 637-642, (2019).
- [10] H. Yilmaz, Y. Altin, ve A. Bedeloğlu, “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politek. Derg., 24(4): 1719-1727, (2021).
- [11] Comstock G.J., “Electrical Contact Element”, United States Patent Office, Patent no: 2.365.249, (1944).
- [12] Y. Qiu, X. Wang, Y. Liang, Z. Li, Y. Fei, ve L. Wang, “Arc erosion behavior and mechanism of AgZrO2 electrical contact materials”, J. Alloys Compd., 976: 172966, (2024).
- [13] C.-Z. Zhang, F. Shen, ve L.-L. Ke, “A comparative study on the electrical contact behavior of CuZn40 and AgCu10 alloys under fretting wear Effect of current load”, Tribol. Int., 194: 109523, (2024).
- [14] X. Huang, Y. Feng, G. Qian, ve Z. Zhou, “Arc ablation properties of Ti3SiC2 material”, Ceram. Int., 45(16): 20297-20306, (2019).
- [15] J. Ding, W. Tian, P. Zhang, M. Zhang, J. Chen, Y. Zhang, Z.M. Sun, “Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging”, J. Alloys Compd., 785: 1086-1096, (2019).
- [16] X. Yuan, F. Fu, ve R. He, “Graphene-enhanced silver composites for electrical contacts: a review”, J. Mater. Sci., 59(9): 3762-3779, (2024).
- [17] D. Guzmán, C. Aguilar, P. Rojas, J. M. Criado, M. J. Diánez, R. Espinoza, A. Guzmán, C. Martínez, “Production of Ag−ZnO powders by hot mechanochemical processing”, Trans. Nonferrous Met. Soc. China, 29(2): 365-373, (2019).
- [18] M. Hou, L. Li, ve M. Zhuang, “Research on application mechanism of cadmium in new energy vehicle charging group”, IOP Conf. Ser. Earth Environ. Sci., 227: 052046, (2019).
- [19] J. Jaćimović, L. Felberbaum, E. Giannini, ve J. Teyssier, “Electro-mechanical properties of composite materials for high-current contact applications”, J. Phys. Appl. Phys., 47(12): 25501, (2014).
- [20] C. Wu, D. Yi, W. Weng, S. Li, ve J. Zhou, “Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials”, Trans. Nonferrous Met. Soc. China, 26(1): 185-195, (2016).
- [21] X. C. Ma, G. Q. He, D. H. He, C. S. Chen, ve Z. F. Hu, “Sliding wear behavior of copper–graphite composite material for use in maglev transportation system”, Wear, 265(7): 1087-1092, (2008).
- [22] R. Karslioglu ve H. Akbulut, “Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition”, Appl. Surf. Sci., 353: 615-627, (2015).
- [23] Y. Liu, L. Zheng, X. Li, ve S. Xie, “SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures”, J. Hazard. Mater., 162(1): 161-173, (2009).
- [24] C. F. Holder ve R. E. Schaak, “Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials”, ACS Nano, 13(7): 7359-7365, (2019).
- [25] R. Karslioglu, M. Akçil, A. Alp, ve H. Akbulut, “Effect of Current Type and Density on Tribological Properties of Electrodeposited Ni-Co/MWCNT Nanocomposite Coatings”, JOM, 75(12): 5114-5125, (2023).
- [26] R. Karslioglu, L. Al-Falahi, “Electrical contact performance of various electro-deposited graphene reinforced silver-based nanocomposites”, Mater. Test., 62(4): 401-407, (2020).
- [27] A. M. Yilmaz, F. Songur, E. Arslan, ve B. Di̇Ki̇Ci̇, “PEO Kaplamalara CeO2 Nanopartikül İlavesinin Korozyon Davranışına Etkisi”, Politek. Derg., 23(4): 1285-1295, (2020).
- [28] M. H. Maneshian, A. Simchi, ve Z. R. Hesabi, “Structural changes during synthesizing of nanostructured W–20 wt% Cu composite powder by mechanical alloying”, Mater. Sci. Eng. A, 445-446: 86-93, (2007).
- [29] H H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, B. S. Xu, “Worm-Like Ag/ZnO Core–Shell Heterostructural Composites: Fabrication, Characterization, and Photocatalysis”, J. Phys. Chem. C, 116(30): 16182-16190, (2012).
- [30] B. S. Clausen, H. Topsøe, ve R. Frahm, “Application of Combined X-Ray Diffraction and Absorption Techniques for in Situ Catalyst Characterization”, Advances in Catalysis, 42: 315-344, (1998).
- [31] P. Zhang, Z. Yao, K Lu, S. Lin, Y. Liu, S. Lu, X. Wu, “Tuning strength-ductility combination on two-phase FeCrAlTix high entropy alloy coating through grain refinement induced the generation of a second phase”, J. Alloys Compd., 1004: 175924, (2024).
- [32] R. Karslioglu, M. Uysal, A. Alp, ve H. Akbulut, “Wear Behavior of Bronze Hybrid MMCs Coatings Produced by Current Sintering on Steel Substrates”, Tribol. Trans., 53(5): 779-785, (2010).
- [33] M. Okumuş, E. Kaya, ve M. Gögebakan, “Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying”, Politek. Dergisi, 27(1): 1-10, (2024).
- [34] N. Çankaya ve Ö. Sökmen, “Kitosan-Kil Biyonanokompozitleri”, Politeknik Dergisi, 19(3): 283–295, (2016).
- [35] M. Taşyürek ve N. Tarakcıoğlu, “Karbon Nanotüp ile Modifiye Edilmiş Filaman Sarım Boruların İç Basınç Altındaki Hasar Davranış”, Politeknik Dergisi, 18(4): 211–217, (2015).
- [36] M. Pul ve V. Baydaroğlu, “B4C/SiC Katkılı Alüminyum Esaslı Kompozitlerin Mekanik Özelliklerin İncelenmesi ve Balistik Performanslarının Modellenmesi”, Politek. Dergisi, 23(2): 383-392, (2020).
- [37] R. Casati ve M. Vedani, “Metal Matrix Composites Reinforced by Nano-Particles—A Review”, Metals, 4(1): 65-83, (2014).
- [38] M. Tabandeh-Khorshid, Ajay Kumar, E. Omrani, C. Kim, ve P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites”, Compos. Part B Eng., 183: 107664, (2020).
- [39] R. Karslıoğlu, M. Uysal, ve H. Akbulut, “The effect of substrate temperature on the electrical and optic properties of nanocrystalline tin oxide coatings produced by APCVD”, J. Cryst. Growth, 327(1): 22-26, (2011).
Effect of CdO Content on the Mechanical and Electrical Properties of Ag-CdO Nanocomposite Coatings Produced by Electrodeposition
Year 2025,
EARLY VIEW, 1 - 1
Ramazan Karslıoğlu
,
Dila Coşmuş
Abstract
In this study, silver (Ag) and cadmium oxide (CdO) reinforced Ag matrix nanocomposite coatings were successfully deposited onto copper substrates using the electrodeposition method. The effect of CdO content in the coating electrolyte on the microstructure, mechanical, and electrical properties of the Ag matrix was investigated. Microstructural characterization was carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Mechanical properties were evaluated using the microhardness method, while electrical resistance measurements were conducted on pure Ag and Ag-CdO nanocomposite coatings using the two-probe method. The obtained results showed that the CdO content in the electrodeposition bath had a significant effect on the microstructure. The addition of CdO considerably improved the mechanical properties while causing no significant increase in the electrical resistance of the matrix material. Consequently, it was determined that Ag-CdO nanocomposite coatings containing 1.0 g/L CdO exhibited the best mechanical and microstructural properties in this study.
Ethical Statement
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Project Number
TENMAK BOREN 2019-30-07-25-001
References
- [1] J. Ding, W. Tian, P. Zhang, M. Zhang, J. Chen, Y. Zhang, Z.M. Sun,, “Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging”, J. Adv. Ceram., 8(1): 90-101, (2019).
- [2] X. Zhang, Y. Zhang, B. Tian, J. An, Z. Zhao, A. A. Volinsky, “Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts”, Compos. Part B Eng., 160: 110-118, (2019).
- [3] X. Huang, Y. Feng, L. Li, ve Z. Li, “Erosion Behavior of a Cu-Ti3AlC2 Cathode by Multi-Electric Arc”, Materials, 12(18): 2947, (2019).
- [4] Z.-X. Qi, L.-H. Li, H. Yi, W.-G. Liang, J.-Q. Liu, ve M.-C. Wei, “Effect of SnO2 particulate characteristics on mechanical properties of Ag/SnO2 electrical contact materials”, Int. J. Solids Struct., 314: 113338 (2025).
- [5] J. Ding, W. Tian, P. Zhang, M. Zhang, J. Chen, Y. Zhang, Z.M. Sun, “Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharge”, Corros. Sci., 156: 147-160, (2019).
- [6] S. Biyik, F. Arslan, ve M. Aydin, “Arc-Erosion Behavior of Boric Oxide-Reinforced Silver-Based Electrical Contact Materials Produced by Mechanical Alloying”, J. Electron. Mater., 44(1): 457-466 (2015).
- [7] H. Nie, Z. Wang, X. Xue, C. Yu, J. Wang, K. Wen, C. Xu, “Designing sandwich-structured Ag–SnO2 contact materials Overcoming the trade-off between erosion resistance and mechanical properties”, Ceram. Int., 50(2): 2950-2962, (2024).
- [8] T. Zhou, X. Wang, L Qin, W. Qiu, S. Li, Y. Jiang, Y. Jia, Zhou Li, “Electrical sliding friction wear behaviors and mechanisms of Cu–Sn matrix composites containing MoS2/graphite”, Wear, 548-549: 205388, (2024).
- [9] R. Karslıoğlu, “Akımsız Kaplama Yöntemi ile Üretilmiş Grafen Takviyeli Gümüş Matrisli Nanokompozitlerin Yapısal Özellikline Banyo Bileşiminin Etkisi”, Int. J. Eng. Res. Dev., 11(2): 637-642, (2019).
- [10] H. Yilmaz, Y. Altin, ve A. Bedeloğlu, “Grafen Takviyeli Epoksi Nanokompozitlerin Özelliklerinin İncelenmesi”, Politek. Derg., 24(4): 1719-1727, (2021).
- [11] Comstock G.J., “Electrical Contact Element”, United States Patent Office, Patent no: 2.365.249, (1944).
- [12] Y. Qiu, X. Wang, Y. Liang, Z. Li, Y. Fei, ve L. Wang, “Arc erosion behavior and mechanism of AgZrO2 electrical contact materials”, J. Alloys Compd., 976: 172966, (2024).
- [13] C.-Z. Zhang, F. Shen, ve L.-L. Ke, “A comparative study on the electrical contact behavior of CuZn40 and AgCu10 alloys under fretting wear Effect of current load”, Tribol. Int., 194: 109523, (2024).
- [14] X. Huang, Y. Feng, G. Qian, ve Z. Zhou, “Arc ablation properties of Ti3SiC2 material”, Ceram. Int., 45(16): 20297-20306, (2019).
- [15] J. Ding, W. Tian, P. Zhang, M. Zhang, J. Chen, Y. Zhang, Z.M. Sun, “Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging”, J. Alloys Compd., 785: 1086-1096, (2019).
- [16] X. Yuan, F. Fu, ve R. He, “Graphene-enhanced silver composites for electrical contacts: a review”, J. Mater. Sci., 59(9): 3762-3779, (2024).
- [17] D. Guzmán, C. Aguilar, P. Rojas, J. M. Criado, M. J. Diánez, R. Espinoza, A. Guzmán, C. Martínez, “Production of Ag−ZnO powders by hot mechanochemical processing”, Trans. Nonferrous Met. Soc. China, 29(2): 365-373, (2019).
- [18] M. Hou, L. Li, ve M. Zhuang, “Research on application mechanism of cadmium in new energy vehicle charging group”, IOP Conf. Ser. Earth Environ. Sci., 227: 052046, (2019).
- [19] J. Jaćimović, L. Felberbaum, E. Giannini, ve J. Teyssier, “Electro-mechanical properties of composite materials for high-current contact applications”, J. Phys. Appl. Phys., 47(12): 25501, (2014).
- [20] C. Wu, D. Yi, W. Weng, S. Li, ve J. Zhou, “Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials”, Trans. Nonferrous Met. Soc. China, 26(1): 185-195, (2016).
- [21] X. C. Ma, G. Q. He, D. H. He, C. S. Chen, ve Z. F. Hu, “Sliding wear behavior of copper–graphite composite material for use in maglev transportation system”, Wear, 265(7): 1087-1092, (2008).
- [22] R. Karslioglu ve H. Akbulut, “Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition”, Appl. Surf. Sci., 353: 615-627, (2015).
- [23] Y. Liu, L. Zheng, X. Li, ve S. Xie, “SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures”, J. Hazard. Mater., 162(1): 161-173, (2009).
- [24] C. F. Holder ve R. E. Schaak, “Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials”, ACS Nano, 13(7): 7359-7365, (2019).
- [25] R. Karslioglu, M. Akçil, A. Alp, ve H. Akbulut, “Effect of Current Type and Density on Tribological Properties of Electrodeposited Ni-Co/MWCNT Nanocomposite Coatings”, JOM, 75(12): 5114-5125, (2023).
- [26] R. Karslioglu, L. Al-Falahi, “Electrical contact performance of various electro-deposited graphene reinforced silver-based nanocomposites”, Mater. Test., 62(4): 401-407, (2020).
- [27] A. M. Yilmaz, F. Songur, E. Arslan, ve B. Di̇Ki̇Ci̇, “PEO Kaplamalara CeO2 Nanopartikül İlavesinin Korozyon Davranışına Etkisi”, Politek. Derg., 23(4): 1285-1295, (2020).
- [28] M. H. Maneshian, A. Simchi, ve Z. R. Hesabi, “Structural changes during synthesizing of nanostructured W–20 wt% Cu composite powder by mechanical alloying”, Mater. Sci. Eng. A, 445-446: 86-93, (2007).
- [29] H H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, B. S. Xu, “Worm-Like Ag/ZnO Core–Shell Heterostructural Composites: Fabrication, Characterization, and Photocatalysis”, J. Phys. Chem. C, 116(30): 16182-16190, (2012).
- [30] B. S. Clausen, H. Topsøe, ve R. Frahm, “Application of Combined X-Ray Diffraction and Absorption Techniques for in Situ Catalyst Characterization”, Advances in Catalysis, 42: 315-344, (1998).
- [31] P. Zhang, Z. Yao, K Lu, S. Lin, Y. Liu, S. Lu, X. Wu, “Tuning strength-ductility combination on two-phase FeCrAlTix high entropy alloy coating through grain refinement induced the generation of a second phase”, J. Alloys Compd., 1004: 175924, (2024).
- [32] R. Karslioglu, M. Uysal, A. Alp, ve H. Akbulut, “Wear Behavior of Bronze Hybrid MMCs Coatings Produced by Current Sintering on Steel Substrates”, Tribol. Trans., 53(5): 779-785, (2010).
- [33] M. Okumuş, E. Kaya, ve M. Gögebakan, “Microstructure, Hardness and Thermal Properties of Al4.5Cu/TiO2 Composites Produced by Mechanical Alloying”, Politek. Dergisi, 27(1): 1-10, (2024).
- [34] N. Çankaya ve Ö. Sökmen, “Kitosan-Kil Biyonanokompozitleri”, Politeknik Dergisi, 19(3): 283–295, (2016).
- [35] M. Taşyürek ve N. Tarakcıoğlu, “Karbon Nanotüp ile Modifiye Edilmiş Filaman Sarım Boruların İç Basınç Altındaki Hasar Davranış”, Politeknik Dergisi, 18(4): 211–217, (2015).
- [36] M. Pul ve V. Baydaroğlu, “B4C/SiC Katkılı Alüminyum Esaslı Kompozitlerin Mekanik Özelliklerin İncelenmesi ve Balistik Performanslarının Modellenmesi”, Politek. Dergisi, 23(2): 383-392, (2020).
- [37] R. Casati ve M. Vedani, “Metal Matrix Composites Reinforced by Nano-Particles—A Review”, Metals, 4(1): 65-83, (2014).
- [38] M. Tabandeh-Khorshid, Ajay Kumar, E. Omrani, C. Kim, ve P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites”, Compos. Part B Eng., 183: 107664, (2020).
- [39] R. Karslıoğlu, M. Uysal, ve H. Akbulut, “The effect of substrate temperature on the electrical and optic properties of nanocrystalline tin oxide coatings produced by APCVD”, J. Cryst. Growth, 327(1): 22-26, (2011).