Research Article
BibTex RIS Cite

Yüzey Kaplama Malzemeleri ve Geometrisinin Organik ve İnorganik Sintilatörlerin Verimliliği Üzerindeki Etkisi: Bir GEANT4 Simülasyon Çalışması

Year 2025, Volume: 6 Issue: 1, 330 - 343, 30.06.2025
https://doi.org/10.53501/rteufemud.1709235

Abstract

Bu çalışma, GEANT4 simülasyon araç setini kullanarak çeşitli yansıtıcı kaplama malzemelerinin seçili organik ve inorganik sintilatörlerin foton sayım verimliliği üzerindeki etkisini araştırmaktadır. Titanyum dioksit, TeflonTM bant ve alüminyum folyo dahil yansıtıcı kaplamalar, optik fotonları sayarak foton toplama verimliliğini analiz etmek için her iki sintilatör yüzeyine uygulanmıştır. Simülasyonlar, düşük, orta ve yüksek enerjili rejimleri temsil eden 59 keV, 662 keV ve 1173 keV gama foton enerjileri için oluşturulmuştur. Sonuçlar, alüminyum folyonun yüksek enerjili gama fotonları için en yüksek foton toplama verimliliğini sağladığını, TeflonTM bandın ise daha düşük enerjilerde üstün performans gösterdiğini göstermektedir. Titanyum dioksit ve TeflonTM banttan oluşan çok katmanlı kaplamalar, foton toplamada kademeli iyileştirmeler gösterirken, alüminyum folyo tek bir katmanla yüksek yansıtma özelliğine ulaşarak maliyet açısından etkili ve verimli bir çözüm haline gelmektedir. Ayrıca, verimlilik artışı organik sintilatörlerde önemli ölçüde daha belirgin bulunmuştur. Bu bulgular, farklı sintilatör malzemeleri ve radyasyon enerji seviyeleri için optimum yansıtıcı kaplamaların seçimi konusunda değerli bilgiler sağlayarak, tıbbi görüntüleme, nükleer fizik ve yüksek enerjili parçacık deneylerinde kullanılan radyasyon tespit sistemlerinin optimizasyonuna katkıda sağlamaktadır.

References

  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8
  • Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270–278. https://doi.org/10.1109/TNS.2006.869826
  • Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., Beck, B. R., et al. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186–225. https://doi.org/10.1016/j.nima.2016.06.125
  • Brun, R., and Rademakers F. (1997). ROOT—An object-oriented data analysis framework. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 389(1-2), 81-86. https://doi.org/10.1016/S0168-9002(97)00048-X
  • Denisov, D., Evdokimov, V., Lukić, S., Ujić, P. (2017). Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 848, 54–59. https://doi.org/10.1016/j.nima.2016.12.043
  • Foord, R., Jones, R., Oliver, C., Pike, E. (1969). The Use of Photomultiplier Tubes for Photon Counting. Applied Optics, 8(10), 1975-1989. https://doi.org/10.1364/AO.8.001975
  • Isazadeh, F., Saray, A.A. (2023). Assessment of production of 66Ga via 66Zn(d,2n)66Ga reaction as a medical radioisotope using GEANT4, MCNPX and TALYS computer nuclear codes. Radiation Physics and Chemistry, 212. https://doi.org/10.1016/j.radphyschem.2023.111071
  • Janecek, M., Moses, W.M. (2010). Simulating scintillator light collection using measured optical reflectance. IEEE Transactions on Nuclear Science, 57(3 PART 1), 964–970. https://doi.org/10.1109/TNS.2010.2042731
  • Kandemir, M., Tiras, E., Kirezli, B., Koca, İ. (2025). SSLG4: A novel scintillator simulation library for Geant4. Computer Physics Communications, 306. https://doi.org/10.1016/j.cpc.2024.109385
  • Kim, C., Lee, W., Melis, A., Elmughrabi, A., Lee, K., Park, C., Yeom, J. Y. (2021). A review of inorganic scintillation crystals for extreme environments. Crystals, 11(6), 669. https://doi.org/10.3390/cryst11060669
  • Kim, J., Jung, S., Moon, J., Cho, G. (2011). Industrial gamma-ray tomographic scan method for large scale industrial plants. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 640(1), 139–150. https://doi.org/10.1016/j.nima.2011.02.082
  • Kolcu, O.B. (2025). Characterization of intrinsic radiation in LYSO scintillators using GEANT4 and SimSiPM simulations. Applied Radiation and Isotopes, 217. https://doi.org/10.1016/j.apradiso.2024.111638
  • Park, C., Elmughrabi, A., Melis, A., Kim, S., Cho, S., Yeom, J. Y. (2024). Compatibility of TiO2 reflective material with Ce:GAGG scintillators in harsh environments. Optical Materials, 157. https://doi.org/10.1016/j.optmat.2024.116165
  • Taheri, A., Peyvandi, R.G. (2017). The impact of wrapping method and reflector type on the performance of rod plastic scintillators. Measurement: Journal of the International Measurement Confederation, 97, 100–110. https://doi.org/10.1016/j.measurement.2016.10.051
  • Tarancón, A., Marin, E., Tent, J., Rauret, G., Garcia, J. F. (2012). Evaluation of a reflective coating for an organic scintillation detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 674, 92–98. https://doi.org/10.1016/j.nima.2012.01.048
  • URL-1, (2025). https://eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212, 20 Mayıs 2025.
  • URL-2, (2025). https://luxiumsolutions.com/sites/default/files/2023-08/142266_Luxium_Sodium-Iodide-Material-Data-Sheet_FIN.pdf , 20 May 2025.
  • URL-3, (2025). https://eljentechnology.com/images/products/data_sheets/EJ-510.pdf, 20 Mayıs 2025.
  • van Blaaderen, J.J., van der Sar, S., Onggo, D., Sheikh, M.A.K., Schaart, D.R., Birowosuto, M.D., Dorenbos, P. (2023). (BZA)2PbBr4: A potential scintillator for photon-counting computed tomography detectors. Journal of Luminescence, 263(120012). https://doi.org/10.1016/j.jlumin.2023.120012
  • Yamashita, M., Doke, T., Kawasaki, K., Kikuchi, J., Suzuki, S. (2004). Scintillation response of liquid Xe surrounded by PTFE reflector for gamma rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 535(3), 692–698. https://doi.org/10.1016/j.nima.2004.06.168

Impact of Surface Coating Materials and Geometry on the Efficiency of Organic and Inorganic Scintillators: A GEANT4 Simulation Study

Year 2025, Volume: 6 Issue: 1, 330 - 343, 30.06.2025
https://doi.org/10.53501/rteufemud.1709235

Abstract

This study investigates the impact of various reflective coating materials on the photon counting efficiency of selected organic and inorganic scintillators using GEANT4 simulation toolkit. Reflective coatings, including titanium dioxide, TeflonTM tape and aluminum foil, were applied to both scintillator surfaces to analyse photon collection efficiency by counting optical photons. The simulations were conducted for gamma photon energies of 59 keV, 662 keV and 1173 keV representative of low, medium, and high-energy regimes. The results indicate that aluminum foil provides the highest photon collection efficiency for high-energy gamma photons, while teflon tape exhibits superior performance at lower energies. Multilayer coatings of titanium dioxide and teflon tape show incremental improvements in photon collection, whereas aluminum foil achieves high reflectivity with a single layer, making it a cost-effective and efficient solution. Furthermore, the efficiency enhancement is significantly more pronounced in organic scintillators. These findings provide valuable insights into the selection of optimal reflective coatings for different scintillator materials and radiation energy levels, contributing to the optimization of radiation detection systems used in medical imaging, nuclear physics, and high-energy particle experiments.

Thanks

I would like to thanks Yavuz Selim Karakas, Öykü Beysi and Özgür Aytan for their valuable support.

References

  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8
  • Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270–278. https://doi.org/10.1109/TNS.2006.869826
  • Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., Beck, B. R., et al. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186–225. https://doi.org/10.1016/j.nima.2016.06.125
  • Brun, R., and Rademakers F. (1997). ROOT—An object-oriented data analysis framework. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 389(1-2), 81-86. https://doi.org/10.1016/S0168-9002(97)00048-X
  • Denisov, D., Evdokimov, V., Lukić, S., Ujić, P. (2017). Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 848, 54–59. https://doi.org/10.1016/j.nima.2016.12.043
  • Foord, R., Jones, R., Oliver, C., Pike, E. (1969). The Use of Photomultiplier Tubes for Photon Counting. Applied Optics, 8(10), 1975-1989. https://doi.org/10.1364/AO.8.001975
  • Isazadeh, F., Saray, A.A. (2023). Assessment of production of 66Ga via 66Zn(d,2n)66Ga reaction as a medical radioisotope using GEANT4, MCNPX and TALYS computer nuclear codes. Radiation Physics and Chemistry, 212. https://doi.org/10.1016/j.radphyschem.2023.111071
  • Janecek, M., Moses, W.M. (2010). Simulating scintillator light collection using measured optical reflectance. IEEE Transactions on Nuclear Science, 57(3 PART 1), 964–970. https://doi.org/10.1109/TNS.2010.2042731
  • Kandemir, M., Tiras, E., Kirezli, B., Koca, İ. (2025). SSLG4: A novel scintillator simulation library for Geant4. Computer Physics Communications, 306. https://doi.org/10.1016/j.cpc.2024.109385
  • Kim, C., Lee, W., Melis, A., Elmughrabi, A., Lee, K., Park, C., Yeom, J. Y. (2021). A review of inorganic scintillation crystals for extreme environments. Crystals, 11(6), 669. https://doi.org/10.3390/cryst11060669
  • Kim, J., Jung, S., Moon, J., Cho, G. (2011). Industrial gamma-ray tomographic scan method for large scale industrial plants. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 640(1), 139–150. https://doi.org/10.1016/j.nima.2011.02.082
  • Kolcu, O.B. (2025). Characterization of intrinsic radiation in LYSO scintillators using GEANT4 and SimSiPM simulations. Applied Radiation and Isotopes, 217. https://doi.org/10.1016/j.apradiso.2024.111638
  • Park, C., Elmughrabi, A., Melis, A., Kim, S., Cho, S., Yeom, J. Y. (2024). Compatibility of TiO2 reflective material with Ce:GAGG scintillators in harsh environments. Optical Materials, 157. https://doi.org/10.1016/j.optmat.2024.116165
  • Taheri, A., Peyvandi, R.G. (2017). The impact of wrapping method and reflector type on the performance of rod plastic scintillators. Measurement: Journal of the International Measurement Confederation, 97, 100–110. https://doi.org/10.1016/j.measurement.2016.10.051
  • Tarancón, A., Marin, E., Tent, J., Rauret, G., Garcia, J. F. (2012). Evaluation of a reflective coating for an organic scintillation detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 674, 92–98. https://doi.org/10.1016/j.nima.2012.01.048
  • URL-1, (2025). https://eljentechnology.com/products/plastic-scintillators/ej-200-ej-204-ej-208-ej-212, 20 Mayıs 2025.
  • URL-2, (2025). https://luxiumsolutions.com/sites/default/files/2023-08/142266_Luxium_Sodium-Iodide-Material-Data-Sheet_FIN.pdf , 20 May 2025.
  • URL-3, (2025). https://eljentechnology.com/images/products/data_sheets/EJ-510.pdf, 20 Mayıs 2025.
  • van Blaaderen, J.J., van der Sar, S., Onggo, D., Sheikh, M.A.K., Schaart, D.R., Birowosuto, M.D., Dorenbos, P. (2023). (BZA)2PbBr4: A potential scintillator for photon-counting computed tomography detectors. Journal of Luminescence, 263(120012). https://doi.org/10.1016/j.jlumin.2023.120012
  • Yamashita, M., Doke, T., Kawasaki, K., Kikuchi, J., Suzuki, S. (2004). Scintillation response of liquid Xe surrounded by PTFE reflector for gamma rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 535(3), 692–698. https://doi.org/10.1016/j.nima.2004.06.168
There are 20 citations in total.

Details

Primary Language English
Subjects Nuclear Physics, Radiation Technology
Journal Section Research Articles
Authors

Mehmet Erhan Emirhan 0000-0002-7670-7112

Publication Date June 30, 2025
Submission Date May 29, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Emirhan, M. E. (2025). Impact of Surface Coating Materials and Geometry on the Efficiency of Organic and Inorganic Scintillators: A GEANT4 Simulation Study. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(1), 330-343. https://doi.org/10.53501/rteufemud.1709235

Indexing

22936   22937   22938  22939     22941  23010   23011  23019  23025