Review
BibTex RIS Cite

Çevredeki Per ve Polifloroalkil Madde (PFAS) Kirliliği: Tarihçesi, Kaynakları, Analizi, Riskleri ve İlgili Düzenlemeler

Year 2025, Volume: 6 Issue: 1, 403 - 427, 30.06.2025
https://doi.org/10.53501/rteufemud.1536329

Abstract

İnsan nüfusu ile insan faaliyetlerinin artmasına bağlı olarak ortaya çıkan etkiler, dünyayı hızla kirletmekte ve doğal ortamları da giderek kimyasallaştırmaktadır. Per-ve polifloroalkil maddeler (PFAS'lar), 1940'tan sonra üretilmeye başlanan kimyasal bileşiklerdir. Bu maddeler, çeşitli endüstriyel uygulamalarda ve tüketici ürünlerinde yaygın olarak kullanılan, yüksek kimyasal ve termal dirence sahip kimyasallardır. “Sonsuz Kimyasallar” olarak adlandırılan PFAS’lar kalıcılıkları sebebiyle dünyayı kimyasallaştıran insan yapımı maddelere iyi bir örnek teşkil eder. Çok geniş bir ürün yelpazesinde kullanıma sahip olduklarından dolayı insan sağlığına ve çevreye etkilerini değerlendirmek zor olabilmektedir. Bunun için, PFAS’lara maruziyetin kaynaklarını ve sürekliliğini özel bir dikkatle ortaya çıkarmak gerekir. PFAS'lar, keşiflerinden itibaren geniş çapta üretilmeleri ve kullanılmaları, bu kimyasalların çevresel olarak dayanıklı doğası, canlılarda biyobirikimi, potansiyel toksisiteleri, uzak bölgelere taşınımı ve uzun vadede oluşturabileceği diğer olumsuz etkileri nedeniyle ciddi endişelere yol açmaktadır. İlk sentezlerinden, üretimine ve yaygınlaşmasına kadar geçen sürede PFAS’ların tehlikesi nispeten ihmal edilirken, PFAS'ların çevresel varlığı, dağılımı ve potansiyel sağlık riskleri, 21. yüzyılın başından itibaren artan bilimsel araştırmalar ve ileri analitik teknolojilerin geliştirilmesi ile daha detaylı bir şekilde ortaya konulmaya başlanmıştır. Bu çalışmada, PFAS’ların keşfinden günümüze kadar gelişen süreçler, kullanıldığı alanlar, PFAS’ların yapıları, kaynakları, türleri, analizleri, sınıflandırılmaları ve sınırlandırılmaları araştırılmıştır. Yaygınlık, kalıcılık, biyobirikebilirlik, yüksek hareketlilik ve toksisite gibi önemli özellikleri barındıran bu kirleticilerin çevre ve insan üzerinde oluşturduğu riskler açıklanmıştır.

References

  • Abunada, Z., Alazaiza, M.Y., Bashir, M.J. (2020). An overview of per-and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water, 12(12), 3590. https://doi.org/10.3390/w12123590
  • Abu-Salah, A., Cesur, M. F., Anchan, A., Ay, M., Langley, M. R., Shah, A., Sarkar, S. (2024). Comparative Proteomics Highlights that GenX Exposure Leads to Metabolic Defects and Inflammation in Astrocytes. Environmental Science and Technology, 58(46), 20525-20539. https://doi.org/10.1021/acs.est.4c05472
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2021).Toxicological profile for Perfluoroalkyls. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://dx.doi.org/10.15620/cdc:59198,
  • Ahrens, L., Rakovic, J., Ekdahl, S., Kallenborn, R. (2023). Environmental distribution of per-and polyfluoroalkyl substances (PFAS) on Svalbard: Local sources and long-range transport to the Arctic. Chemosphere, 345, 140463. https://doi.org/10.1016/j.chemosphere.2023.140463
  • Al Amin, M., Sobhani, Z., Liu, Y., Dharmaraja, R., Chadalavada, S., Naidu, R., Fang, C. (2020). Recent advances in the analysis of per-and polyfluoroalkyl substances (PFAS)—A review. Environmental Technology and Innovation, 19, 100879. https://doi.org/10.1016/j.eti.2020.100879
  • Ali, A.M., Langberg, H.A., Hale, S.E., Kallenborn, R., Hartz, W.F., Mortensen, Å.K., Breedveld, G.D. (2021). The fate of poly-and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic. Environmental Science: Processes and Impacts, 23(4), 588-604. https://doi.org/10.1039/D0EM00510J
  • Améduri, B. (2023). Fluoropolymers as unique and irreplaceable materials: Challenges and future trends in these specific per or poly-fluoroalkyl substances. Molecules, 28(22), 7564. https://doi.org/10.3390/molecules28227564
  • Ameduri, B. (2023). Fluoropolymers: A special class of per-and polyfluoroalkyl substances (PFASs) essential for our daily life. Journal of Fluorine Chemistry, 267, 110117. https://doi.org/10.1016/j.jfluchem.2023.110117
  • Arredondo Eve, A., Tunc, E., Mehta, D., Yoo, J. Y., Yilmaz, H. E., Emren, S. V., Madak Erdogan, Z. (2024). PFAS and their association with the increased risk of cardiovascular disease in postmenopausal women. Toxicological Sciences, 200(2), 312-323. https://doi.org/10.1093/toxsci/kfae065
  • Ateia, M., Arifuzzaman, M., Pellizzeri, S., Attia, M.F., Tharayil, N., Anker, J.N., Karanfil, T. (2019). Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research, 163, 114874. https://doi.org/10.1016/j.watres.2019.114874
  • Atoufi, H. D., Lampert, D. J. (2023). Analysis of a Passive Sampling Device to Assess the Behavior of Per‐and Polyfluoroalkyl Substances in Sediments. Environmental Toxicology and Chemistry, 42(10), 2171-2183. https://doi.org/10.1002/etc.5705
  • Barisci, S., Suri, R. (2023). Degradation of emerging per-and polyfluoroalkyl substances (PFAS) using an electrochemical plug flow reactor. Journal of Hazardous Materials, 460, 132419. https://doi.org/10.1016/j.jhazmat.2023.13241
  • Blake, B.E., and Fenton, S.E. (2020). Early life exposure to per-and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri-and postnatal effects. Toxicology, 443, 152565. https://doi.org/10.1016/j.tox.2020.152565
  • Bokkers, B., Van de Ven, B., Janssen, P., Bil, W., Van Broekhuizen, F., Zeilmaker, M., Oomen, A.G. (2019). Per-and polyfluoroalkyl substances (PFASs) in food contact materials. http://dx.doi.org/10.21945/RIVM-2018-0181
  • Brunn, H., Arnold, G., Körner, W., Rippen, G., Steinhäuser, K.G., Valentin, I. (2023). PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe, 35(1), 1-50. https://doi.org/10.1186/s12302-023-00730-7
  • Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., De Voogt, P., van Leeuwen, S.P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated environmental assessment and management, 7(4), 513-541. https://doi.org/10.1002/ieam.258
  • Cantoni, B., Bergna, G., Baldini, E., Malpei, F., Antonelli, M. (2024). PFAS in textile wastewater: An integrated scenario analysis for interventions prioritization to reduce environmental risk. Process Safety and Environmental Protection, 183, 437-445. https://doi.org/10.1016/j.psep.2024.01.005
  • Chen, M., Wang, C., Wang, X., Fu, J., Gong, P., Yan, J., Nawab, J. (2019). Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: Insights into the impact of global warming on the cycling of emerging pollutants. Journal of Geophysical Research: Atmospheres, 124(13), 7442-7456. https://doi.org/10.1029/2019JD030566
  • Cousins, I.T., DeWitt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Wang, Z. (2020). Strategies for grouping per-and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Science: Processes and Impacts, 22(7), 1444-1460. https://doi.org/10.1039/D0EM00147C
  • Dadashi Firouzjaei, M., Zolghadr, E., Ahmadalipour, S., Taghvaei, N., Akbari Afkhami, F., Nejati, S., Elliott, M.A. (2022). Chemistry, abundance, detection and treatment of per-and polyfluoroalkyl substances in water: A review. Environmental Chemistry Letters, 20(1), 661-679. https://doi.org/10.1007/s10311-021-01340-6
  • Dhore, R., Murthy, G.S. (2021). Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresource Technology, 341, 125808. https://doi.org/10.1016/j.biortech.2021.125808
  • Emerce, E., Çetin, Ö. (2018). Genotoxicity assessment of perfluoroalkyl substances on human sperm. Toxicology and Industrial Health, 34(12), 884-890. https://doi.org/10.1177/0748233718799191
  • Endirlik, B. Ü., Bakır, E., Boşgelmez, İ. İ., Eken, A., Narin, İ., Gürbay, A. (2019). Assessment of perfluoroalkyl substances levels in tap and bottled water samples from Turkey. Chemosphere, 235, 1162-1171. https://doi.org/10.1016/j.chemosphere.2019.06.228
  • Environmental Protection Agency (EPA). (2023). Our Current Understanding of the Human Health and Environmental Risks of PFAS. https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas , 12 Aralık 2023.
  • Faust, J.A. (2023). PFAS on atmospheric aerosol particles: A review. Environmental Science: Processes and Impacts, 25(2), 133-150. https://doi.org/10.1039/D2EM00002D
  • Fortuna, P., Wróblewski, Z., Gorbaniuk, O. (2023). The structure and correlates of anthropocentrism as a psychological construct. Current Psychology, 42(5), 3630-3642. https://doi.org/10.1007/s12144-021-01835-z
  • Gaber, N., Bero, L., Woodruff, T.J. (2023). The devil they knew: chemical documents analysis of ındustry ınfluence on PFAS Science. Annals of Global Health, 89(1), 37. https://doi.org/10.5334/aogh.4013
  • Gaines, L.G. (2023). Historical and current usage of per‐and polyfluoroalkyl substances (PFAS): A literature review. American Journal of Industrial Medicine, 66(5), 353-378. https://doi.org/10.1002/ajim.23362
  • Golosovskaia, E., Örn, S., Ahrens, L., Chelcea, I., Andersson, P. L. (2024). Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. Science of the Total Environment, 912, 168738. https://doi.org/10.1016/j.scitotenv.2023.168738
  • Habib, A., Landa, E.N., Holbrook, K.L., Walker, W.S., Lee, W. Y. (2023). Rapid, efficient, and green analytical technique for determination of fluorotelomer alcohol in water by stir bar sorptive extraction. Chemosphere, 338, 139439. https://doi.org/10.1016/j.chemosphere.2023.139439
  • Henry, B.J., Carlin, J.P., Hammerschmidt, J.A., Buck, R.C., Buxton, L.W., Fiedler, H., Hernandez, O. (2018). A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integrated Environmental Assessment and Management, 14(3), 316-334. https://doi.org/10.1002/ieam.4035
  • Hu, J., Yang, X., Song, X., Miao, Y., Yu, Y., Xiang, W., Liu, H. (2024). Bioaccumulation mechanisms of perfluoroalkyl substances (PFASs) in aquatic environments: Theoretical and experimental insights. Journal of Hazardous Materials, 136283. https://doi.org/10.1016/j.jhazmat.2024.136283
  • ITRC, (2023). PFAS — Per- and Polyfluoroalkyl Substances. Physical and Chemical Properties https://pfas-1.itrcweb.org/4-physical-and-chemical-properties/, 7 Ekim 2023.
  • İkizoglu, B. (2024). PFOA and PFOS Pollution in Surface Waters and Surface Water Fish. Water, 16(16), 2342. https://doi.org/10.3390/w16162342
  • Jahnke, A., Berger, U. (2009). Trace analysis of per-and polyfluorinated alkyl substances in various matrices—how do current methods perform?. Journal of Chromatography A, 1216(3), 410-421. https://doi.org/10.1016/j.chroma.2008.08.098
  • Jahnke, A., Ahrens, L., Ebinghaus, R., Berger, U., Barber, J. L., Temme, C. (2007). An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples. Analytical and Bioanalytical Chemistry, 387, 965-975. https://doi.org/10.1007/s00216-006-1008-y
  • Johnson, M.S., Buck, R.C., Cousins, I.T., Weis, C.P., Fenton, S.E. (2021). Estimating environmental hazard and risks from exposure to per‐and polyfluoroalkyl substances (PFASs): Outcome of a SETAC focused topic meeting. Environmental Toxicology and Chemistry, 40(3), 543-549. https://doi.org/10.1002/etc.4784
  • Karakuş, F., Kuzu, B. (2024). Predicting the molecular mechanisms of cardiovascular toxicity induced by per-and polyfluoroalkyl substances: an In Silico network toxicology perspective. Toxicology Research, 13(6), . https://doi.org/10.1093/toxres/tfae206
  • Karatas, O., Khataee, A., Kobya, M., Yoon, Y. (2023). Electrochemical oxidation of perfluorooctanesulfonate (PFOS) from simulated soil leachate and landfill leachate concentrate. Journal of Water Process Engineering, 56, 104292. https://doi.org/10.1016/j.jwpe.2023.104292
  • Kavusi, E., Ansar, B.S.K., Ebrahimi, S., Sharma, R., Ghoreishi, S.S., Nobaharan, K., Astatkie, T. (2023). Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. Environmental Research, 217, 114844. https://doi.org/10.1016/j.envres.2022.114844
  • Khan, B., Burgess, R.M., Cantwell, M.G. (2023). Occurrence and bioaccumulation patterns of per-and polyfluoroalkyl substances (PFAS) in the marine environment. ACS Environmental Science and Technology Water, 3(5), 1243-1259. https://doi.org/10.1021/acsestwater.2c00296
  • Khan, R., Uygun, Z. O., Andreescu, D., Andreescu, S. (2024). Sensitive Detection of Perfluoroalkyl Substances Using MXene–AgNP-Based Electrochemical Sensors. ACS sensors, 9, 6, 3403–3412. https://doi.org/10.1021/acssensors.4c00776
  • Kopnina, H., Washington, H., Taylor, B., J Piccolo, J. (2018). Anthropocentrism: More than just a misunderstood problem. Journal of Agricultural and Environmental Ethics, 31(1), 109-127. https://doi.org/10.1007/s10806-018-9711-1
  • Korzeniowski, S.H., Buck, R.C., Newkold, R.M., kassmi, A.E., Laganis, E., Matsuoka, Y., Musio, S. (2023). A critical review of the application of polymer of low concern regulatory criteria to fluoropolymers II: Fluoroplastics and fluoroelastomers. Integrated Environmental Assessment and Management, 19(2), 326-354. https://doi.org/10.1002/ieam.4646
  • Kwok, K.Y., Yamazaki, E., Yamashita, N., Taniyasu, S., Murphy, M.B., Horii, Y., Lam, P.K. (2013). Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: Implications for sources. Science of the Total Environment, 447, 46-55. https://doi.org/10.1016/j.scitotenv.2012.10.091
  • Li, L., Han, T., Li, B., Bai, P., Tang, X., Zhao, Y. (2024). Distribution Control and Environmental Fate of PFAS in the Offshore Region Adjacent to the Yangtze River Estuary─ A Study Combining Multiple Phases Analysis. Environmental Science and Technology, 58(35), 15779-15789. https://doi.org/10.1021/acs.est.4c03985
  • Lindstrom, A.B., Strynar, M.J., Libelo, E.L. (2011). Polyfluorinated compounds: past, present, and future. Environmental Science and Technology, 45(19), 7954-7961. https://doi.org/10.1021/es2011622
  • Liu, D., Tang, B., Nie, S., Zhao, N., He, L., Cui, J., Jin, H. (2023). Distribution of per-and poly-fluoroalkyl substances and their precursors in human blood. Journal of Hazardous Materials, 441, 129908. https://doi.org/10.1016/j.jhazmat.2022.129908
  • Miner, K.R., Clifford, H., Taruscio, T., Potocki, M., Solomon, G., Ritari, M., Mayewski, P.A. (2021). Deposition of PFAS ‘forever chemicals’ on Mt. Everest. Science of the Total Environment, 759, 144421. https://doi.org/10.1016/j.scitotenv.2020.144421
  • Mudlaff, M., Sosnowska, A., Gorb, L., Bulawska, N., Jagiello, K., Puzyn, T. (2024). Environmental impact of PFAS: Filling data gaps using theoretical quantum chemistry and QSPR modeling. Environment International, 185, 108568. https://doi.org/10.1016/j.envint.2024.108568
  • Nahar, K., Zulkarnain, N.A., Niven, R.K. (2023). A review of analytical methods and technologies for monitoring per-and polyfluoroalkyl substances (PFAS) in water. Water, 15(20), 3577. https://doi.org/10.3390/w15203577
  • Nayak, S., Sahoo, G., Das, I. I., Mohanty, A. K., Kumar, R., Sahoo, L., Sundaray, J. K. (2023). Poly-and perfluoroalkyl substances (PFAS): do they matter to aquatic ecosystems?. Toxics, 11(6), 543. https://doi.org/10.3390/toxics11060543
  • OECD, 2022a, Risk management, risk reduction and sustainable chemistry, https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/aboutpfass/Figure1-classification-of-per-and-polyfluoroalkyl-substances%20-PFASs.pdf, 15 Aralık 2023.
  • OECD, 2022b, Fact Cards of Major Groups of Per- and Polyfluoroalkyl Substances (PFASs), https://one.oecd.org/document/env/cbc/mono(2022)1/en/pdf, 15 Aralık 2023.
  • Padilla-Sánchez, J.A., Papadopoulou, E., Poothong, S., Haug, L.S. (2017). Investigation of the best approach for assessing human exposure to poly-and perfluoroalkyl substances through indoor air. Environmental Science and Technology, 51(21), 12836-12843. https://doi.org/10.1021/acs.est.7b03516
  • Post, G.B. (2021). Recent US state and federal drinking water guidelines for per‐and polyfluoroalkyl substances. Environmental Toxicology and Chemistry, 40(3), 550-563. https://doi.org/10.1002/etc.4863
  • Rasmusson, K., Fagerlund, F. (2024). Per-and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources–A comprehensive review of subsurface transport processes. Chemosphere, 142663. https://doi.org/10.1016/j.chemosphere.2024.142663
  • Rehman, A.U., Crimi, M., Andreescu, S. (2023). Current and emerging analytical techniques for the determination of PFAS in environmental samples. Trends in Environmental Analytical Chemistry, 37, e00198. https://doi.org/10.1016/j.teac.2023.e00198
  • Rogers, N. and Maloney, M. (Eds.). (2023) The Anthropocene Judgments Project: Futureproofing the Common Law, (1st Ed), Routledge, ISBN: 9781003389569, New York, 328 s.
  • Rudin, E., Glüge, J., Scheringer, M. (2023). Per-and polyfluoroalkyl substances (PFASs) registered under REACH—What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment?. Science of the Total Environment, 877, 162618. https://doi.org/10.1016/j.scitotenv.2023.162618
  • Sanchez-Vidal, A., Llorca, M., Farré, M., Canals, M., Barceló, D., Puig, P., Calafat, A. (2015). Delivery of unprecedented amounts of perfluoroalkyl substances towards the deep-sea. Science of The Total Environment, 526, 41-48. https://doi.org/10.1016/j.scitotenv.2015.04.080
  • Schumacher, B. A., Zimmerman, J. H., Williams, A. C., Lutes, C. C., Holton, C. W., Escobar, E., Warrier, R. (2024). Distribution of select per-and polyfluoroalkyl substances at a chemical manufacturing plant. Journal of Hazardous Materials, 464, 133025. https://doi.org/10.1016/j.jhazmat.2023.133025
  • Soriano, Y., Andreu, V., Picó, Y. (2024). Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trends in Analytical Chemistry, 117624. https://doi.org/10.1016/j.trac.2024.117624
  • Stock, N.L., Furdui, V.I., Muir, D.C., Mabury, S.A. (2007). Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. Environmental Science and Technology, 41(10), 3529-3536. https://doi.org/10.1021/es062709x
  • Taves D, Guy W, Brey W. (1976). Organic fluorocarbons in human plasma: Prevalence and characterization. In: Biochemistry Involving Carbon-Fluorine Bonds (Eds.Filler, R), Washington DC: American Chemical Society, ISBN: 9780841203358, pp 117–134.
  • Taves, D.R. (1968). Evidence that there are two forms of fluoride in human serum. Nature, 217(5133), 1050-1051. https://doi.org/10.1038/2171050b0
  • Torres, F.B.M., Guida, Y., Weber, R., Torres, J.P.M. (2022). Brazilian overview of per-and polyfluoroalkyl substances listed as persistent organic pollutants in the stockholm convention. Chemosphere, 291, 132674. https://doi.org/10.1016/j.chemosphere.2021.132674
  • Türkiye İhracatçılar Meclisi (TİM), 2024. PFAS Kimyasal Maddelerinin Kısıtlanması https://tim.org.tr/tr/pfas-kimyasal-maddelerinin-kisitlanmasi, 1 Ekim 2024.
  • Üner, N. B., Baldaguez Medina, P., Dinari, J. L., Su, X., Sankaran, R. M. (2022). Rate, Efficiency, and Mechanisms of Electrochemical Perfluorooctanoic Acid Degradation with Boron-Doped Diamond and Plasma Electrodes. Langmuir, 38(29), 8975-8986. https://doi.org/10.1021/acs.langmuir.2c01227
  • Washington, H., Ehrlich, P.R. (2013). Human Dependence on Nature: How to help solve the environmental crisis (1st edition), Routledge, eBook ISBN: 9780203095560, London, 184. https://doi.org/10.4324/9780203095560
  • Washington, H., Taylor, B., Kopnina, H., Cryer, P., Piccolo, J.J. (2017). Why ecocentrism is the key pathway to sustainability. The Ecological Citizen, 1(1), 35-41. http://is.gd/ecocentrism
  • Xing, Y., Zhou, Y., Zhang, X., Lin, X., Li, J., Liu, P., Huang, Z. (2023). The sources and bioaccumulation of per-and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. Science of the Total Environment, 905, 167313. https://doi.org/10.1016/j.scitotenv.2023.167313
  • Zhou, T., Li, X., Liu, H., Dong, S., Zhang, Z., Wang, Z., Wang, Q. (2024). Occurrence, fate, and remediation for per-and polyfluoroalkyl substances (PFAS) in sewage sludge: A comprehensive review. Journal of Hazardous Materials, 466, 133637. https://doi.org/10.1016/j.jhazmat.2024.133637

Per and Polyfluoroalkyl Substance (PFAS) Pollution in the Environment: Its History, Sources, Risks and Related Regulations

Year 2025, Volume: 6 Issue: 1, 403 - 427, 30.06.2025
https://doi.org/10.53501/rteufemud.1536329

Abstract

The effects arising from the increase in human population and activities are rapidly polluting the world and increasingly chemicalizing natural environments. Per- and Polyfluoroalkyl Substances (PFASs) are chemical compounds that started to be produced after 1940. These substances are chemicals with high chemical and thermal resistance and are widely used in various industrial applications and consumer products. PFASs, the so-called "Forever Chemicals," are a good example of man-made substances that chemicalized the world due to their persistence. Because they are used in a wide range of products, it can be difficult to assess the effects of PFASs on human health and the environment. Therefore, it is necessary to identify the sources and continuity of exposure to PFASs with particular attention. PFASs have raised serious concerns due to their widespread production and use since their invention, the environmentally resistant nature of these chemicals, their bioaccumulation in living organisms, their potential toxicity, their transport to remote areas and other long-term adverse effects. While the hazards of PFASs were relatively neglected during the period from their invention to their production and widespread use, the environmental presence, distribution and potential health risks of PFASs have started to be revealed in more detail with the increasing scientific research and development of advanced analytical technologies since the beginning of the 21st century. In this study, the processes that have evolved since the discovery of PFASs until today, the areas where they are used, the structures, sources, types, analyses, classification and restrictions of PFASs have been investigated. The risks these pollutants pose, which have significant characteristics such as widespread, persistence, biodegradability, high mobility and toxicity, on the environment and humans are explained.

References

  • Abunada, Z., Alazaiza, M.Y., Bashir, M.J. (2020). An overview of per-and polyfluoroalkyl substances (PFAS) in the environment: Source, fate, risk and regulations. Water, 12(12), 3590. https://doi.org/10.3390/w12123590
  • Abu-Salah, A., Cesur, M. F., Anchan, A., Ay, M., Langley, M. R., Shah, A., Sarkar, S. (2024). Comparative Proteomics Highlights that GenX Exposure Leads to Metabolic Defects and Inflammation in Astrocytes. Environmental Science and Technology, 58(46), 20525-20539. https://doi.org/10.1021/acs.est.4c05472
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2021).Toxicological profile for Perfluoroalkyls. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. http://dx.doi.org/10.15620/cdc:59198,
  • Ahrens, L., Rakovic, J., Ekdahl, S., Kallenborn, R. (2023). Environmental distribution of per-and polyfluoroalkyl substances (PFAS) on Svalbard: Local sources and long-range transport to the Arctic. Chemosphere, 345, 140463. https://doi.org/10.1016/j.chemosphere.2023.140463
  • Al Amin, M., Sobhani, Z., Liu, Y., Dharmaraja, R., Chadalavada, S., Naidu, R., Fang, C. (2020). Recent advances in the analysis of per-and polyfluoroalkyl substances (PFAS)—A review. Environmental Technology and Innovation, 19, 100879. https://doi.org/10.1016/j.eti.2020.100879
  • Ali, A.M., Langberg, H.A., Hale, S.E., Kallenborn, R., Hartz, W.F., Mortensen, Å.K., Breedveld, G.D. (2021). The fate of poly-and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic. Environmental Science: Processes and Impacts, 23(4), 588-604. https://doi.org/10.1039/D0EM00510J
  • Améduri, B. (2023). Fluoropolymers as unique and irreplaceable materials: Challenges and future trends in these specific per or poly-fluoroalkyl substances. Molecules, 28(22), 7564. https://doi.org/10.3390/molecules28227564
  • Ameduri, B. (2023). Fluoropolymers: A special class of per-and polyfluoroalkyl substances (PFASs) essential for our daily life. Journal of Fluorine Chemistry, 267, 110117. https://doi.org/10.1016/j.jfluchem.2023.110117
  • Arredondo Eve, A., Tunc, E., Mehta, D., Yoo, J. Y., Yilmaz, H. E., Emren, S. V., Madak Erdogan, Z. (2024). PFAS and their association with the increased risk of cardiovascular disease in postmenopausal women. Toxicological Sciences, 200(2), 312-323. https://doi.org/10.1093/toxsci/kfae065
  • Ateia, M., Arifuzzaman, M., Pellizzeri, S., Attia, M.F., Tharayil, N., Anker, J.N., Karanfil, T. (2019). Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research, 163, 114874. https://doi.org/10.1016/j.watres.2019.114874
  • Atoufi, H. D., Lampert, D. J. (2023). Analysis of a Passive Sampling Device to Assess the Behavior of Per‐and Polyfluoroalkyl Substances in Sediments. Environmental Toxicology and Chemistry, 42(10), 2171-2183. https://doi.org/10.1002/etc.5705
  • Barisci, S., Suri, R. (2023). Degradation of emerging per-and polyfluoroalkyl substances (PFAS) using an electrochemical plug flow reactor. Journal of Hazardous Materials, 460, 132419. https://doi.org/10.1016/j.jhazmat.2023.13241
  • Blake, B.E., and Fenton, S.E. (2020). Early life exposure to per-and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri-and postnatal effects. Toxicology, 443, 152565. https://doi.org/10.1016/j.tox.2020.152565
  • Bokkers, B., Van de Ven, B., Janssen, P., Bil, W., Van Broekhuizen, F., Zeilmaker, M., Oomen, A.G. (2019). Per-and polyfluoroalkyl substances (PFASs) in food contact materials. http://dx.doi.org/10.21945/RIVM-2018-0181
  • Brunn, H., Arnold, G., Körner, W., Rippen, G., Steinhäuser, K.G., Valentin, I. (2023). PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe, 35(1), 1-50. https://doi.org/10.1186/s12302-023-00730-7
  • Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., De Voogt, P., van Leeuwen, S.P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated environmental assessment and management, 7(4), 513-541. https://doi.org/10.1002/ieam.258
  • Cantoni, B., Bergna, G., Baldini, E., Malpei, F., Antonelli, M. (2024). PFAS in textile wastewater: An integrated scenario analysis for interventions prioritization to reduce environmental risk. Process Safety and Environmental Protection, 183, 437-445. https://doi.org/10.1016/j.psep.2024.01.005
  • Chen, M., Wang, C., Wang, X., Fu, J., Gong, P., Yan, J., Nawab, J. (2019). Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: Insights into the impact of global warming on the cycling of emerging pollutants. Journal of Geophysical Research: Atmospheres, 124(13), 7442-7456. https://doi.org/10.1029/2019JD030566
  • Cousins, I.T., DeWitt, J.C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Wang, Z. (2020). Strategies for grouping per-and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Science: Processes and Impacts, 22(7), 1444-1460. https://doi.org/10.1039/D0EM00147C
  • Dadashi Firouzjaei, M., Zolghadr, E., Ahmadalipour, S., Taghvaei, N., Akbari Afkhami, F., Nejati, S., Elliott, M.A. (2022). Chemistry, abundance, detection and treatment of per-and polyfluoroalkyl substances in water: A review. Environmental Chemistry Letters, 20(1), 661-679. https://doi.org/10.1007/s10311-021-01340-6
  • Dhore, R., Murthy, G.S. (2021). Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresource Technology, 341, 125808. https://doi.org/10.1016/j.biortech.2021.125808
  • Emerce, E., Çetin, Ö. (2018). Genotoxicity assessment of perfluoroalkyl substances on human sperm. Toxicology and Industrial Health, 34(12), 884-890. https://doi.org/10.1177/0748233718799191
  • Endirlik, B. Ü., Bakır, E., Boşgelmez, İ. İ., Eken, A., Narin, İ., Gürbay, A. (2019). Assessment of perfluoroalkyl substances levels in tap and bottled water samples from Turkey. Chemosphere, 235, 1162-1171. https://doi.org/10.1016/j.chemosphere.2019.06.228
  • Environmental Protection Agency (EPA). (2023). Our Current Understanding of the Human Health and Environmental Risks of PFAS. https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas , 12 Aralık 2023.
  • Faust, J.A. (2023). PFAS on atmospheric aerosol particles: A review. Environmental Science: Processes and Impacts, 25(2), 133-150. https://doi.org/10.1039/D2EM00002D
  • Fortuna, P., Wróblewski, Z., Gorbaniuk, O. (2023). The structure and correlates of anthropocentrism as a psychological construct. Current Psychology, 42(5), 3630-3642. https://doi.org/10.1007/s12144-021-01835-z
  • Gaber, N., Bero, L., Woodruff, T.J. (2023). The devil they knew: chemical documents analysis of ındustry ınfluence on PFAS Science. Annals of Global Health, 89(1), 37. https://doi.org/10.5334/aogh.4013
  • Gaines, L.G. (2023). Historical and current usage of per‐and polyfluoroalkyl substances (PFAS): A literature review. American Journal of Industrial Medicine, 66(5), 353-378. https://doi.org/10.1002/ajim.23362
  • Golosovskaia, E., Örn, S., Ahrens, L., Chelcea, I., Andersson, P. L. (2024). Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. Science of the Total Environment, 912, 168738. https://doi.org/10.1016/j.scitotenv.2023.168738
  • Habib, A., Landa, E.N., Holbrook, K.L., Walker, W.S., Lee, W. Y. (2023). Rapid, efficient, and green analytical technique for determination of fluorotelomer alcohol in water by stir bar sorptive extraction. Chemosphere, 338, 139439. https://doi.org/10.1016/j.chemosphere.2023.139439
  • Henry, B.J., Carlin, J.P., Hammerschmidt, J.A., Buck, R.C., Buxton, L.W., Fiedler, H., Hernandez, O. (2018). A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integrated Environmental Assessment and Management, 14(3), 316-334. https://doi.org/10.1002/ieam.4035
  • Hu, J., Yang, X., Song, X., Miao, Y., Yu, Y., Xiang, W., Liu, H. (2024). Bioaccumulation mechanisms of perfluoroalkyl substances (PFASs) in aquatic environments: Theoretical and experimental insights. Journal of Hazardous Materials, 136283. https://doi.org/10.1016/j.jhazmat.2024.136283
  • ITRC, (2023). PFAS — Per- and Polyfluoroalkyl Substances. Physical and Chemical Properties https://pfas-1.itrcweb.org/4-physical-and-chemical-properties/, 7 Ekim 2023.
  • İkizoglu, B. (2024). PFOA and PFOS Pollution in Surface Waters and Surface Water Fish. Water, 16(16), 2342. https://doi.org/10.3390/w16162342
  • Jahnke, A., Berger, U. (2009). Trace analysis of per-and polyfluorinated alkyl substances in various matrices—how do current methods perform?. Journal of Chromatography A, 1216(3), 410-421. https://doi.org/10.1016/j.chroma.2008.08.098
  • Jahnke, A., Ahrens, L., Ebinghaus, R., Berger, U., Barber, J. L., Temme, C. (2007). An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples. Analytical and Bioanalytical Chemistry, 387, 965-975. https://doi.org/10.1007/s00216-006-1008-y
  • Johnson, M.S., Buck, R.C., Cousins, I.T., Weis, C.P., Fenton, S.E. (2021). Estimating environmental hazard and risks from exposure to per‐and polyfluoroalkyl substances (PFASs): Outcome of a SETAC focused topic meeting. Environmental Toxicology and Chemistry, 40(3), 543-549. https://doi.org/10.1002/etc.4784
  • Karakuş, F., Kuzu, B. (2024). Predicting the molecular mechanisms of cardiovascular toxicity induced by per-and polyfluoroalkyl substances: an In Silico network toxicology perspective. Toxicology Research, 13(6), . https://doi.org/10.1093/toxres/tfae206
  • Karatas, O., Khataee, A., Kobya, M., Yoon, Y. (2023). Electrochemical oxidation of perfluorooctanesulfonate (PFOS) from simulated soil leachate and landfill leachate concentrate. Journal of Water Process Engineering, 56, 104292. https://doi.org/10.1016/j.jwpe.2023.104292
  • Kavusi, E., Ansar, B.S.K., Ebrahimi, S., Sharma, R., Ghoreishi, S.S., Nobaharan, K., Astatkie, T. (2023). Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. Environmental Research, 217, 114844. https://doi.org/10.1016/j.envres.2022.114844
  • Khan, B., Burgess, R.M., Cantwell, M.G. (2023). Occurrence and bioaccumulation patterns of per-and polyfluoroalkyl substances (PFAS) in the marine environment. ACS Environmental Science and Technology Water, 3(5), 1243-1259. https://doi.org/10.1021/acsestwater.2c00296
  • Khan, R., Uygun, Z. O., Andreescu, D., Andreescu, S. (2024). Sensitive Detection of Perfluoroalkyl Substances Using MXene–AgNP-Based Electrochemical Sensors. ACS sensors, 9, 6, 3403–3412. https://doi.org/10.1021/acssensors.4c00776
  • Kopnina, H., Washington, H., Taylor, B., J Piccolo, J. (2018). Anthropocentrism: More than just a misunderstood problem. Journal of Agricultural and Environmental Ethics, 31(1), 109-127. https://doi.org/10.1007/s10806-018-9711-1
  • Korzeniowski, S.H., Buck, R.C., Newkold, R.M., kassmi, A.E., Laganis, E., Matsuoka, Y., Musio, S. (2023). A critical review of the application of polymer of low concern regulatory criteria to fluoropolymers II: Fluoroplastics and fluoroelastomers. Integrated Environmental Assessment and Management, 19(2), 326-354. https://doi.org/10.1002/ieam.4646
  • Kwok, K.Y., Yamazaki, E., Yamashita, N., Taniyasu, S., Murphy, M.B., Horii, Y., Lam, P.K. (2013). Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: Implications for sources. Science of the Total Environment, 447, 46-55. https://doi.org/10.1016/j.scitotenv.2012.10.091
  • Li, L., Han, T., Li, B., Bai, P., Tang, X., Zhao, Y. (2024). Distribution Control and Environmental Fate of PFAS in the Offshore Region Adjacent to the Yangtze River Estuary─ A Study Combining Multiple Phases Analysis. Environmental Science and Technology, 58(35), 15779-15789. https://doi.org/10.1021/acs.est.4c03985
  • Lindstrom, A.B., Strynar, M.J., Libelo, E.L. (2011). Polyfluorinated compounds: past, present, and future. Environmental Science and Technology, 45(19), 7954-7961. https://doi.org/10.1021/es2011622
  • Liu, D., Tang, B., Nie, S., Zhao, N., He, L., Cui, J., Jin, H. (2023). Distribution of per-and poly-fluoroalkyl substances and their precursors in human blood. Journal of Hazardous Materials, 441, 129908. https://doi.org/10.1016/j.jhazmat.2022.129908
  • Miner, K.R., Clifford, H., Taruscio, T., Potocki, M., Solomon, G., Ritari, M., Mayewski, P.A. (2021). Deposition of PFAS ‘forever chemicals’ on Mt. Everest. Science of the Total Environment, 759, 144421. https://doi.org/10.1016/j.scitotenv.2020.144421
  • Mudlaff, M., Sosnowska, A., Gorb, L., Bulawska, N., Jagiello, K., Puzyn, T. (2024). Environmental impact of PFAS: Filling data gaps using theoretical quantum chemistry and QSPR modeling. Environment International, 185, 108568. https://doi.org/10.1016/j.envint.2024.108568
  • Nahar, K., Zulkarnain, N.A., Niven, R.K. (2023). A review of analytical methods and technologies for monitoring per-and polyfluoroalkyl substances (PFAS) in water. Water, 15(20), 3577. https://doi.org/10.3390/w15203577
  • Nayak, S., Sahoo, G., Das, I. I., Mohanty, A. K., Kumar, R., Sahoo, L., Sundaray, J. K. (2023). Poly-and perfluoroalkyl substances (PFAS): do they matter to aquatic ecosystems?. Toxics, 11(6), 543. https://doi.org/10.3390/toxics11060543
  • OECD, 2022a, Risk management, risk reduction and sustainable chemistry, https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/aboutpfass/Figure1-classification-of-per-and-polyfluoroalkyl-substances%20-PFASs.pdf, 15 Aralık 2023.
  • OECD, 2022b, Fact Cards of Major Groups of Per- and Polyfluoroalkyl Substances (PFASs), https://one.oecd.org/document/env/cbc/mono(2022)1/en/pdf, 15 Aralık 2023.
  • Padilla-Sánchez, J.A., Papadopoulou, E., Poothong, S., Haug, L.S. (2017). Investigation of the best approach for assessing human exposure to poly-and perfluoroalkyl substances through indoor air. Environmental Science and Technology, 51(21), 12836-12843. https://doi.org/10.1021/acs.est.7b03516
  • Post, G.B. (2021). Recent US state and federal drinking water guidelines for per‐and polyfluoroalkyl substances. Environmental Toxicology and Chemistry, 40(3), 550-563. https://doi.org/10.1002/etc.4863
  • Rasmusson, K., Fagerlund, F. (2024). Per-and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources–A comprehensive review of subsurface transport processes. Chemosphere, 142663. https://doi.org/10.1016/j.chemosphere.2024.142663
  • Rehman, A.U., Crimi, M., Andreescu, S. (2023). Current and emerging analytical techniques for the determination of PFAS in environmental samples. Trends in Environmental Analytical Chemistry, 37, e00198. https://doi.org/10.1016/j.teac.2023.e00198
  • Rogers, N. and Maloney, M. (Eds.). (2023) The Anthropocene Judgments Project: Futureproofing the Common Law, (1st Ed), Routledge, ISBN: 9781003389569, New York, 328 s.
  • Rudin, E., Glüge, J., Scheringer, M. (2023). Per-and polyfluoroalkyl substances (PFASs) registered under REACH—What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment?. Science of the Total Environment, 877, 162618. https://doi.org/10.1016/j.scitotenv.2023.162618
  • Sanchez-Vidal, A., Llorca, M., Farré, M., Canals, M., Barceló, D., Puig, P., Calafat, A. (2015). Delivery of unprecedented amounts of perfluoroalkyl substances towards the deep-sea. Science of The Total Environment, 526, 41-48. https://doi.org/10.1016/j.scitotenv.2015.04.080
  • Schumacher, B. A., Zimmerman, J. H., Williams, A. C., Lutes, C. C., Holton, C. W., Escobar, E., Warrier, R. (2024). Distribution of select per-and polyfluoroalkyl substances at a chemical manufacturing plant. Journal of Hazardous Materials, 464, 133025. https://doi.org/10.1016/j.jhazmat.2023.133025
  • Soriano, Y., Andreu, V., Picó, Y. (2024). Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC Trends in Analytical Chemistry, 117624. https://doi.org/10.1016/j.trac.2024.117624
  • Stock, N.L., Furdui, V.I., Muir, D.C., Mabury, S.A. (2007). Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. Environmental Science and Technology, 41(10), 3529-3536. https://doi.org/10.1021/es062709x
  • Taves D, Guy W, Brey W. (1976). Organic fluorocarbons in human plasma: Prevalence and characterization. In: Biochemistry Involving Carbon-Fluorine Bonds (Eds.Filler, R), Washington DC: American Chemical Society, ISBN: 9780841203358, pp 117–134.
  • Taves, D.R. (1968). Evidence that there are two forms of fluoride in human serum. Nature, 217(5133), 1050-1051. https://doi.org/10.1038/2171050b0
  • Torres, F.B.M., Guida, Y., Weber, R., Torres, J.P.M. (2022). Brazilian overview of per-and polyfluoroalkyl substances listed as persistent organic pollutants in the stockholm convention. Chemosphere, 291, 132674. https://doi.org/10.1016/j.chemosphere.2021.132674
  • Türkiye İhracatçılar Meclisi (TİM), 2024. PFAS Kimyasal Maddelerinin Kısıtlanması https://tim.org.tr/tr/pfas-kimyasal-maddelerinin-kisitlanmasi, 1 Ekim 2024.
  • Üner, N. B., Baldaguez Medina, P., Dinari, J. L., Su, X., Sankaran, R. M. (2022). Rate, Efficiency, and Mechanisms of Electrochemical Perfluorooctanoic Acid Degradation with Boron-Doped Diamond and Plasma Electrodes. Langmuir, 38(29), 8975-8986. https://doi.org/10.1021/acs.langmuir.2c01227
  • Washington, H., Ehrlich, P.R. (2013). Human Dependence on Nature: How to help solve the environmental crisis (1st edition), Routledge, eBook ISBN: 9780203095560, London, 184. https://doi.org/10.4324/9780203095560
  • Washington, H., Taylor, B., Kopnina, H., Cryer, P., Piccolo, J.J. (2017). Why ecocentrism is the key pathway to sustainability. The Ecological Citizen, 1(1), 35-41. http://is.gd/ecocentrism
  • Xing, Y., Zhou, Y., Zhang, X., Lin, X., Li, J., Liu, P., Huang, Z. (2023). The sources and bioaccumulation of per-and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. Science of the Total Environment, 905, 167313. https://doi.org/10.1016/j.scitotenv.2023.167313
  • Zhou, T., Li, X., Liu, H., Dong, S., Zhang, Z., Wang, Z., Wang, Q. (2024). Occurrence, fate, and remediation for per-and polyfluoroalkyl substances (PFAS) in sewage sludge: A comprehensive review. Journal of Hazardous Materials, 466, 133637. https://doi.org/10.1016/j.jhazmat.2024.133637
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention, Global Environmental Engineering
Journal Section Review
Authors

Meral Yurtsever 0000-0002-7965-1919

Publication Date June 30, 2025
Submission Date August 20, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Yurtsever, M. (2025). Çevredeki Per ve Polifloroalkil Madde (PFAS) Kirliliği: Tarihçesi, Kaynakları, Analizi, Riskleri ve İlgili Düzenlemeler. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 403-427. https://doi.org/10.53501/rteufemud.1536329

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025