Research Article
BibTex RIS Cite

Farklı Boyutlardaki Balık Yemlerinde Amonyağın Giderilmesinde Leonardit ile Zeolit (Klinoptilolit) Kombinasyonunun Uygulanması

Year 2025, Volume: 6 Issue: 1, 317 - 329, 30.06.2025
https://doi.org/10.53501/rteufemud.1661057

Abstract

Bu çalışmada, su ürünleri yetiştiriciliği sistemlerinde, tüketilmeyen yemden amonyum salınımına yem boyutunun etkisi incelenmiştir. 11 günlük çalışmada, üç tekerrürlü dokuz deneme grubu oluşturulmuştur. Aynı besin içeriğine sahip üç farklı mikropartikül boyutunda yem (Y1: 100-200 µm, Y2: 200-300 µm ve Y3: 300-400 µm) kullanılmıştır. İlk üç grup (KY1, KY2, KY3) kontrol grubu olarak düzenlenmiş ve bu gruplara deneme süresince hiçbir adsorban karışımı eklenmemiştir. Diğer üç grup (ABY1, ABY2, ABY3) deneyin başında adsorban karışımıyla birlikte kullanılan üç farklı yem boyutunun eklendiği gruplar olmuştur. Son üç grup (AY1, AY2, AY3) ise deneyin 7. gününden sonra adsorban karışımı ve üç farklı yem boyutunun eklendiği gruplardır. 11 günlük deneme sonunda, en yüksek ve en düşük ortalama amonyum seviyeleri sırasıyla KY1 (25,85 ± 2,93 mg L-1) ve ABY1 (4,47 ± 0,71 mg L-1) gruplarında tespit edilmiştir. Çalışma, balık yemi boyutunun, yemden salınan azotlu bileşiklerle ilişkili olduğunu ortaya koymuştur. Sonuç olarak, yem boyutunun ağız açıklığına uygun olması kaydıyla, daha büyük partiküllerin yavru balık yetiştiriciliğinde tercih edilmesi önerilebilir. Ayrıca, adsorban karışımlarının, özellikle deneme başında (besin yoğunluklarının düşük olduğu dönem) kullanıldığında, amonyum değerlerini düşürmede oldukça etkili olduğu tespit edilmiştir.

References

  • Alshameri, A., Yan, C., Al-Ani, Y., Dawood, A.S., Ibrahim, A., Zhou, C., Wang, H. (2014). An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45, 554–564. https://doi.org/10.1016/j.jtice.2013.05.008
  • Basyuni, M.A., Hegazi, M.A.M., Shahenda, R.A. (2023). The effect of acidic pH on ammonia removal from aquaculture and its impact on survival and growth performance of the Nile tilapia (Oreochromis niloticus) fingerlings. Egyptian Journal of Aquatic Biology and Fisheries, 27(3), 881–896.
  • Boyd, C.E. (2013). Ammonia toxicity degrades animal health, growth. Global Aquaculture Alliance, 40-43.
  • Cargnin, J.M.R. and João, J.J. (2021). Removal of nutrients from aquaculture residual water: A review. Revista Ambiente Água, 16(6), 1-15. https://doi.org/10.4136/ambi-agua.2747
  • Cretu, M., Dediu, L., Cristea, V., Zugravu, A., Rahoveanu, M.M.T., Bandi, A-C., Rahoveanu, A.T., Mocuta, D.N. (2016). Environmental Impact of Aquaculture: A Literature Review. Innovation Management and Education Excellence Vision 2020: Regional Development to Global Economic Growth Conference: 27th IBIMA Conference At: Milan, Italy 4-5 May 2016, ISBN: 978-0-9860419-6-9
  • Danabas, D., Altun, T. (2011). Effects of zeolite (clinoptilolite) on some water and growth parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Digest Journal of Nanomaterials and Biostructures, 6(3), 1111-1116.
  • Danabas, D., Dorucu, M. (2021). Potential Role of Zeolite on Improvement of Aquaculture Sector. Menba Journal of Fisheries Faculty, 7(2), 105-115
  • Datta, S. (2012). Aquarium water quality management for freshwater ornamental fishes. In: Enterprenurship Development in Ornamental Fish Breeding and Culture (Mahapatra, B.K Subhendu Datta, G.H. Pailan, S. Munilkumar and S.K. Mishra, Published by Director), Central Institute of Fisheries Education, Mumbai, India.
  • Demir, O., Aybal, N.O. (2004). Gökkuşağı alabalığı (Oncorhynchus mykiss, Walbaum 1792) yemlerinde klinoptilolitin farklı oranlarda yem katkı maddesi olarak kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 2(12), 15-19.
  • Demirel, R., Baran, M.S., Şentürk Demirel, D., Ketani, A., Yokuş, B. (2018). Effects of clinoptilolite on the digestibility of nutrients and relative organ weights in rat diets. Journal of Agricultural Sciences, 24(3), 297-302. https://doi.org/10.15832/ankutbd.451270.
  • Erdogan, B.C., Ulku, S. (2013). Removal of bacteria by clinoptilolite rich mineral and its surfactant modified forms. J Porous Mater, 20, 1143–1151 https://doi.org/1007/s10934-013-9697-z.
  • Farrag, M.M.S., Abdelmgeeda, A.M., Moustafaa, M.A., Osman, A.G.M. (2024). Improving the water quality of fish aquaculture effluents after treatment by microalgae. Desalination and Water Treatment, 317, 100155. https://doi.org/10.1016/j.dwt.2024.100155.
  • Ghasemi, Z., Sourinejad, I., Kazemian, H., Rohani, S. (2018). Application of zeolites in aquaculture industry: A review. Reviews in Aquaculture, 10(1), 75-95. https://doi.org/10.1111/raq.12148
  • Godoy‑Olmos, S., Jauralde, I., Monge‑Ortiz, R., Milián‑Sorribes, M.C., Jover‑Cerdá, M., Tomás‑Vidal, A., Martínez‑Llorens, S. (2022). Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquaculture International, 30, 581–606. https://doi.org/10.1007/s10499-021-00821-3.
  • Gogoi, M., Bhattacharya, P., Sen, S.K., Mukherjee, I., Bhushan, S., Chaudhuri, S.R. (2021). Aquaculture effluent treatment with ammonia remover Bacillus albus (ASSF01). Journal of Environmental Chemical Engineering, 9 (4), 105697. https://doi.org/10.1016/j.jece.2021.105697.
  • Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A.A. (2011). Comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazard Materials, 186 (1), 891–901. https://doi.org/10.1016/j.jhazmat.2010.11.091.
  • Jorgensen, T.C., Weatherley, L.R. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37 (8), 1723–1728. https://doi.org/10.1016/S0043-1354(02)00571-7.
  • Kannan, A.D., Parameswaran, P. (2021) Ammonia adsorption and recovery from swine wastewater permeate using naturally occurring clinoptilolite. Journal of Water Process Engineering, 43, 102234. https://doi.org/10.1016/j.jwpe.2021.102234.
  • Karadag, D., Koc, Y., Turan, M., Armagan, B. (2006). Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, 36, 604–9. https://doi.org/10.1016/j.jhazmat.2005.12.042.
  • Kibria, G., Nugegoda, D., Fairclough, R., Lam, P. (1997). The nutrient content and the release of nutrients from fish food and faeces. Hydrobiologia, 357, 165-171.
  • Kong, W., Huang, S., Yang, Z., Shi, F., Feng, Y., Khatoon, Z. (2020). Fish feed quality is a key factor in impacting aquaculture water environment: Evidence from incubator experiments. Scientific Reports, 10, 187. https://doi.org/10.1038/s41598-019-57063-w.
  • Korkuna, O., Leboda, R., Skubiszewska-Zieba, J., Vrublevs’ka, T., Gun’ko, V.M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243-254.
  • Li, S., Zhao, Y.H., Wang, W.M. (2009). Influence of different modality diets on nitrogen and phosphorus and leaching ratio of diets in water of aquiculture. Journal of Huazhong Agricultural University, 28, 80–83.
  • Liu., C. (2000). A Atudy on the Utilization of Zeolite for Ammonia Removal from Composting Leachate. Master thesis, The University of British Columbia, 110 pages.
  • Liu, P., Zhang, A., Liu, Y., Liu, Z., Liu, X., Yang, L., Yang, Z. (2022). Adsorption mechanism of high-concentration ammonium by Chinese natural zeolite with experimental optimization and theoretical computation. Water, 14, 2413. https://doi.org/10.3390/w14152413.
  • Magalhães, L.F., Silva, G.R., Peres, A.E.C. (2022). Zeolite application in wastewater treatment, 2022. Adsorption Science and Technology https://doi.org/10.1155/2022/4544104
  • Maharani, S., Nailufhar, L., Sugiarti, Y. (2020). Adsorption effectivity of combined adsorbent zeolite activated charcoal, and sand in liquid waste processing of agroindustrial laboratory. International Conference on Food and Bio-Industry 2019IOP Conf. Series: Earth and Environmental Science, 443, 012044, IOP Publishing. https://doi.org/10.1088/1755-1315/443/1/012044.
  • Moreno, J.L., Irene, T., Felipe, B. (2017). Compost, leonardite, and zeolite impacts on soil microbial community under barley crops. Journal of Soil Science and Plant Nutrition, 17(1), 214-230. http://dx.doi.org/10.4067/S0718-95162017005000017.
  • Mustapha, M., Akinshola, F. (2016). Ammonia concentrations in different aquaculture holding tanks. West African Journal of Applied Ecology, 24(1), 1–8.
  • Ogbonna, J.F., Chinomso, A.A. (2010). Determination of the concentration of ammonia that could have lethal effect on fishpond. ARPN Journal of Engineering and Applied Sciences, 5 (2), 5p.
  • Olivella, M.A., del Rı`o, J.C, Palacios, J., Vairavamurthy, A.M., de las Heras, F.X.C. (2002). Characterization of humic acid from leonardite coal: an integrated study of PY-GC-MS, XPS and XANES techniques. Journal of Analytical and Applied Pyrolysis, 63(1), 59-68. https://doi.org/10.1016/S0165-2370(01)00141-3
  • Öz, M. (2024a). Strategy to remove ammonium compounds released from fish feed in aquaculture using natural filtration materials. Environmental Monitoring and Assessment, 196 (4), 362. https://doi.org/10.1007/s10661-024-12351-5.
  • Öz, M. (2024b). Balık yemi boyutunun azotlu bileşiklerin tatlı suya salınımı üzerine etkisi. 13. Uluslararası Araştırmalar Kongresi (ICAR), Fen Bilimleri Tam Metin Kitabı Asos Yayınevi ISBN: 978-625-6671-22-5 373 p (in Turkish).
  • Öz, M. (2024c). Determining the usage properties of some natural substrate materials in submerged macrophyte Vallisneria sp. culture. Journal of Anatolian Environmental and Animal Sciences (JAES), 9 (1), 137-144. https://doi.org/10.35229/jaes.1448066
  • Öz, M., Şahin, D., Karslı, Z., Aral, O., Bahtiyar, M. (2021). Investigation of the use of zeolite (clinoptilolite) as aquarium filtration material for electric blue hap (Sciaenochromis ahli). Marine Science and Technology Bulletin, 10(2), 207-212. https://doi.org/10.33714/masteb.895198
  • Öz, M., Şahin, D., Yılmaz, E, Öz, Ü. (2022). The potential applicability of natural minerals as filter media for modulating water quality in aquatic ecosystems. Applied Ecology and Environmental Research, 20(5), 4145-4155. https://doi.org/10.15666/aeer/2005_41454155
  • Öz, Ü (2024). The assessment of raw diatomite mineral as filter equipment for aquaculture practices. International Journal of Environmental Science and Technology, 21, 9935-9942. https://doi.org/10.1007/s13762-024-05623-7
  • Pabiś-Mazgaj, E., Gawenda, T., Pichniarczyk, P., Stempkowska, A. (2021). Mineral composition and structural characterization of the clinoptilolite powders obtained from zeolite-rich tuffs. Minerals, 11(10), 1030. https://doi.org/10.3390/min11101030
  • Prashanthakumara, S.M., Venkateshwarlu, M. (2016). Influence of selected substrates on the growth of common carp (Cyprinus carpio). Bulletin of Pure and Applied Sciences (Zoology), 35(1), 1-6. https://doi.org/10.5958/2320-3188.2016.00003.6
  • Purwono, Rezagama, A., Hibbaan, M., Budihardjo, M.A. (2017). Ammonia-nitrogen (NH3-N) and ammonium-nitrogen (NH4+-N) equilibrium on the process of removing nitrogen by using tubular plastic media. Journal of Materials and Environmental Sciences, 8(S), 4915-4922.
  • Qian, S., Ding, W., Li, Y., Liu, G., Sun, J., Ding, Q. (2016). Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of humic acids on growth and nutrient uptake of snap bean. Chemical Speciatıon and Bioavailability, 27(4), 156-161. http://dx.doi.org/10.1080/09542299.2015.1118361
  • Qur’ania, A., Verananda, D.I. (2017). Tsukamoto fuzzy implementation to identify the pond water quality of koi. IOP Conf. Series: Materials Science and Engineering, 166, 012018. https://doi.org/10.1088/1757-899X/166/1/012018.
  • Ragab, A.M., El-Gindy, A.M., Kaddour, O., Ali, A.A. (2022). Dissolved oxygen and ammonia mass balance in a recirculating aquaculture system for raising the Nile tilapia. Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 217 – 237.
  • Ratanaprommanee, C., Chinachanta, K., Chaiwan, F., Shutsrirung, A. (2016). Chemical characterization of leonardite and its potential use as soil conditioner and plant growth enhancement. Asia-Pacific Journal of Science and Technology, 22(04). Article ID: APST-22-04-01.
  • Runtti, H., Sundhararasu, E., Pesonen, J., Tuomikoski, S., Hu, T., Lassi, U., Kangas, T. (2023). Removal of ammonium ions from aqueous solutions using alkali-activated analcime as sorbent. ChemEngineering, 7(1), 5. https://doi.org/10.3390/chemengineering7010005.
  • Sava, S.C., Pana, O.C., Sava, B.A., Defta, N., Marin, P.M., Nicolae, C.G. (2020). The use of clinoptılolite zeolite as a feed additive ın juvenile carp feed (Cyprinus carpio). Scientific Papers. Series D. Animal Science, LXIII (1), 495-501.
  • Şahin, D. (2022). Comparative evaluation of natural water conditioners for their potential use in freshwater aquaculture. Environmental Science and Pollution Research, 29, 47233–47241. https://doi.org/10.1007/s11356-022-19265-0.
  • Şahin, D. (2023). Effect of a natural adsorbent mixture (zeolite and leonardite) on the reduction of ammonia caused by fish feed. Journal of Agricultural Production, 4(1), 56-62. https://doi.org/10.56430/japro.1273000
  • Şahin, D., Öz, M., Öz, Ü. (2023). Effect of natural diatomite sizes on ammonia adsorption in aquarium water. Journal of Anotolian Environment nd Animal Sciences, 8(3), 333-337. https://doi.org/10.35229/jaes.1313222
  • Şahin, D., Sertaşı, E., Öz, M., Öz, Ü., Karslı, Z., Aral, O. (2018). Ammonium removal in aquatic conditions using different levels of calcium bentonite. Gaziosmanpasa Journal of Scientific Research, 7(3), 61-69. ISSN: 2146-8168.
  • Setiadi, E., Taufik, I., Widyastuti, Y.R., Ardi, I., Saputra, A. (2019). Different substrate of trickling filter on growth, survival rate, and water quality of common carp (Cyprinus carpio) cultivation by using an intensive recirculation system. IOP Conference Series: Earth and Environmental Science, 236, 012027. http://doi.org/10.1088/1755-1315/236/1/012027
  • Shalaby, A.M., Mohamed, K.K., Adel, F., Amany, A., Gharieb, E., Abdel, H.A. (2021). The impact of zeolite on ammonia toxicity, growth performance and physiological status of the Nile tilapia (Oreochromius niloticus).  Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 643-663. https://dx.doi.org/10.21608/ejabf.2021.148524
  • Sirakov, I., Velichkova, K., Stoyanova, S., Dinev, D., Staykov, Y. (2015). Application of natural zeolites and macrophytes for water treatmentin recirculation aquaculture systems. Bulgarian Journal of Agricultural Science, 21(1), 147–153.
  • Tantalu, L., Hidayat, N., Suharto, B., Nurika, I. (2024). Review: Ammonia adsorbent development for white-shrimp ponds. BIO Web of Conferences 90, 06002. ICGAB 2023. https://doi.org/10.1051/bioconf/20249006002
  • Tekesoğlu, H., Ergün, S. (2021). Effects of dietary natural zeolite (Clinoptilolite) on growth and some blood parameters of rainbow trout (Onchorynchus mykiss, Walbaum 1792). Acta Aquatica Turcica, 17(1), 119-128. https://doi.org/10.22392/actaquatr.765667
  • Terdputtakun, A., Arqueropanyo, O., Janhom, S., Sooksamiti, P., Naksata, W. (2017). Adsorption characteristics of leonardite for removal of Cd (II) and Zn (II) from aqueous solutions. International Journal of Environmental Science and Development, 8(6), 393-398. https://doi.org/10.18178/ijesd.2017.8.6.984
  • Tokat, S. (2019). Gördes (Manisa) Zeolit Ocaklarının Kimyasal Bileşenlerinin XRF Spektrometrik Yöntem Ile Belirlenmesi. Yüksek Lisans Tezi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Kastamonu, Türkiye
  • Verma, D.K., Satyaveer Maurya, N.K., Kumar, P., Jayaswa, R. (2023). Important water quality parameters in aquaculture: An overview. Agriculture and Environment, 3(3), 24-29.
  • Wu, M., Huang, S., Zang, C., Du, S., Scholz, M. (2012). Release of nutrient from fish food and effects on Microcystis aeruginosa growth. Aquaculture Research, 43, 1460–1470. https://doi.org/10.1111/j.1365-2109.2011.02948.x
  • Yadav, V., Kumar, L., Saini, N., Yadav, M., Singh, N., Murugasen, V., Varathan, E. (2023). Effective removal of ammonia from water using pre‑treated clinoptilolite zeolite‑a detailed study. Water, Air and Soil Pollution, 234 (435). https://doi.org/10.1007/s11270-023-06469-4
  • Yan, Z., Wu, Y., Yu, L., Qiao, H., Hu, S., Wang, Y., Liu, D., Meng, Y. (2024). Controlled synthesis of fly ash-based zeolite X/A for ammonia- nitrogen removal. Research Square Platform, LLC 1-25. https://doi.org/10.21203/rs.3.rs-4113345/v1
  • Yanuhar, U., Musa, M., Evanuarini, H., Wuragil, D.K., Permata, F.S. (2022). Water quality in Koi fish (Cyprinus carpio) concrete ponds with filtration in Nglegok District, Blitar Regency. Universal Journal of Agricultural Research, 10(6), 814-820. https://doi.org/10.13189/ujar.2022.100619
  • Yi, L., Yafenga, Z., Lingyue, L., Aihua, L., Jinhui, L., Xinrui, Z., Zhibin, Z. (2023). Nutrients releasing from fish feed and Potamogeton crispus L. residuals. Journal of Hazardous Materials Advance, 9, 5p. https://doi.org/10.1016/j.hazadv.2022.100229.
  • Zahran, E., Risha, E., Hamed, M., Ibrahim, T., Palić, D. (2020). Dietary mycotoxicosis prevention with modified zeolite (Clinoptilolite) feed additive in Nile tilapia (Oreochromis niloticus). Aquaculture, 515, 734562. https://doi.org/10.1016/j.aquaculture.2019.734562
  • Zeledón-Toruño, Z.C., Lao-Luque, C., C.de las Heras, F.X., Sole-Sardans, M. (2007). Removal of PAHs from water using an immature coal (leonardite). Chemosphere, 67(3), 505-512. https://doi.org/10.1016/j.chemosphere.2006.09.047
  • Zengin, G. (2013). Effective removal of zinc from an aqueous solution using Turkish leonardite–clinoptilolite mixture as a sorbent. Environmental Earth Sciences, 70(7), 3031-3041 https://doi.org/10.1007/s12665-013-2364-5

Application of Zeolite (Clinoptilolite) Combine with Leonardite for the Removal of Ammonia in Different Sizes Microparticulate Fish Feed

Year 2025, Volume: 6 Issue: 1, 317 - 329, 30.06.2025
https://doi.org/10.53501/rteufemud.1661057

Abstract

In this study, the effect of feed size on ammonium release from non-consumed feed in aquaculture systems were investigated. In the 11-day study, nine experimental groups were formed in triplicates. Three different sizes of microparticule feed (F1: 100-200 µm, F2: 200-300 µm and F3: 300-400 µm) with the same nutrient content were used in the experiment. The first three groups (CF1, CF2, CF3) were organized as control groups and no adsorbent mixture was added to these groups during the experiment. In the other three groups (ABF1, ABF2, ABF3), the adsorbent mixture was added at the beginning of the experiment together with 3 different sizes of feed used in the experiment. In the last three groups (AF1, AF2, AF3), the adsorbent mixture was added to the experimental environment after the 7th day together with 3 different sizes of feed. At the end of the 11-day experiment, the highest and lowest mean ammonium levels were identified in the CF1 (25.85 ± 2.93 mg L-1) and ABF1 (4.47 ± 0.71 mg L-1) groups, respectively. The study concluded that the size of the fish feed was correlated with the release of nitrogenous compounds from the feed. Consequently, it can be recommended that larger particles should be preferred in fry fish farming, provided that the feed size is suitable for the mouth opening. Furthermore, it was determined that the use of adsorbent mixtures, particularly at the outset of the experiment (when nutrient concentrations were low), was highly effective in reducing ammonia values.

References

  • Alshameri, A., Yan, C., Al-Ani, Y., Dawood, A.S., Ibrahim, A., Zhou, C., Wang, H. (2014). An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45, 554–564. https://doi.org/10.1016/j.jtice.2013.05.008
  • Basyuni, M.A., Hegazi, M.A.M., Shahenda, R.A. (2023). The effect of acidic pH on ammonia removal from aquaculture and its impact on survival and growth performance of the Nile tilapia (Oreochromis niloticus) fingerlings. Egyptian Journal of Aquatic Biology and Fisheries, 27(3), 881–896.
  • Boyd, C.E. (2013). Ammonia toxicity degrades animal health, growth. Global Aquaculture Alliance, 40-43.
  • Cargnin, J.M.R. and João, J.J. (2021). Removal of nutrients from aquaculture residual water: A review. Revista Ambiente Água, 16(6), 1-15. https://doi.org/10.4136/ambi-agua.2747
  • Cretu, M., Dediu, L., Cristea, V., Zugravu, A., Rahoveanu, M.M.T., Bandi, A-C., Rahoveanu, A.T., Mocuta, D.N. (2016). Environmental Impact of Aquaculture: A Literature Review. Innovation Management and Education Excellence Vision 2020: Regional Development to Global Economic Growth Conference: 27th IBIMA Conference At: Milan, Italy 4-5 May 2016, ISBN: 978-0-9860419-6-9
  • Danabas, D., Altun, T. (2011). Effects of zeolite (clinoptilolite) on some water and growth parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Digest Journal of Nanomaterials and Biostructures, 6(3), 1111-1116.
  • Danabas, D., Dorucu, M. (2021). Potential Role of Zeolite on Improvement of Aquaculture Sector. Menba Journal of Fisheries Faculty, 7(2), 105-115
  • Datta, S. (2012). Aquarium water quality management for freshwater ornamental fishes. In: Enterprenurship Development in Ornamental Fish Breeding and Culture (Mahapatra, B.K Subhendu Datta, G.H. Pailan, S. Munilkumar and S.K. Mishra, Published by Director), Central Institute of Fisheries Education, Mumbai, India.
  • Demir, O., Aybal, N.O. (2004). Gökkuşağı alabalığı (Oncorhynchus mykiss, Walbaum 1792) yemlerinde klinoptilolitin farklı oranlarda yem katkı maddesi olarak kullanımı. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 2(12), 15-19.
  • Demirel, R., Baran, M.S., Şentürk Demirel, D., Ketani, A., Yokuş, B. (2018). Effects of clinoptilolite on the digestibility of nutrients and relative organ weights in rat diets. Journal of Agricultural Sciences, 24(3), 297-302. https://doi.org/10.15832/ankutbd.451270.
  • Erdogan, B.C., Ulku, S. (2013). Removal of bacteria by clinoptilolite rich mineral and its surfactant modified forms. J Porous Mater, 20, 1143–1151 https://doi.org/1007/s10934-013-9697-z.
  • Farrag, M.M.S., Abdelmgeeda, A.M., Moustafaa, M.A., Osman, A.G.M. (2024). Improving the water quality of fish aquaculture effluents after treatment by microalgae. Desalination and Water Treatment, 317, 100155. https://doi.org/10.1016/j.dwt.2024.100155.
  • Ghasemi, Z., Sourinejad, I., Kazemian, H., Rohani, S. (2018). Application of zeolites in aquaculture industry: A review. Reviews in Aquaculture, 10(1), 75-95. https://doi.org/10.1111/raq.12148
  • Godoy‑Olmos, S., Jauralde, I., Monge‑Ortiz, R., Milián‑Sorribes, M.C., Jover‑Cerdá, M., Tomás‑Vidal, A., Martínez‑Llorens, S. (2022). Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquaculture International, 30, 581–606. https://doi.org/10.1007/s10499-021-00821-3.
  • Gogoi, M., Bhattacharya, P., Sen, S.K., Mukherjee, I., Bhushan, S., Chaudhuri, S.R. (2021). Aquaculture effluent treatment with ammonia remover Bacillus albus (ASSF01). Journal of Environmental Chemical Engineering, 9 (4), 105697. https://doi.org/10.1016/j.jece.2021.105697.
  • Gupta, V.K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A.A. (2011). Comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazard Materials, 186 (1), 891–901. https://doi.org/10.1016/j.jhazmat.2010.11.091.
  • Jorgensen, T.C., Weatherley, L.R. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37 (8), 1723–1728. https://doi.org/10.1016/S0043-1354(02)00571-7.
  • Kannan, A.D., Parameswaran, P. (2021) Ammonia adsorption and recovery from swine wastewater permeate using naturally occurring clinoptilolite. Journal of Water Process Engineering, 43, 102234. https://doi.org/10.1016/j.jwpe.2021.102234.
  • Karadag, D., Koc, Y., Turan, M., Armagan, B. (2006). Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, 36, 604–9. https://doi.org/10.1016/j.jhazmat.2005.12.042.
  • Kibria, G., Nugegoda, D., Fairclough, R., Lam, P. (1997). The nutrient content and the release of nutrients from fish food and faeces. Hydrobiologia, 357, 165-171.
  • Kong, W., Huang, S., Yang, Z., Shi, F., Feng, Y., Khatoon, Z. (2020). Fish feed quality is a key factor in impacting aquaculture water environment: Evidence from incubator experiments. Scientific Reports, 10, 187. https://doi.org/10.1038/s41598-019-57063-w.
  • Korkuna, O., Leboda, R., Skubiszewska-Zieba, J., Vrublevs’ka, T., Gun’ko, V.M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243-254.
  • Li, S., Zhao, Y.H., Wang, W.M. (2009). Influence of different modality diets on nitrogen and phosphorus and leaching ratio of diets in water of aquiculture. Journal of Huazhong Agricultural University, 28, 80–83.
  • Liu., C. (2000). A Atudy on the Utilization of Zeolite for Ammonia Removal from Composting Leachate. Master thesis, The University of British Columbia, 110 pages.
  • Liu, P., Zhang, A., Liu, Y., Liu, Z., Liu, X., Yang, L., Yang, Z. (2022). Adsorption mechanism of high-concentration ammonium by Chinese natural zeolite with experimental optimization and theoretical computation. Water, 14, 2413. https://doi.org/10.3390/w14152413.
  • Magalhães, L.F., Silva, G.R., Peres, A.E.C. (2022). Zeolite application in wastewater treatment, 2022. Adsorption Science and Technology https://doi.org/10.1155/2022/4544104
  • Maharani, S., Nailufhar, L., Sugiarti, Y. (2020). Adsorption effectivity of combined adsorbent zeolite activated charcoal, and sand in liquid waste processing of agroindustrial laboratory. International Conference on Food and Bio-Industry 2019IOP Conf. Series: Earth and Environmental Science, 443, 012044, IOP Publishing. https://doi.org/10.1088/1755-1315/443/1/012044.
  • Moreno, J.L., Irene, T., Felipe, B. (2017). Compost, leonardite, and zeolite impacts on soil microbial community under barley crops. Journal of Soil Science and Plant Nutrition, 17(1), 214-230. http://dx.doi.org/10.4067/S0718-95162017005000017.
  • Mustapha, M., Akinshola, F. (2016). Ammonia concentrations in different aquaculture holding tanks. West African Journal of Applied Ecology, 24(1), 1–8.
  • Ogbonna, J.F., Chinomso, A.A. (2010). Determination of the concentration of ammonia that could have lethal effect on fishpond. ARPN Journal of Engineering and Applied Sciences, 5 (2), 5p.
  • Olivella, M.A., del Rı`o, J.C, Palacios, J., Vairavamurthy, A.M., de las Heras, F.X.C. (2002). Characterization of humic acid from leonardite coal: an integrated study of PY-GC-MS, XPS and XANES techniques. Journal of Analytical and Applied Pyrolysis, 63(1), 59-68. https://doi.org/10.1016/S0165-2370(01)00141-3
  • Öz, M. (2024a). Strategy to remove ammonium compounds released from fish feed in aquaculture using natural filtration materials. Environmental Monitoring and Assessment, 196 (4), 362. https://doi.org/10.1007/s10661-024-12351-5.
  • Öz, M. (2024b). Balık yemi boyutunun azotlu bileşiklerin tatlı suya salınımı üzerine etkisi. 13. Uluslararası Araştırmalar Kongresi (ICAR), Fen Bilimleri Tam Metin Kitabı Asos Yayınevi ISBN: 978-625-6671-22-5 373 p (in Turkish).
  • Öz, M. (2024c). Determining the usage properties of some natural substrate materials in submerged macrophyte Vallisneria sp. culture. Journal of Anatolian Environmental and Animal Sciences (JAES), 9 (1), 137-144. https://doi.org/10.35229/jaes.1448066
  • Öz, M., Şahin, D., Karslı, Z., Aral, O., Bahtiyar, M. (2021). Investigation of the use of zeolite (clinoptilolite) as aquarium filtration material for electric blue hap (Sciaenochromis ahli). Marine Science and Technology Bulletin, 10(2), 207-212. https://doi.org/10.33714/masteb.895198
  • Öz, M., Şahin, D., Yılmaz, E, Öz, Ü. (2022). The potential applicability of natural minerals as filter media for modulating water quality in aquatic ecosystems. Applied Ecology and Environmental Research, 20(5), 4145-4155. https://doi.org/10.15666/aeer/2005_41454155
  • Öz, Ü (2024). The assessment of raw diatomite mineral as filter equipment for aquaculture practices. International Journal of Environmental Science and Technology, 21, 9935-9942. https://doi.org/10.1007/s13762-024-05623-7
  • Pabiś-Mazgaj, E., Gawenda, T., Pichniarczyk, P., Stempkowska, A. (2021). Mineral composition and structural characterization of the clinoptilolite powders obtained from zeolite-rich tuffs. Minerals, 11(10), 1030. https://doi.org/10.3390/min11101030
  • Prashanthakumara, S.M., Venkateshwarlu, M. (2016). Influence of selected substrates on the growth of common carp (Cyprinus carpio). Bulletin of Pure and Applied Sciences (Zoology), 35(1), 1-6. https://doi.org/10.5958/2320-3188.2016.00003.6
  • Purwono, Rezagama, A., Hibbaan, M., Budihardjo, M.A. (2017). Ammonia-nitrogen (NH3-N) and ammonium-nitrogen (NH4+-N) equilibrium on the process of removing nitrogen by using tubular plastic media. Journal of Materials and Environmental Sciences, 8(S), 4915-4922.
  • Qian, S., Ding, W., Li, Y., Liu, G., Sun, J., Ding, Q. (2016). Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of humic acids on growth and nutrient uptake of snap bean. Chemical Speciatıon and Bioavailability, 27(4), 156-161. http://dx.doi.org/10.1080/09542299.2015.1118361
  • Qur’ania, A., Verananda, D.I. (2017). Tsukamoto fuzzy implementation to identify the pond water quality of koi. IOP Conf. Series: Materials Science and Engineering, 166, 012018. https://doi.org/10.1088/1757-899X/166/1/012018.
  • Ragab, A.M., El-Gindy, A.M., Kaddour, O., Ali, A.A. (2022). Dissolved oxygen and ammonia mass balance in a recirculating aquaculture system for raising the Nile tilapia. Egyptian Journal of Aquatic Biology and Fisheries, 26(2), 217 – 237.
  • Ratanaprommanee, C., Chinachanta, K., Chaiwan, F., Shutsrirung, A. (2016). Chemical characterization of leonardite and its potential use as soil conditioner and plant growth enhancement. Asia-Pacific Journal of Science and Technology, 22(04). Article ID: APST-22-04-01.
  • Runtti, H., Sundhararasu, E., Pesonen, J., Tuomikoski, S., Hu, T., Lassi, U., Kangas, T. (2023). Removal of ammonium ions from aqueous solutions using alkali-activated analcime as sorbent. ChemEngineering, 7(1), 5. https://doi.org/10.3390/chemengineering7010005.
  • Sava, S.C., Pana, O.C., Sava, B.A., Defta, N., Marin, P.M., Nicolae, C.G. (2020). The use of clinoptılolite zeolite as a feed additive ın juvenile carp feed (Cyprinus carpio). Scientific Papers. Series D. Animal Science, LXIII (1), 495-501.
  • Şahin, D. (2022). Comparative evaluation of natural water conditioners for their potential use in freshwater aquaculture. Environmental Science and Pollution Research, 29, 47233–47241. https://doi.org/10.1007/s11356-022-19265-0.
  • Şahin, D. (2023). Effect of a natural adsorbent mixture (zeolite and leonardite) on the reduction of ammonia caused by fish feed. Journal of Agricultural Production, 4(1), 56-62. https://doi.org/10.56430/japro.1273000
  • Şahin, D., Öz, M., Öz, Ü. (2023). Effect of natural diatomite sizes on ammonia adsorption in aquarium water. Journal of Anotolian Environment nd Animal Sciences, 8(3), 333-337. https://doi.org/10.35229/jaes.1313222
  • Şahin, D., Sertaşı, E., Öz, M., Öz, Ü., Karslı, Z., Aral, O. (2018). Ammonium removal in aquatic conditions using different levels of calcium bentonite. Gaziosmanpasa Journal of Scientific Research, 7(3), 61-69. ISSN: 2146-8168.
  • Setiadi, E., Taufik, I., Widyastuti, Y.R., Ardi, I., Saputra, A. (2019). Different substrate of trickling filter on growth, survival rate, and water quality of common carp (Cyprinus carpio) cultivation by using an intensive recirculation system. IOP Conference Series: Earth and Environmental Science, 236, 012027. http://doi.org/10.1088/1755-1315/236/1/012027
  • Shalaby, A.M., Mohamed, K.K., Adel, F., Amany, A., Gharieb, E., Abdel, H.A. (2021). The impact of zeolite on ammonia toxicity, growth performance and physiological status of the Nile tilapia (Oreochromius niloticus).  Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 643-663. https://dx.doi.org/10.21608/ejabf.2021.148524
  • Sirakov, I., Velichkova, K., Stoyanova, S., Dinev, D., Staykov, Y. (2015). Application of natural zeolites and macrophytes for water treatmentin recirculation aquaculture systems. Bulgarian Journal of Agricultural Science, 21(1), 147–153.
  • Tantalu, L., Hidayat, N., Suharto, B., Nurika, I. (2024). Review: Ammonia adsorbent development for white-shrimp ponds. BIO Web of Conferences 90, 06002. ICGAB 2023. https://doi.org/10.1051/bioconf/20249006002
  • Tekesoğlu, H., Ergün, S. (2021). Effects of dietary natural zeolite (Clinoptilolite) on growth and some blood parameters of rainbow trout (Onchorynchus mykiss, Walbaum 1792). Acta Aquatica Turcica, 17(1), 119-128. https://doi.org/10.22392/actaquatr.765667
  • Terdputtakun, A., Arqueropanyo, O., Janhom, S., Sooksamiti, P., Naksata, W. (2017). Adsorption characteristics of leonardite for removal of Cd (II) and Zn (II) from aqueous solutions. International Journal of Environmental Science and Development, 8(6), 393-398. https://doi.org/10.18178/ijesd.2017.8.6.984
  • Tokat, S. (2019). Gördes (Manisa) Zeolit Ocaklarının Kimyasal Bileşenlerinin XRF Spektrometrik Yöntem Ile Belirlenmesi. Yüksek Lisans Tezi, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Kastamonu, Türkiye
  • Verma, D.K., Satyaveer Maurya, N.K., Kumar, P., Jayaswa, R. (2023). Important water quality parameters in aquaculture: An overview. Agriculture and Environment, 3(3), 24-29.
  • Wu, M., Huang, S., Zang, C., Du, S., Scholz, M. (2012). Release of nutrient from fish food and effects on Microcystis aeruginosa growth. Aquaculture Research, 43, 1460–1470. https://doi.org/10.1111/j.1365-2109.2011.02948.x
  • Yadav, V., Kumar, L., Saini, N., Yadav, M., Singh, N., Murugasen, V., Varathan, E. (2023). Effective removal of ammonia from water using pre‑treated clinoptilolite zeolite‑a detailed study. Water, Air and Soil Pollution, 234 (435). https://doi.org/10.1007/s11270-023-06469-4
  • Yan, Z., Wu, Y., Yu, L., Qiao, H., Hu, S., Wang, Y., Liu, D., Meng, Y. (2024). Controlled synthesis of fly ash-based zeolite X/A for ammonia- nitrogen removal. Research Square Platform, LLC 1-25. https://doi.org/10.21203/rs.3.rs-4113345/v1
  • Yanuhar, U., Musa, M., Evanuarini, H., Wuragil, D.K., Permata, F.S. (2022). Water quality in Koi fish (Cyprinus carpio) concrete ponds with filtration in Nglegok District, Blitar Regency. Universal Journal of Agricultural Research, 10(6), 814-820. https://doi.org/10.13189/ujar.2022.100619
  • Yi, L., Yafenga, Z., Lingyue, L., Aihua, L., Jinhui, L., Xinrui, Z., Zhibin, Z. (2023). Nutrients releasing from fish feed and Potamogeton crispus L. residuals. Journal of Hazardous Materials Advance, 9, 5p. https://doi.org/10.1016/j.hazadv.2022.100229.
  • Zahran, E., Risha, E., Hamed, M., Ibrahim, T., Palić, D. (2020). Dietary mycotoxicosis prevention with modified zeolite (Clinoptilolite) feed additive in Nile tilapia (Oreochromis niloticus). Aquaculture, 515, 734562. https://doi.org/10.1016/j.aquaculture.2019.734562
  • Zeledón-Toruño, Z.C., Lao-Luque, C., C.de las Heras, F.X., Sole-Sardans, M. (2007). Removal of PAHs from water using an immature coal (leonardite). Chemosphere, 67(3), 505-512. https://doi.org/10.1016/j.chemosphere.2006.09.047
  • Zengin, G. (2013). Effective removal of zinc from an aqueous solution using Turkish leonardite–clinoptilolite mixture as a sorbent. Environmental Earth Sciences, 70(7), 3031-3041 https://doi.org/10.1007/s12665-013-2364-5
There are 66 citations in total.

Details

Primary Language English
Subjects Aquaculture and Fisheries (Other)
Journal Section Research Articles
Authors

Dilek Şahin 0000-0003-4454-9030

Meryem Öz 0000-0002-7803-8207

Ünal Öz 0000-0003-1918-3284

Publication Date June 30, 2025
Submission Date March 19, 2025
Acceptance Date April 29, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Şahin, D., Öz, M., & Öz, Ü. (2025). Application of Zeolite (Clinoptilolite) Combine with Leonardite for the Removal of Ammonia in Different Sizes Microparticulate Fish Feed. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 317-329. https://doi.org/10.53501/rteufemud.1661057

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025