Systematic Reviews and Meta Analysis
BibTex RIS Cite

Tekstil Materyallerinin Renklendirilmesinde Kullanılan Antibakteriyel Azo Bileşikleri

Year 2025, Volume: 6 Issue: 1, 452 - 475, 30.06.2025
https://doi.org/10.53501/rteufemud.1588729

Abstract

Azo bileşikleri, kimyasal yapısında en az bir azo grubu bulunduran (-N=N-) renkli organik bileşiklerdir. Azo bileşikleri; tekstil, boyalar, kaplamalar, baskı mürekkepleri ve plastikler gibi farklı uygulamalarda uzun süredir parlak renk veren renklendiriciler olarak kullanılmaktadır. Bununla birlikte, tıp, analitik kimya, koordinasyon ve kompleks kimyası, boya-üretim kimyası ile organik reaktiflerin geliştirilmesi dâhil olmak üzere çeşitli alanlarda giderek artan bir ilgiyle yeni çalışmalar yürütülmektedir. Diazolama ve kenetleme adımlarında kullanılan başlangıç maddelerini çeşitlendirmek ve bunları farklı sübstitüentler ile metal iyonlarıyla birleştirmek suretiyle çok çeşitli azo bileşikleri sentezlenebilir. Farklı bileşenleri birleştirerek çok geniş bir yelpazede antibakteriyel tekstil boyaları hızla üretilebilir ve yalnızca boyama yoluyla antibakteriyel teknik tekstil ürünleri tek bir adımda elde edilebilir. Terbiye aşamalarının sayısını azaltmak, girdi maliyetlerini düşürür ve tekstil üretiminde sürdürülebilirliği artırır; su, ana ve yardımcı kimyasallar, enerji ve zaman tasarrufu sağlar. Bu çalışmada, azo bileşiklerinin kimyasal yapıları, sentez aşamaları, özellikleri ve kullanım alanlarına ilişkin bir genel bakış sunulmuştur. Tekstilde yaygın kullanımının temelini oluşturan kromofor özelliklere, rengi belirleyen yapısal faktörlere ve antibakteriyel etkinlikten sorumlu mekanizmalara özellikle vurgu yapılmaktadır. Ayrıca, tekstil malzemelerine yalnızca boyama yoluyla ek bitim işlemlerine gerek kalmaksızın antibakteriyel işlev kazandırabilen antibakteriyel azo boyalar üzerine seçilmiş çalışmalar incelenmiştir.

References

  • Abd El Salam, H.A., Abdel-Aziz, M.S., El-Sawy, E.R., Shaban, E. (2023). Synthesis and antibacterial activity of azo‑sulfa‑based disperse dyes and their application in polyester printing. Fibers and Polymers, 24, 2751-2760. https://doi.org/10.1007/s12221-023-00255-z
  • Abdüloğlu, Y. (2018). Diazo Grup İçeren İletken Polimerlerin Elektrokimyasal ve Elektrokromik Özelliklerinin İncelenmesi, Yüksek lisans tezi, Pamukkale Üniversitesi, Türkiye.
  • Addnan, L. (2016). Synthesis and characterization of new azo dye (1-(4-sulfonyl phenyl azo)-2-(7-chloro-4-[{4-(diethyl amino)-1-methyl butyl} amino]quindine from chloroquine diphosphate and study antibacterial activity. Basrah Journal of Veterinary Research,15(1), 271-277.
  • Akaydın, M. ve Kalkancı, M. (2014). Hastane giysisi olarak kullanılan kumaşların antibakteriyel özellikleri üzerine bir araştırma. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 9(1), 20-34.
  • Aljamali, N.M. and Hassen, H.S. (2021). Review on azo-compounds and their applications. Journal of Catalyst and Catalysis, 8(2), 8-16.
  • Al-Joboury, W.M.R., Al-Badrany, K.A., Asli, N.J. (2021). Synthesis of new azo dye compounds derived from 2-aminobenzothiazole and study their biological activity. Materialstoday: Proceedings, 47 (17), 5977–5982. https://doi.org/10.1016/j.matpr.2021.04.538
  • Başer, İ., İnanıcı, Y. (1989). Boyarmadde Kimyası. Marmara Üniversitesi Teknik Eğitim Fakültesi Döner Sermaye İşletmesi Matbaa Birimi, ISBN 975-400-024-7, İstanbul.
  • Berrie, B.H., Lomax, S.Q. (1997). Azo pigments: their history, synthesis, properties, and use in artists’ materials, Studies in the History of Art, 57, 8–53. (Monograph series II, conservation research 1996/1997, Washington, DC: National Gallery of Art).
  • Bujak, K., Orlikowska, H., Małecki, J.G., Schab-Balcerzak, E., Bartkiewicz, S., Bogucki, J., Sobolewska, A., Konieczkowska, J. (2019). Fast dark cis-trans isomerization of azopyridine derivatives in comparison to their azobenzene analogues: Experimental and computational study. Dyes and Pigments, 160, 654-662. https://doi.org/10.1016/j.dyepig.2018.09.006
  • Christie, R.M. (2001). Colour Chemistry, The Royal Society of Chemistry, ISBN 0-85404-573-2, UK.
  • Cojocariu, C., Rochon, P. (2004). Light-induced motions in azobenzene containing polymers. Pure and Applied Chemistry, 76 (7–8), 1479–1497.
  • Di Martino, M., Sessa, L., Di Matteo, M., Panunzi, B., Piotto, S., Concilio, S. (2022). Azobenzene as antimicrobial molecules. Molecules, 27(17), 5643. https://doi.org/10.3390/molecules27175643v
  • Elkhabiry, S., Sharaf, A., Sadek M.E., Elasasy M E.A., El-Sayed A.A., Mousa A. (2024). Azo disperse dyes based on citrazinic acid: synthesis, antibacterial activity and printing application in silk and polyamide-6 fabrics. Pigment & Resin Technology, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/PRT-06-2024-0061
  • Gaffer, H.E., Gouda, M., Abdel-Latif, E. (2012). Antibacterial activity of cotton fabrics treated with sulfadimidine azo dye/chitosan colloid. Journal of Industrial Textiles, 42(4), 392-399. https://doi.org/10.1177/1528083712441959
  • Hamid, H.M., Zeinab, N.M., Istabraq, M.A. (2011). Synthesis and studies the biological activity of new azo compounds. Journal of Kerbala University, 9(3), 75 -83.
  • Hunger, K. (2003). Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH, ISBN: 3-527-30426-6, Germany.
  • İçoğlu, H.İ. (2006). Pamuklu Dokunmuş Kumaşların Reaktif Boyarmaddelerle Boyanması ve Uygulama Yöntemlerinin İncelenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Türkiye.
  • Imtiazuddin, S.M., Tiki, A. (2020). Textile azo dyes; significance, ecological, health, and safety issues. Pakistan Journal of Chemistry, 10(1–4), 35–38. https://doi.org/10.15228/2020.v10.i01-4.p05
  • Jarrahpour, A.A., Motamedifar, M., Pakshir, K., Hadi, N., Zarei, M. (2004). Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules, 9(10), 815-824. https://doi.org/10.3390/91000815
  • Josset, S., Keller, N., Lett, M.C., Ledoux, M.J., Keller, V. (2008). Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews, 37, 744–755. https://doi.org/10.1039/B711748P
  • Kareem, A.F, Thejeel, K.A., Ismael, H.I. (2022). Review, analyses of azo dyes’ synthesis, characterization and biological activity. Texas Journal of Multidisciplinary Studies, 12, 14–20.
  • Khajeh Mehrizi, M., Mortazavi, S.M., Abedi, D. (2009). The antimicrobial characteristic study of acrylic fiber treated with metal salts and direct dyes. Fibers and Polymers, 10(5), 601-605. https://doi.org/10.1007/s12221-010-0601-z
  • Koçak, G. (2011). Bacillus Subtilis ile Reaktif Black 5 Boyarmaddesinin Renk Giderim Kinetiğinin Araştırılması, Yüksek Lisans Tezi, Çukurova Üniversitesi, Türkiye.
  • Kofie, W., Dzidzoramengor, C., Adosraku, K. R. (2014). Synthesis and evaluation of antimicrobial properties of azo dyes. International Journal of Pharmacy and Pharmaceutical Sciences, 7(4), 398-401.
  • Landage, S.M., Wasif, A.I. (2012). Nanosilver – An effective antimicrobial agent for finishing of textiles. Internatinal Journal of Engineering Sciences and Emerging Technologies, 4 (1), 66-78.
  • Liu, S., Ma, J., Zhao, D. (2007). Synthesis and characterization of cationic monoazo dyes incorporating quaternary ammonium salts. Dyes and Pigments, 75, 255-262. https://doi.org/10.1016/j.dyepig.2006.05.004
  • Ma, M., Sun, Y., Sun, G. (2003). Antimicrobial cationic dyes: part 1: synthesis and characterization. Dyes and Pigments, 58, 27-35. https://doi.org/10.1016/S0143-7208(03)00025-1
  • Merino, E., Ribagorda, M. (2012). Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein Journal of Organic Chemistry, 8, 1071–1090. https://doi.org/10.3762/bjoc.8.119
  • Meštrović, P., Racané, L., Sutlović, A., Tralić-Kulenović, V. (2012). Synthesis and dyeing properties of new azo dyes. 12th World Textile Conference AUTEX, 13–15 June 2012, Zadar, Croatia.
  • Mezgebe, K. and Mulugeta, E. (2022). Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review. RSC Advances, 12, 25932–25946. https://doi.org/10.1039/D2RA04934A
  • Mishra, D.P., Sahu, P.K., Acharya, B., Mishra, S.P., Bhati, S. (2024). A review of the synthesis and application of azo dyes and metal complexes for emerging antimicrobial therapies. Results in Chemistry, 10, 101712. https://doi.org/10.1016/j.rechem.2024.101712
  • Mkpenie, V., Ebong, G., Obot, I.B., Abasiekong, B. (2008). Evaluation of the effect of azo group on the biological activity of 1-(4-Methylphenylazo)-2-naphthol. Journal Of Chemistry, 5, 438946, 4p. https://doi.org/10.1155/2008/438946
  • Moanţă, A., Radu, S. (2009). Spectroscopic analysis and antimicrobial activity of some 4-phenylazo-phenoxyacetic acids. Revue Roumaine de Chimie, 54(2), 151-156.
  • Nagasundaram, N., Padmasree, K., Santhosh, S., Vinoth, N., Sedhu, N., Lalitha, A. (2022). Ultrasound promoted synthesis of new azo fused dihydropyrano [2,3- c ]pyrazole derivatives: in vitro antimicrobial, anticancer, DFT, in silico ADMET and molecular docking studies. Journal of Molecular Structure, 1263, 133091. https://doi.org/10.1016/j.molstruc.2022.133091
  • Nawwar, G.A.M., Zaher, K.S.A., Shaban, E., El-Ebiary, N.M.A. (2020). Utilizing semi-natural antibacterial cellulose to prepare safe azo disperse dyes and their application in textile printing. Fibers and Polymers, 21(6), 1293-1299. https://doi.org/10.1007/s12221-020-9083-9
  • Özgüney, A.T., Özkaya, K., Özerdem, A. (2007). Reaktif boyalı örgü kumaşların parça baskıdaki ısıl işlem sonrasında renk değiştirme eğilimlerinin incelenmesi. Tekstil ve Konfeksiyon, 3, 192-199.
  • Özdemir Saral, P., Özgüney, A.T., Kaya Kantar, G., Şaşmaz, S., Seventekin, N. (2016). An investigation of fastness and antibacterial properties of cotton fabric coloured with water-soluble zinc phthalocyanine containing azo groups. Tekstil ve Konfeksiyon, 26(1), 92-99.
  • Özdemir Saral, P., Kaya Kantar, G., Özgüney, A.T., Şaşmaz, S. (2023). A new water-soluble zinc azaphthalocyanine containing azo groups: synthesis, characterization, fastness and antibacterial properties on cotton fabric. Tekstil ve Konfeksiyon, 33(2), 169-175. https://doi.org/10.32710/tekstilvekonfeksiyon.1166800
  • Özdemir Saral, P., Kaya Kantar, G., Özgüney, A.T., Şaşmaz, S. (2024). An investigation of fastness and potential antibacterial features on cotton fabric colored with novel azo compounds. AATCC Journal of Research, 11(4), 289-299. https://doi.org/10.1177/24723444241246306
  • Palamutçu, S., Keskin, R., Devrent, N., Sengül, M., Hasçelik, B. (2009). Fonksiyonel tekstiller II: Antimikrobiyal tekstiller. Tekstil Teknolojileri Elektronik Dergisi, 3(3), 95-108.
  • Rabbani, M.A.D., Khalili, B., Saeidian, H. (2020). Novel edaravone-based azo dyes: efficient synthesis, characterization, antibacterial activity, DFT calculations and comprehensive investigation of the solvent effect on the absorption spectra. RSC Advances, 10(59), 35729-35739. https://doi.org/10.1039/D0RA06934E
  • Rabbi, M.A., Mahasin, A Md., Roy, P.K., Rahman, S. Md., Akhter, A. (2018). Preparation of azo dye from Acacia catechu and its application on silk fabrics. International Journal of Advanced Chemical Science and Applications, 6 (1), 1-4.
  • Rajerndran, S., and Anand, C.S. (2002). Development in medical textiles. Textile Progress, 32(4), 1-42. https://doi.org/10.1080/00405160208688956
  • Ragab, S.S., Sweed, A.M.K., Hamza, Z.K., Shaban, E., El-Sayed, A.A. (2022). Design, synthesis, and antibacterial activity of spiropyrimidinone derivatives incorporated azo sulfonamide chromophore for polyester printing application. Fibers and Polymers, 23(8), 2114-2122. https://doi.org/10.1007/s12221-022-4032-4
  • Ramalho, P.A. (2005). Degradation of Dyes with Microorganisms: Studies with Ascomycete Yeasts, Doctoral Thesis, University of Minho, Portugal.
  • Rigby, A.J., Anand, S.C., Horrocks, A.R. (1997). Textile materials for medical and healthcare applications. Journal of Textile Institute, 88(3), 83-93. https://doi.org/10.1080/00405009708658589
  • Saravanabhavan, S., Govindasamy, M., Natesan, S., Gopal, S. (2020). Beneficial Microbes for Sustainable Agriculture and Environmental Management, Apple Academic Press, USA.
  • Sarkar, S., Banerjee, A., Halder, U. Biswas, R., Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2, 121–131. https://doi.org/10.1007/s41101-017-0031-5
  • Sert, S. (2023). Azobenzen ile Fonksiyonelleştirilmiş Polikarbazol Bazlı İletken Polimer Filmlerin Sentezi ve Solar Termal Depolama Uygulamaları, Doktora Tezi, Pamukkale Üniversitesi, Türkiye.
  • Seventekin, N. (1988). Boyarmadde Kimyasına Giriş, Ege Üniversitesi Mühendislik Fakültesi Tekstil Mühendisliği Yayını, Türkiye.
  • Simoncic, B. and Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles – A review. Textile Research Journal, 80(16), 1721 – 1737. https://doi.org/10.1177/0040517510363193
  • Singh, R., Jain, A., Panwar, S., Gupta, D., Khare, S.K. (2005). Antimicrobial activity of some natural dyes. Dyes and Pigments, 66(2), 99-102. https://doi.org/10.1016/j.dyepig.2004.09.005
  • Süpüren, G., Çay, A., Kanat, Z.E., Tarakçıoğlu, I. (2006). Antimikrobiyal lifler. Tekstil ve Konfeksiyon, 16(2), 80-89.
  • Taşlıalan, O. (2008). Quaterner Amonyum Tuzu İçeren Azo Boyarmaddelerinin Sentezi, Karakterizasyonu, Tekstil Elyafına Uygulanması ve Antimikrobiyal Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi, Türkiye.
  • Tutak, M., Gün, F. (2011). Antimicrobial effect of C.I. Basic Red 18:1 and C.I. Basic Yellow 51 on some pathogenic bacteria. Fibers and Polymers, 12(4), 457-460. https://doi.org/10.1007/s12221-011-0457-x
  • Węglarz-Tomczak, E., Górecki, Ł. (2012). Azo dyes – Biological activity and synthetic strategy. Chemik Science-Technique-Market, 66 (12), 1298-1307.
  • Yıldız, E., Boztepe, H. (2002). Synthesis of novel acidic mono azo dyes and an investigation of their use in the textile industry. Turkish Journal of Chemistry, 26(6), 897-904.
  • Yi, E, Yoo, E.S. (2010). A novel bioactive fabric dyed with unripe Citrus grandis osbeck extract part I: dyeing properties and antimicrobial activity on cotton knit fabrics. Textile Research Journal, 80(20), 2117-2123. https://doi.org/10.1177/0040517510373633
  • Yurdakul, A., Atav, R. (2006). Boya Baskı Esasları, Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma-Uygulama Merkezi Yayını, Türkiye.
  • Zaher, K.S.A., Shaban, E., Nawwar, G.A.M. (2023). Antibacterial azo dyes containing sulfa drug moieties and their colour assessment on printing polyester fabric. Chemistry Select, 8(30), 1-8. https://doi.org/10.1002/slct.202300804

Antibacterial Azo Compounds Used in Coloration of Textile Material

Year 2025, Volume: 6 Issue: 1, 452 - 475, 30.06.2025
https://doi.org/10.53501/rteufemud.1588729

Abstract

Azo compounds that contain at least one azo group (-N=N-) in their chemical structure, are colorful organic compounds. Azo compounds have long been utilized as vibrant colorants in different applications, such as textiles, paints, coatings, printing inks, and plastics. Meanwhile, new studies are now being carried out with growing interest in diverse fields- including medicine, analytical chemistry, coordination and complex chemistry, dye-making chemistry, and the development of organic reagents. A wide variety of azo compounds can be synthesized by diversifying the starting materials used in the diazotization and coupling steps and by combining them with different substituents and metal ions. A broad range of antibacterial textile dyes can be produced rapidly by combining various components, and antibacterial technical-textile products can be obtained in a single step through dyeing alone. Reducing the number of finishing stages lowers input costs and enhances sustainability in textile manufacturing, delivering savings in water, primary and auxiliary chemicals, energy, and time. An overview of the chemical structures, synthesis steps, properties, and applications of azo compounds has been provided in this study. Particular emphasis is given to the chromophoric features that underpin their widespread use in textiles, the structural factors governing color, and the mechanisms responsible for antibacterial activity. In addition, selected studies on antibacterial azo dyes - capable of endowing textile materials with antibacterial functionality through dyeing alone, without additional finishing processes have been reviewed.

References

  • Abd El Salam, H.A., Abdel-Aziz, M.S., El-Sawy, E.R., Shaban, E. (2023). Synthesis and antibacterial activity of azo‑sulfa‑based disperse dyes and their application in polyester printing. Fibers and Polymers, 24, 2751-2760. https://doi.org/10.1007/s12221-023-00255-z
  • Abdüloğlu, Y. (2018). Diazo Grup İçeren İletken Polimerlerin Elektrokimyasal ve Elektrokromik Özelliklerinin İncelenmesi, Yüksek lisans tezi, Pamukkale Üniversitesi, Türkiye.
  • Addnan, L. (2016). Synthesis and characterization of new azo dye (1-(4-sulfonyl phenyl azo)-2-(7-chloro-4-[{4-(diethyl amino)-1-methyl butyl} amino]quindine from chloroquine diphosphate and study antibacterial activity. Basrah Journal of Veterinary Research,15(1), 271-277.
  • Akaydın, M. ve Kalkancı, M. (2014). Hastane giysisi olarak kullanılan kumaşların antibakteriyel özellikleri üzerine bir araştırma. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 9(1), 20-34.
  • Aljamali, N.M. and Hassen, H.S. (2021). Review on azo-compounds and their applications. Journal of Catalyst and Catalysis, 8(2), 8-16.
  • Al-Joboury, W.M.R., Al-Badrany, K.A., Asli, N.J. (2021). Synthesis of new azo dye compounds derived from 2-aminobenzothiazole and study their biological activity. Materialstoday: Proceedings, 47 (17), 5977–5982. https://doi.org/10.1016/j.matpr.2021.04.538
  • Başer, İ., İnanıcı, Y. (1989). Boyarmadde Kimyası. Marmara Üniversitesi Teknik Eğitim Fakültesi Döner Sermaye İşletmesi Matbaa Birimi, ISBN 975-400-024-7, İstanbul.
  • Berrie, B.H., Lomax, S.Q. (1997). Azo pigments: their history, synthesis, properties, and use in artists’ materials, Studies in the History of Art, 57, 8–53. (Monograph series II, conservation research 1996/1997, Washington, DC: National Gallery of Art).
  • Bujak, K., Orlikowska, H., Małecki, J.G., Schab-Balcerzak, E., Bartkiewicz, S., Bogucki, J., Sobolewska, A., Konieczkowska, J. (2019). Fast dark cis-trans isomerization of azopyridine derivatives in comparison to their azobenzene analogues: Experimental and computational study. Dyes and Pigments, 160, 654-662. https://doi.org/10.1016/j.dyepig.2018.09.006
  • Christie, R.M. (2001). Colour Chemistry, The Royal Society of Chemistry, ISBN 0-85404-573-2, UK.
  • Cojocariu, C., Rochon, P. (2004). Light-induced motions in azobenzene containing polymers. Pure and Applied Chemistry, 76 (7–8), 1479–1497.
  • Di Martino, M., Sessa, L., Di Matteo, M., Panunzi, B., Piotto, S., Concilio, S. (2022). Azobenzene as antimicrobial molecules. Molecules, 27(17), 5643. https://doi.org/10.3390/molecules27175643v
  • Elkhabiry, S., Sharaf, A., Sadek M.E., Elasasy M E.A., El-Sayed A.A., Mousa A. (2024). Azo disperse dyes based on citrazinic acid: synthesis, antibacterial activity and printing application in silk and polyamide-6 fabrics. Pigment & Resin Technology, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/PRT-06-2024-0061
  • Gaffer, H.E., Gouda, M., Abdel-Latif, E. (2012). Antibacterial activity of cotton fabrics treated with sulfadimidine azo dye/chitosan colloid. Journal of Industrial Textiles, 42(4), 392-399. https://doi.org/10.1177/1528083712441959
  • Hamid, H.M., Zeinab, N.M., Istabraq, M.A. (2011). Synthesis and studies the biological activity of new azo compounds. Journal of Kerbala University, 9(3), 75 -83.
  • Hunger, K. (2003). Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH, ISBN: 3-527-30426-6, Germany.
  • İçoğlu, H.İ. (2006). Pamuklu Dokunmuş Kumaşların Reaktif Boyarmaddelerle Boyanması ve Uygulama Yöntemlerinin İncelenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Türkiye.
  • Imtiazuddin, S.M., Tiki, A. (2020). Textile azo dyes; significance, ecological, health, and safety issues. Pakistan Journal of Chemistry, 10(1–4), 35–38. https://doi.org/10.15228/2020.v10.i01-4.p05
  • Jarrahpour, A.A., Motamedifar, M., Pakshir, K., Hadi, N., Zarei, M. (2004). Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules, 9(10), 815-824. https://doi.org/10.3390/91000815
  • Josset, S., Keller, N., Lett, M.C., Ledoux, M.J., Keller, V. (2008). Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews, 37, 744–755. https://doi.org/10.1039/B711748P
  • Kareem, A.F, Thejeel, K.A., Ismael, H.I. (2022). Review, analyses of azo dyes’ synthesis, characterization and biological activity. Texas Journal of Multidisciplinary Studies, 12, 14–20.
  • Khajeh Mehrizi, M., Mortazavi, S.M., Abedi, D. (2009). The antimicrobial characteristic study of acrylic fiber treated with metal salts and direct dyes. Fibers and Polymers, 10(5), 601-605. https://doi.org/10.1007/s12221-010-0601-z
  • Koçak, G. (2011). Bacillus Subtilis ile Reaktif Black 5 Boyarmaddesinin Renk Giderim Kinetiğinin Araştırılması, Yüksek Lisans Tezi, Çukurova Üniversitesi, Türkiye.
  • Kofie, W., Dzidzoramengor, C., Adosraku, K. R. (2014). Synthesis and evaluation of antimicrobial properties of azo dyes. International Journal of Pharmacy and Pharmaceutical Sciences, 7(4), 398-401.
  • Landage, S.M., Wasif, A.I. (2012). Nanosilver – An effective antimicrobial agent for finishing of textiles. Internatinal Journal of Engineering Sciences and Emerging Technologies, 4 (1), 66-78.
  • Liu, S., Ma, J., Zhao, D. (2007). Synthesis and characterization of cationic monoazo dyes incorporating quaternary ammonium salts. Dyes and Pigments, 75, 255-262. https://doi.org/10.1016/j.dyepig.2006.05.004
  • Ma, M., Sun, Y., Sun, G. (2003). Antimicrobial cationic dyes: part 1: synthesis and characterization. Dyes and Pigments, 58, 27-35. https://doi.org/10.1016/S0143-7208(03)00025-1
  • Merino, E., Ribagorda, M. (2012). Control over molecular motion using the cis–trans photoisomerization of the azo group. Beilstein Journal of Organic Chemistry, 8, 1071–1090. https://doi.org/10.3762/bjoc.8.119
  • Meštrović, P., Racané, L., Sutlović, A., Tralić-Kulenović, V. (2012). Synthesis and dyeing properties of new azo dyes. 12th World Textile Conference AUTEX, 13–15 June 2012, Zadar, Croatia.
  • Mezgebe, K. and Mulugeta, E. (2022). Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review. RSC Advances, 12, 25932–25946. https://doi.org/10.1039/D2RA04934A
  • Mishra, D.P., Sahu, P.K., Acharya, B., Mishra, S.P., Bhati, S. (2024). A review of the synthesis and application of azo dyes and metal complexes for emerging antimicrobial therapies. Results in Chemistry, 10, 101712. https://doi.org/10.1016/j.rechem.2024.101712
  • Mkpenie, V., Ebong, G., Obot, I.B., Abasiekong, B. (2008). Evaluation of the effect of azo group on the biological activity of 1-(4-Methylphenylazo)-2-naphthol. Journal Of Chemistry, 5, 438946, 4p. https://doi.org/10.1155/2008/438946
  • Moanţă, A., Radu, S. (2009). Spectroscopic analysis and antimicrobial activity of some 4-phenylazo-phenoxyacetic acids. Revue Roumaine de Chimie, 54(2), 151-156.
  • Nagasundaram, N., Padmasree, K., Santhosh, S., Vinoth, N., Sedhu, N., Lalitha, A. (2022). Ultrasound promoted synthesis of new azo fused dihydropyrano [2,3- c ]pyrazole derivatives: in vitro antimicrobial, anticancer, DFT, in silico ADMET and molecular docking studies. Journal of Molecular Structure, 1263, 133091. https://doi.org/10.1016/j.molstruc.2022.133091
  • Nawwar, G.A.M., Zaher, K.S.A., Shaban, E., El-Ebiary, N.M.A. (2020). Utilizing semi-natural antibacterial cellulose to prepare safe azo disperse dyes and their application in textile printing. Fibers and Polymers, 21(6), 1293-1299. https://doi.org/10.1007/s12221-020-9083-9
  • Özgüney, A.T., Özkaya, K., Özerdem, A. (2007). Reaktif boyalı örgü kumaşların parça baskıdaki ısıl işlem sonrasında renk değiştirme eğilimlerinin incelenmesi. Tekstil ve Konfeksiyon, 3, 192-199.
  • Özdemir Saral, P., Özgüney, A.T., Kaya Kantar, G., Şaşmaz, S., Seventekin, N. (2016). An investigation of fastness and antibacterial properties of cotton fabric coloured with water-soluble zinc phthalocyanine containing azo groups. Tekstil ve Konfeksiyon, 26(1), 92-99.
  • Özdemir Saral, P., Kaya Kantar, G., Özgüney, A.T., Şaşmaz, S. (2023). A new water-soluble zinc azaphthalocyanine containing azo groups: synthesis, characterization, fastness and antibacterial properties on cotton fabric. Tekstil ve Konfeksiyon, 33(2), 169-175. https://doi.org/10.32710/tekstilvekonfeksiyon.1166800
  • Özdemir Saral, P., Kaya Kantar, G., Özgüney, A.T., Şaşmaz, S. (2024). An investigation of fastness and potential antibacterial features on cotton fabric colored with novel azo compounds. AATCC Journal of Research, 11(4), 289-299. https://doi.org/10.1177/24723444241246306
  • Palamutçu, S., Keskin, R., Devrent, N., Sengül, M., Hasçelik, B. (2009). Fonksiyonel tekstiller II: Antimikrobiyal tekstiller. Tekstil Teknolojileri Elektronik Dergisi, 3(3), 95-108.
  • Rabbani, M.A.D., Khalili, B., Saeidian, H. (2020). Novel edaravone-based azo dyes: efficient synthesis, characterization, antibacterial activity, DFT calculations and comprehensive investigation of the solvent effect on the absorption spectra. RSC Advances, 10(59), 35729-35739. https://doi.org/10.1039/D0RA06934E
  • Rabbi, M.A., Mahasin, A Md., Roy, P.K., Rahman, S. Md., Akhter, A. (2018). Preparation of azo dye from Acacia catechu and its application on silk fabrics. International Journal of Advanced Chemical Science and Applications, 6 (1), 1-4.
  • Rajerndran, S., and Anand, C.S. (2002). Development in medical textiles. Textile Progress, 32(4), 1-42. https://doi.org/10.1080/00405160208688956
  • Ragab, S.S., Sweed, A.M.K., Hamza, Z.K., Shaban, E., El-Sayed, A.A. (2022). Design, synthesis, and antibacterial activity of spiropyrimidinone derivatives incorporated azo sulfonamide chromophore for polyester printing application. Fibers and Polymers, 23(8), 2114-2122. https://doi.org/10.1007/s12221-022-4032-4
  • Ramalho, P.A. (2005). Degradation of Dyes with Microorganisms: Studies with Ascomycete Yeasts, Doctoral Thesis, University of Minho, Portugal.
  • Rigby, A.J., Anand, S.C., Horrocks, A.R. (1997). Textile materials for medical and healthcare applications. Journal of Textile Institute, 88(3), 83-93. https://doi.org/10.1080/00405009708658589
  • Saravanabhavan, S., Govindasamy, M., Natesan, S., Gopal, S. (2020). Beneficial Microbes for Sustainable Agriculture and Environmental Management, Apple Academic Press, USA.
  • Sarkar, S., Banerjee, A., Halder, U. Biswas, R., Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2, 121–131. https://doi.org/10.1007/s41101-017-0031-5
  • Sert, S. (2023). Azobenzen ile Fonksiyonelleştirilmiş Polikarbazol Bazlı İletken Polimer Filmlerin Sentezi ve Solar Termal Depolama Uygulamaları, Doktora Tezi, Pamukkale Üniversitesi, Türkiye.
  • Seventekin, N. (1988). Boyarmadde Kimyasına Giriş, Ege Üniversitesi Mühendislik Fakültesi Tekstil Mühendisliği Yayını, Türkiye.
  • Simoncic, B. and Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles – A review. Textile Research Journal, 80(16), 1721 – 1737. https://doi.org/10.1177/0040517510363193
  • Singh, R., Jain, A., Panwar, S., Gupta, D., Khare, S.K. (2005). Antimicrobial activity of some natural dyes. Dyes and Pigments, 66(2), 99-102. https://doi.org/10.1016/j.dyepig.2004.09.005
  • Süpüren, G., Çay, A., Kanat, Z.E., Tarakçıoğlu, I. (2006). Antimikrobiyal lifler. Tekstil ve Konfeksiyon, 16(2), 80-89.
  • Taşlıalan, O. (2008). Quaterner Amonyum Tuzu İçeren Azo Boyarmaddelerinin Sentezi, Karakterizasyonu, Tekstil Elyafına Uygulanması ve Antimikrobiyal Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi, Türkiye.
  • Tutak, M., Gün, F. (2011). Antimicrobial effect of C.I. Basic Red 18:1 and C.I. Basic Yellow 51 on some pathogenic bacteria. Fibers and Polymers, 12(4), 457-460. https://doi.org/10.1007/s12221-011-0457-x
  • Węglarz-Tomczak, E., Górecki, Ł. (2012). Azo dyes – Biological activity and synthetic strategy. Chemik Science-Technique-Market, 66 (12), 1298-1307.
  • Yıldız, E., Boztepe, H. (2002). Synthesis of novel acidic mono azo dyes and an investigation of their use in the textile industry. Turkish Journal of Chemistry, 26(6), 897-904.
  • Yi, E, Yoo, E.S. (2010). A novel bioactive fabric dyed with unripe Citrus grandis osbeck extract part I: dyeing properties and antimicrobial activity on cotton knit fabrics. Textile Research Journal, 80(20), 2117-2123. https://doi.org/10.1177/0040517510373633
  • Yurdakul, A., Atav, R. (2006). Boya Baskı Esasları, Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma-Uygulama Merkezi Yayını, Türkiye.
  • Zaher, K.S.A., Shaban, E., Nawwar, G.A.M. (2023). Antibacterial azo dyes containing sulfa drug moieties and their colour assessment on printing polyester fabric. Chemistry Select, 8(30), 1-8. https://doi.org/10.1002/slct.202300804
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Textile Finishing
Journal Section Review
Authors

Pinar Saral Özdemir 0000-0002-7503-4075

Publication Date June 30, 2025
Submission Date November 21, 2024
Acceptance Date June 2, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Saral Özdemir, P. (2025). Tekstil Materyallerinin Renklendirilmesinde Kullanılan Antibakteriyel Azo Bileşikleri. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 452-475. https://doi.org/10.53501/rteufemud.1588729

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025