Research Article
BibTex RIS Cite

Giyilebilir Dış İskeletlere Yönelik Sistematik Bir Literatür ve Pazar Analizi

Year 2025, Volume: 6 Issue: 1, 1 - 13, 30.06.2025
https://doi.org/10.53501/rteufemud.1385754

Abstract

Dış iskelet sistemleri genel anlamda insan anatomisine uygun yapıya sahip olacak şekilde tasarlanmış, insanlarla etkileşim halinde çalışan giyilebilir yapılardır. Kullanıcıların yürüme, koşma, oturma, ayakta durma ve ağır yük taşıma gibi temel işlevlerine katkıda bulunmak için kullanılabileceği gibi, kullanıcının alt ve/veya üst uzuvlarının yeteneğinin geri kazanılması gibi rehabilitasyon ve tedavi sürecinde de kullanılabilir. Bir diğer kullanım alanı sağlıklı uzuvların gücünü normalin üzerine çıkarmak amacıyladır. Öncelikli amaç performans artırmak olup bu anlamda da geniş bir kullanım alanı bulmaktadır. Tasarlanan dış iskelet yapıları insanların hayatını kolaylaştırmakta ve kullanıldıkları alanlarda bireylere daha kaliteli bir yaşam sunmaktadır. Çalışmanın amacı, giyilebilir dış iskeletler alanında yapılan akademik çalışmaları ve pazardaki mevcut ürünleri ortaya koymak, bu ürünlerin hangi sınıfa ait olduğunu belirlemek, çalışmaların hangi alanda yoğunlaştığını saptamak ve yeni araştırmalar için potansiyel çalışma alanlarını belirlemektir. Çalışmada sistematik literatür analizi kullanılmış olup dahil etme ve hariç tutma kriterlerine göre çalışmalar ve ürünler analiz edilmiştir. Bu çalışma ile dış iskelet alanındaki çalışmaları analiz edilerek birbirleri arasındaki bağıntılar belirlenmiş, bu alana yeni giren araştırmacılar için temel uygulamaları tanıtılmış ve disiplinlerarası çalışma alanı oluşturulması hedeflenmiştir.

References

  • Banala, S.K., Agrawal, S.K., Scholz, J.P. (2007). Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients. 2007 IEEE 10th International Conference on Rehabilitation Robotics, 401-407.
  • Borovin, G. K., Kostyuk, A. V., Seet, G., Iastrebov, V. V. (2006). Computer simulation of hydraulic system of exoskeleton. Matematicheskoe modelirovanie, 18(10), 39-54.
  • Cao, H., Yin, Y., Du, D., Lin, L., Gu, W., Yang, Z. (2006). Neural-network inverse dynamic online learning control on physical exoskeleton. In Neural Information Processing: 13th International Conference, ICONIP 2006, Hong Kong, China, October 3-6, 2006. Proceedings, Part III 13 (pp. 702-710). Springer Berlin Heidelberg.
  • Cao, H., Ling, Z., Zhu, J., Wang, Y., Wang, W. (2009, December). Design frame of a leg exoskeleton for load-carrying augmentation. In 2009 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 426-431). Ieee.
  • Costa, N., Caldwell, D.G. (2006). Control of a Biomimetic „‟ Soft-actuated‟‟ 10 DoF Lower Body Exoskeleton , February 20-22, pĠZA, Italy ,Proceeding of the IEEE / ras-embs ınt. Conf. On Biomedical Robotics and Biomechatronics
  • Dollar, A. M., Herr, H. (2008). Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on robotics, 24(1), 144-158.
  • Ekkelenkamp, R., Veneman, J., Van der Kooij, H. (2005, June). LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. (pp. 361-364). IEEE.
  • Ercan Pala, İ. (2019). Diş Hekimleri için Giyilebilir Dış İskelet Tasarımı. Erciyes Üniversitesi, Tekstil Mühendisliği Anabilim Dalı.
  • Ghan, J., Kazerooni, H. (2006, May). System identification for the Berkeley lower extremity exoskeleton (BLEEX). In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 3477-3484). IEEE.
  • Gordon, K. E. (2005). Neuromechanical adaptation to robotic exoskeletons during human locomotion. University of Michigan.
  • Gordon, K. E., Ferris, D. P. (2007). Learning to walk with a robotic ankle exoskeleton. Journal of biomechanics, 40(12), 2636-2644.
  • Gui, L., Yang, Z., Yang, X., Gu, W., Zhang, Y. (2007, August). Design and control technique research of exoskeleton suit. In 2007 IEEE International Conference on Automation and Logistics (pp. 541-546). IEEE.
  • He, H., Kiguchi, K. (2007, November). A study on EMG-based control of exoskeleton robots for human lower-limb motion assist. In 2007 6th International special topic conference on information technology applications in biomedicine (pp. 292-295). IEEE.
  • Jau, B. M. (1988, October). Anthropomorhic exoskeleton dual arm/hand telerobot controller. In IEEE International Workshop on Intelligent Robots (pp. 715-718). IEEE.
  • Kazerooni, H., Steger, R., Huang, L. (2006). Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). The International Journal of Robotics Research, 25(5-6), 561-573.
  • Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering (2. Baskı). EBSE: Goyang-si, South Korea.
  • Kong, K., Jeon, D. (2006). Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Transactions on mechatronics, 11(4), 428-432.
  • Leifer, L. (1981). Rehabilitative robots. Robotics Age, 3(3), 000-000.
  • Liu, X., Low, K. H., Yu, H. Y. (2004, September). Development of a lower extremity exoskeleton for human performance enhancement. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 4, pp. 3889-3894). IEEE.
  • Low, K. H., Liu, X., Yu, H. Y., Kasim, H. S. (2004, December). Development of a lower extremity exoskeleton-preliminary study for dynamic walking. In ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004. (Vol. 3, pp. 2088-2093). IEEE.
  • Low, K. H., Liu, X., Yu, H. (2005, July). Development of NTU wearable exoskeleton system for assistive technologies. In IEEE International Conference Mechatronics and Automation, 2005 (Vol. 2, pp. 1099-1106). IEEE.
  • Mankala, K. K., Banala, S. K., Agrawal, S. K. (2007, April). Passive swing assistive exoskeletons for motor-incomplete spinal cord injury patients. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 3761-3766). IEEE.
  • Misuraca, J. J., Mavroidis, C. (2001, November). Lower limb human muscle enhancer. In ASME International Mechanical Engineering Congress and Exposition (Vol. 35609, pp. 963-969). American Society of Mechanical Engineers.
  • Moreno, J. C., Brunetti, F. J., Pons, J. L., Baydal, J. M., Barbera, R. (2005, April). Rationale for multiple compensation of muscle weakness walking with a wearable robotic orthosis. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 1914-1919). IEEE.
  • Moromugi, S. (2003). Exoskeleton suit for human motion assistance. University of California, Irvine.
  • Önen, Ü. (2011). İnsan yürüyüşünü destekleyici dış iskelet tasarımı ve kontrolü.
  • Racine, J. L. C. (2003). Control of a lower extremity exoskeleton for human performance amplification. University of California, Berkeley.
  • Reinicke, C., Fleischer, C., Hommel, G. (2005). Exploiting motion symmetry in control of exoskeleton limbs. In Proc. of the Int. Conf. on Human Computer Interaction (IASTED-HCI 2005), Phoenix, Arizona, USA, November (pp. 14-16).
  • Riener, R., Nef, T., Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical and biological engineering and computing, 43, 2-10.
  • Şahin, Y. (2014). Yük taşıyan insan yürüyüşünü destekleyici alt ekstremite dış iskelet geliştirilmesi. Selçuk Üniversitesi, Makine Mühendisliği Anabilim Dalı Kasım.
  • Şahin, Y., Botsall, F., Kalyoncu, M., Tinkir, M. (2015). Sırtında Yük Taşıyan Yayanın Yürüyüşünü Destekleyen Alt Ekstremite Dış İskeletin Kontrolü, 14-17 Haziran, İzmir, Uluslararası Katılımlı 17. Makina Teorisi Sempozyumu
  • Snyder, H. (2019). Literature review a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. Erişim adresi: http://creativecommons.org/licenses/BY-NC-ND/4.0/
  • Steger, J. R. (2006). A design and control methodology for human exoskeletons. ProQuest.
  • Suzuki, K., Kawamura, Y., Hayashi, T., Sakurai, T., Hasegawa, Y., Sankai, Y. (2005, October). Intention-based walking support for paraplegia patient. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 3, pp. 2707-2713). IEEE.
  • Sun, J., Chen, F., Wu, B. Y., Deng, X. H., Yu, Y., Ge, Y. J. (2007, December). Design of the force-sensors system of wpal. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1321-1326). IEEE.
  • Torraco, R. (2016). Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review, 15(4), 404-428. https://doi.org/10.1177/1534484316671606
  • Valiente, A. (2005). Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking (Doctoral dissertation, Massachusetts Institute of Technology).
  • Van den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. Biomedical engineering online, 2(1), 1-8.
  • Veneman, J. F., Kruidhof, R., Hekman, E. E., Ekkelenkamp, R., Van Asseldonk, E. H., & Van Der Kooij, H. (2007). Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on neural systems and rehabilitation engineering, 15(3), 379-386.
  • Walsh, C. J., Paluska, D., Pasch, K., Grand, W., Valiente, A., Herr, H. (2006, May). Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 3485-3491). IEEE.
  • Wheeler, J., Rohrer, B., Kholwadwala, D., Buerger, S., Givler, R., Neely, J., Galambos, P. (2006, February). In-sole mems pressure sensing for a lowerextremity exoskeleton. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. (pp. 31-34). IEEE.
  • Yang, C. J., Niu, B., Chen, Y. (2005, July). Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. (pp. 467-472). IEEE.
  • Zoss, A. B. (2006). Actuation design and implementation for lower extremity human exoskeletons. ProQuest.
  • URL-1 https://exoskeletonreport.com/product-category/exoskeleton-catalog/date: 19.05.2019

A Systematic Literature and Market Analysis for Wearable Exoskeleton

Year 2025, Volume: 6 Issue: 1, 1 - 13, 30.06.2025
https://doi.org/10.53501/rteufemud.1385754

Abstract

Exoskeleton systems are generally designed to have a structure suitable for human anatomy and are wearable structures that interact with people. They can be used to contribute to the basic functions of users such as walking, running, sitting, standing and carrying heavy loads, as well as in the rehabilitation and treatment process such as restoring the ability of the user's lower and/or upper limbs. Another area of use is to increase the strength of healthy limbs above normal. The primary goal is to increase performance and, in this sense, they have a wide range of uses. Designed exoskeleton structures make people's lives easier and provide individuals with a better quality of life in the areas where they are used. The aim of the study is to present academic studies and current products in the market in the field of wearable exoskeletons, to determine which class these products belong to, to determine which area the studies are focused on and to determine potential study areas for new research. Systematic literature analysis was used in the study and studies and products were analyzed according to inclusion and exclusion criteria. This study systematizes studies in the field of exoskeletons, determines their interrelationships, introduces basic applications for researchers who are new to this field and aims to create an interdisciplinary study area.

References

  • Banala, S.K., Agrawal, S.K., Scholz, J.P. (2007). Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients. 2007 IEEE 10th International Conference on Rehabilitation Robotics, 401-407.
  • Borovin, G. K., Kostyuk, A. V., Seet, G., Iastrebov, V. V. (2006). Computer simulation of hydraulic system of exoskeleton. Matematicheskoe modelirovanie, 18(10), 39-54.
  • Cao, H., Yin, Y., Du, D., Lin, L., Gu, W., Yang, Z. (2006). Neural-network inverse dynamic online learning control on physical exoskeleton. In Neural Information Processing: 13th International Conference, ICONIP 2006, Hong Kong, China, October 3-6, 2006. Proceedings, Part III 13 (pp. 702-710). Springer Berlin Heidelberg.
  • Cao, H., Ling, Z., Zhu, J., Wang, Y., Wang, W. (2009, December). Design frame of a leg exoskeleton for load-carrying augmentation. In 2009 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 426-431). Ieee.
  • Costa, N., Caldwell, D.G. (2006). Control of a Biomimetic „‟ Soft-actuated‟‟ 10 DoF Lower Body Exoskeleton , February 20-22, pĠZA, Italy ,Proceeding of the IEEE / ras-embs ınt. Conf. On Biomedical Robotics and Biomechatronics
  • Dollar, A. M., Herr, H. (2008). Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on robotics, 24(1), 144-158.
  • Ekkelenkamp, R., Veneman, J., Van der Kooij, H. (2005, June). LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005. (pp. 361-364). IEEE.
  • Ercan Pala, İ. (2019). Diş Hekimleri için Giyilebilir Dış İskelet Tasarımı. Erciyes Üniversitesi, Tekstil Mühendisliği Anabilim Dalı.
  • Ghan, J., Kazerooni, H. (2006, May). System identification for the Berkeley lower extremity exoskeleton (BLEEX). In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 3477-3484). IEEE.
  • Gordon, K. E. (2005). Neuromechanical adaptation to robotic exoskeletons during human locomotion. University of Michigan.
  • Gordon, K. E., Ferris, D. P. (2007). Learning to walk with a robotic ankle exoskeleton. Journal of biomechanics, 40(12), 2636-2644.
  • Gui, L., Yang, Z., Yang, X., Gu, W., Zhang, Y. (2007, August). Design and control technique research of exoskeleton suit. In 2007 IEEE International Conference on Automation and Logistics (pp. 541-546). IEEE.
  • He, H., Kiguchi, K. (2007, November). A study on EMG-based control of exoskeleton robots for human lower-limb motion assist. In 2007 6th International special topic conference on information technology applications in biomedicine (pp. 292-295). IEEE.
  • Jau, B. M. (1988, October). Anthropomorhic exoskeleton dual arm/hand telerobot controller. In IEEE International Workshop on Intelligent Robots (pp. 715-718). IEEE.
  • Kazerooni, H., Steger, R., Huang, L. (2006). Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). The International Journal of Robotics Research, 25(5-6), 561-573.
  • Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering (2. Baskı). EBSE: Goyang-si, South Korea.
  • Kong, K., Jeon, D. (2006). Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Transactions on mechatronics, 11(4), 428-432.
  • Leifer, L. (1981). Rehabilitative robots. Robotics Age, 3(3), 000-000.
  • Liu, X., Low, K. H., Yu, H. Y. (2004, September). Development of a lower extremity exoskeleton for human performance enhancement. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 4, pp. 3889-3894). IEEE.
  • Low, K. H., Liu, X., Yu, H. Y., Kasim, H. S. (2004, December). Development of a lower extremity exoskeleton-preliminary study for dynamic walking. In ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004. (Vol. 3, pp. 2088-2093). IEEE.
  • Low, K. H., Liu, X., Yu, H. (2005, July). Development of NTU wearable exoskeleton system for assistive technologies. In IEEE International Conference Mechatronics and Automation, 2005 (Vol. 2, pp. 1099-1106). IEEE.
  • Mankala, K. K., Banala, S. K., Agrawal, S. K. (2007, April). Passive swing assistive exoskeletons for motor-incomplete spinal cord injury patients. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 3761-3766). IEEE.
  • Misuraca, J. J., Mavroidis, C. (2001, November). Lower limb human muscle enhancer. In ASME International Mechanical Engineering Congress and Exposition (Vol. 35609, pp. 963-969). American Society of Mechanical Engineers.
  • Moreno, J. C., Brunetti, F. J., Pons, J. L., Baydal, J. M., Barbera, R. (2005, April). Rationale for multiple compensation of muscle weakness walking with a wearable robotic orthosis. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 1914-1919). IEEE.
  • Moromugi, S. (2003). Exoskeleton suit for human motion assistance. University of California, Irvine.
  • Önen, Ü. (2011). İnsan yürüyüşünü destekleyici dış iskelet tasarımı ve kontrolü.
  • Racine, J. L. C. (2003). Control of a lower extremity exoskeleton for human performance amplification. University of California, Berkeley.
  • Reinicke, C., Fleischer, C., Hommel, G. (2005). Exploiting motion symmetry in control of exoskeleton limbs. In Proc. of the Int. Conf. on Human Computer Interaction (IASTED-HCI 2005), Phoenix, Arizona, USA, November (pp. 14-16).
  • Riener, R., Nef, T., Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical and biological engineering and computing, 43, 2-10.
  • Şahin, Y. (2014). Yük taşıyan insan yürüyüşünü destekleyici alt ekstremite dış iskelet geliştirilmesi. Selçuk Üniversitesi, Makine Mühendisliği Anabilim Dalı Kasım.
  • Şahin, Y., Botsall, F., Kalyoncu, M., Tinkir, M. (2015). Sırtında Yük Taşıyan Yayanın Yürüyüşünü Destekleyen Alt Ekstremite Dış İskeletin Kontrolü, 14-17 Haziran, İzmir, Uluslararası Katılımlı 17. Makina Teorisi Sempozyumu
  • Snyder, H. (2019). Literature review a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. Erişim adresi: http://creativecommons.org/licenses/BY-NC-ND/4.0/
  • Steger, J. R. (2006). A design and control methodology for human exoskeletons. ProQuest.
  • Suzuki, K., Kawamura, Y., Hayashi, T., Sakurai, T., Hasegawa, Y., Sankai, Y. (2005, October). Intention-based walking support for paraplegia patient. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 3, pp. 2707-2713). IEEE.
  • Sun, J., Chen, F., Wu, B. Y., Deng, X. H., Yu, Y., Ge, Y. J. (2007, December). Design of the force-sensors system of wpal. In 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1321-1326). IEEE.
  • Torraco, R. (2016). Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review, 15(4), 404-428. https://doi.org/10.1177/1534484316671606
  • Valiente, A. (2005). Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking (Doctoral dissertation, Massachusetts Institute of Technology).
  • Van den Bogert, A. J. (2003). Exotendons for assistance of human locomotion. Biomedical engineering online, 2(1), 1-8.
  • Veneman, J. F., Kruidhof, R., Hekman, E. E., Ekkelenkamp, R., Van Asseldonk, E. H., & Van Der Kooij, H. (2007). Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on neural systems and rehabilitation engineering, 15(3), 379-386.
  • Walsh, C. J., Paluska, D., Pasch, K., Grand, W., Valiente, A., Herr, H. (2006, May). Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 3485-3491). IEEE.
  • Wheeler, J., Rohrer, B., Kholwadwala, D., Buerger, S., Givler, R., Neely, J., Galambos, P. (2006, February). In-sole mems pressure sensing for a lowerextremity exoskeleton. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. (pp. 31-34). IEEE.
  • Yang, C. J., Niu, B., Chen, Y. (2005, July). Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. (pp. 467-472). IEEE.
  • Zoss, A. B. (2006). Actuation design and implementation for lower extremity human exoskeletons. ProQuest.
  • URL-1 https://exoskeletonreport.com/product-category/exoskeleton-catalog/date: 19.05.2019
There are 44 citations in total.

Details

Primary Language English
Subjects Wearable Materials, Textile Science
Journal Section Research Articles
Authors

İffet Pala Ercan 0000-0002-7827-8454

Hüseyin Türksoy 0000-0003-4594-880X

Publication Date June 30, 2025
Submission Date December 10, 2023
Acceptance Date December 7, 2024
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Pala Ercan, İ., & Türksoy, H. (2025). A Systematic Literature and Market Analysis for Wearable Exoskeleton. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 1-13. https://doi.org/10.53501/rteufemud.1385754

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025