Research Article
BibTex RIS Cite

Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes

Year 2025, Volume: 5 Issue: 1, 26 - 38, 18.04.2025

Abstract

Bacterial resistance to available antibiotics has increasingly become a critical issue, necessitating the search for novel inhibitors to combat resistant pathogens, particularly gram-negative bacteria. This bibliometric study aims to analyze the scientific literature on novel inhibitors for extended spectrum beta-lactamase (ESBL) enzymes, identifying the most prolific organizations, authors, journals, countries, and keywords within this research area. Data were retrieved from Dimensions and Scopus databases, with 503 out of 2086 papers (published between 2013 and 2023) meeting the inclusion criteria. Analysis and visualization were performed using R-studio software and VOSviewer©, focusing on article titles, publication years, countries, authors, journals, and keywords. The study found that the United States led in the number of publications (445) and citations (15.889), followed by France and China. The journal Antimicrobial Agents and Chemotherapy published the most articles (171) and received the highest citations. Indiana University Bloomington and Case Western Reserve University from the U.S. were the leading institutions. Robert Bonomo authored the most papers (23), while Karen Bush was the highest-cited author (1.955 citations). Key future research hotspots include "taniborbactam," "xeruborbactam," "enmetazobactam," "VNRX-5236," and "imipenem-relebactam." This study underscores the critical global efforts and contributions in developing novel inhibitors against ESBL enzymes. The findings highlight key authors, influential journals, and emerging research directions that can guide future studies in combating antibiotic resistance among gram-negative bacteria.

Ethical Statement

Ethical approval was not sought, as no human or animal subjects were involved in the study. It has been declared that scientific and ethical principles and the research principles in the Declaration of Helsinki were complied with during the preparation of this study, and all studies used are included in the bibliography.

Thanks

Thanks to the anonymous reviewers, academic editors and editors for their comments and suggestions.

References

  • Murray CJL, Ikuta KS, Sharara F. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.
  • O'Neil J. Tackling drug-resistant infections globally: Final report and recommendation. Review on Antimicrobial resistance. London: 2016. pp. 1–55.
  • Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nature Rev Microbiol. 2019;17(5):295–306.
  • Bassetti M, Giacobbe D, Robba C, et al. Treatment of extended-spectrum β-lactamases infections: what is the current role of new β-lactams/β-lactamase inhibitors? Curr Opin Infect Dis. 2020;33(6):474–81.
  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research development and future perspectives. Molecules. 2021;26(9):2671-9.
  • Aragón L, Mirelis B, Miró E, et al. Increase in beta-lactam-resistant Proteus mirabilis strains due to CTX-M- and CMY-type as well as new VEB- and inhibitor-resistant TEM-type beta-lactamases. J Antimicrob Chemother. 2008;61(5):1029–32.
  • Harris PA, Tambyah PA, Lye DC. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA. 2018;320(10):984–94.
  • Rodríguez-Baño J, Gutierrez-Gutierrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31(2):e00079–17.
  • Pandey N, Cascella M. Beta-lactam antibiotics. In: StatPearls Publishing. Treasure Island (FL); 2024.
  • Yang K, Guglielmo B. Diagnosis and treatment of extended-spectrum and AmpC β-lactamase–producing organisms. Ann Pharmacother. 2007;41(9):1427–35.
  • Montravers P, Bassetti M. The ideal patient profile for new beta-lactam/beta-lactamase inhibitors. Curr Opin Infect Dis. 2018;31(6):587–93.
  • Livermore DM. Defining an extended-spectrum beta-lactamase. Clin Microbiol Infect. 2008;14(1):3–10.
  • Ur RS, Ali T, Ali I, et al. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018;9519718..
  • Palacios-Baena ZR, Gutiérrez-Gutiérrez B, De Cueto M, et al. Development and validation of the Increment-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2016;72(3):906–13.
  • Muhammed M, Flokas ME, Detsis M, et al. Comparison between carbapenems and β-lactam/β-lactamase inhibitors in the treatment for bloodstream infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Open Forum Infect Dis. 2017;4(4):ofx099.
  • Henderson A, Paterson DL, Chatfield MD. Association between minimum inhibitory concentration, β-lactamase genes and mortality for patients treated with piperacillin/tazobactam or meropenem from the MERINO study. Clin Infect Dis. 2020;ciaa1479.
  • Tufa TB, Fuchs A, Takele BT, et al. High rate of extended-spectrum betalactamase-producing gram-negative infections and associated mortality in Ethiopia: a systematic review and meta-analysis. Antimicrob Resist Infect Cont. 2020;9(1):128.
  • Kallstrom G. Are new β-lactam/β-lactamase inhibitors viable carbapenem sparing options for treating serious infections caused by extended-spectrum β-lactamase-producing microorganisms? Infectious Dis Clin Pract. 2019;27(2):121–2.
  • Khanna NR, Gerriets N. Beta-lactamase inhibitors. In: StatPearls Publishing. Treasure Island (FL); 2024.
  • Yahav D, Giske CG, Grāmatniece A, et al. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34(1):e00115-20.
  • Haines RR, Putsathit P, Hammer KA. Activity of newest generation β-lactam/β-lactamase inhibitor combination therapies against multidrug resistant Pseudomonas aeruginosa. Sci Rep. 2022;12(1):16814.
  • Mojica MF, Maria-Agustina R, Alejandro JV, et al. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022;22(9):e28–e34.
  • Varshaa A, Debasish K. Biochemical exploration of beta-lactamase inhibitors. Front Genet. 2023;13:1–11.
  • Harris PNA, Tambyah PA, Paterson DL. β-lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15(5):475–85.
  • Thamlikitkul V, Lorchirachoonkul N, Tiengrim S. In vitro and in vivo activity of tebipenem against ESBL-producing E. coli. J Med Assoc Thai. 2014;97(11):1259-68.
  • Johnson A, McEntee L, Farrington N, et al. Pharmacodynamics of cefepime combined with the novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(6):e00180-20.
  • Liu X, Dong S, Ma Y, et al. N-(Sulfamoylbenzoyl)-L-proline Derivatives as Potential Non-β-lactam ESBL Inhibitors: Structure-Based Lead Identification, Medicinal Chemistry and Synergistic Anti-bacterial Activities. Med Chem. 2019;15(3):196–206.
  • Baig M, Shakil S, Khan A. Homology modeling and docking study of recent SHV type β-lactamses with traditional and novel inhibitors: an in silico approach to combat problem of multiple drug resistance in various infections. Med Chem Res. 2011;21(8):2229–37.
  • Bassetti M, Giacobbe D, Castaldo N, et al. Role of new antibiotics in extended-spectrum β-lactamase-, AmpC- infections. Curr Opin Infect Dis. 2021;34(6):748–55.
  • Sheu C, Lin S, Chang Y, et al. Management of infections caused by extended-spectrum β–lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev Anti Infect Ther. 2018;16(3):205–18.
  • Sfeir M, Askin G, Christos P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: systematic review and meta-analysis. Int J Antimicrob Agents. 2018;525(4):554–70.
  • Son S, Lee N, Ko J, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2631–42.
  • Huang T, Wu H, Yang S, et al. Global trends of researches on sacral fracture surgery: A bibliometric study based on VOSviewer. Spine. 2020;45(10):E721–E728.
  • van Eck NJ, Waltman L. VOSviewer manual. Manual for VOSviewer version, 2011, 1.0.
  • van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(3):523–38.
  • Kaushik A, Ammerman NC, Lee J, et al. In vitro activity of the new β-lactamase inhibitors relebactam and vaborbactam in combination with β-lactams against Mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother. 2019;63(11):e02623-18.
  • Docobo-Pérez F, López-Cerero L, López-Rojas R, et al. Inoculum effect on the efficacies of amoxicillin-clavulanate, piperacillin-tazobactam, and imipenem against extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing Escherichia Coli in an experimental murine sepsis model. Antimicrob Agents Chemother. 2013;57(5):2109–13.
  • Levasseur P, Girard A-M, Miossec C, et al. In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacteriaceae, including strains with well-characterized β-lactamases. Antimicrob Agents Chemother. 2015;59(3):1931–4.
  • Zhanel GG, Lawson CD, Adam H, et al. Ceftazidime-Avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs. 2013;73(3):159–77.
  • Adeiza S, Shuaibu A. Trends in Monkeypox research: A sixty year bibliometric analysis. Microbes and Infectious Diseases. 2022;3(3):500–13.
  • Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959–75.
  • Islam MA, Adeiza SS, Amin MR, et al. A bibliometric study on Marburg virus research with prevention and control strategies. Front Trop Dis. 2023;3:1068364.
  • Suleiman AS, Abdulmalik SB, Ghazali SM. Extended Spectrum Betalactamase Research Mapping; a 32-year temporal and geographical perspective. PREPRINT (Version 3) available at Research Square, 2022.
  • Adnan S, Ullah R. Top-cited articles in regenerative endodontics: A bibliometric analysis. J Endod. 2018;44(11):1650–64.
  • Shamszadeh S, Asgary S, Nosrat A. Regenerative endodontics: A scientometric and bibliometric analysis. J Endod. 2019;45(3):272–80.
  • dos Santos FA, Matos FG, Stremel ACA, et al. A bibliometric analysis of the scientific literature on dental implants in large animal models. J Osseointegration. 2023;15(2):256–66.
  • Sweileh WM, Mansour AM. Bibliometric analysis of global research output on antimicrobial resistance in the environment (2000–2019). Glob Health Res Policy. 2020;5(1):37.
  • Bang CS, Lee JJ, Baik GH. The most influential articles in Helicobacter pylori research: A bibliometric analysis. Helicobacter. 2019;24(2):e12589.
  • O'Leary H, Gantzert T, Mann A, et al. Citation as representation: Gendered academic citation politics persist in environmental studies publications. J Environ Stud Sci. 2024;17(1):1–11.
  • van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41.
  • Eshima S, Imai K, Sasaki T. Keyword-assisted topic models. Am J Polit Sci. 2024;68(2):730–50.

Genişletilmiş Spektrumlu Beta-Laktamaz Enzimlerini Hedefleyen Yeni İnhibitörlerin Bibliyometrik Analizi

Year 2025, Volume: 5 Issue: 1, 26 - 38, 18.04.2025

Abstract

Mevcut antibiyotiklere karşı bakteriyel direnç, özellikle gram-negatif bakterilerde dirençli patojenlerle mücadele için yeni inhibitörlerin bulunmasını zorunlu hale getirmiştir. Bu bibliyometrik çalışmanın amacı, genişletilmiş spektrumlu beta-laktamaz (GSBL) enzimlerine karşı geliştirilen yeni inhibitörler konusundaki bilimsel literatürü analiz etmek, bu araştırma alanındaki en üretken kuruluşları, yazarları, dergileri, ülkeleri ve anahtar kelimeleri belirlemektir. Veriler, 2013-2023 yılları arasında yayımlanan 2086 makaleden 503'ünün dahil edilme kriterlerini karşılayarak Dimensions ve Scopus veritabanlarından alınmıştır. Analiz ve görselleştirme süreçleri, makale başlıkları, yayımlanma yılları, ülkeler, yazarlar, dergiler ve anahtar kelimelere odaklanarak R-studio yazılımı ve VOSviewer© kullanılarak gerçekleştirilmiştir. Çalışma, yayın sayısı (445) ve atıf sayısı (15,889) bakımından Amerika Birleşik Devletleri'nin ilk sırada olduğunu, bunu Fransa ve Çin'in izlediğini ortaya koymuştur. Antimicrobial Agents and Chemotherapy dergisi, en fazla makale (171) yayımlayan ve en yüksek atıf alan dergi olmuştur. Amerika Birleşik Devletleri'nden Indiana University Bloomington ve Case Western Reserve University en önde gelen kurumlar olmuştur. Bonomo Robert en fazla makale (23) yazan kişi iken, Bush Karen en çok atıf (1,955) alan yazardır. Gelecekteki önemli araştırma alanları arasında "taniborbactam," "xeruborbactam," "enmetazobactam," "VNRX-5236" ve "imipenem-relebactam" yer almaktadır. Bu çalışma, GSBL enzimlerine karşı geliştirilen yenilikçi inhibitörler konusunda küresel araştırmaların önemini ve katkılarını vurgulamaktadır. Bulgular, gram-negatif bakterilerde antibiyotik direnciyle mücadelede gelecekteki çalışmalara rehberlik edebilecek önemli yazarları, etkili dergileri ve yükselen araştırma yönlerini vurgulamaktadır.

References

  • Murray CJL, Ikuta KS, Sharara F. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.
  • O'Neil J. Tackling drug-resistant infections globally: Final report and recommendation. Review on Antimicrobial resistance. London: 2016. pp. 1–55.
  • Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nature Rev Microbiol. 2019;17(5):295–306.
  • Bassetti M, Giacobbe D, Robba C, et al. Treatment of extended-spectrum β-lactamases infections: what is the current role of new β-lactams/β-lactamase inhibitors? Curr Opin Infect Dis. 2020;33(6):474–81.
  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research development and future perspectives. Molecules. 2021;26(9):2671-9.
  • Aragón L, Mirelis B, Miró E, et al. Increase in beta-lactam-resistant Proteus mirabilis strains due to CTX-M- and CMY-type as well as new VEB- and inhibitor-resistant TEM-type beta-lactamases. J Antimicrob Chemother. 2008;61(5):1029–32.
  • Harris PA, Tambyah PA, Lye DC. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA. 2018;320(10):984–94.
  • Rodríguez-Baño J, Gutierrez-Gutierrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31(2):e00079–17.
  • Pandey N, Cascella M. Beta-lactam antibiotics. In: StatPearls Publishing. Treasure Island (FL); 2024.
  • Yang K, Guglielmo B. Diagnosis and treatment of extended-spectrum and AmpC β-lactamase–producing organisms. Ann Pharmacother. 2007;41(9):1427–35.
  • Montravers P, Bassetti M. The ideal patient profile for new beta-lactam/beta-lactamase inhibitors. Curr Opin Infect Dis. 2018;31(6):587–93.
  • Livermore DM. Defining an extended-spectrum beta-lactamase. Clin Microbiol Infect. 2008;14(1):3–10.
  • Ur RS, Ali T, Ali I, et al. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018;9519718..
  • Palacios-Baena ZR, Gutiérrez-Gutiérrez B, De Cueto M, et al. Development and validation of the Increment-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum-β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2016;72(3):906–13.
  • Muhammed M, Flokas ME, Detsis M, et al. Comparison between carbapenems and β-lactam/β-lactamase inhibitors in the treatment for bloodstream infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Open Forum Infect Dis. 2017;4(4):ofx099.
  • Henderson A, Paterson DL, Chatfield MD. Association between minimum inhibitory concentration, β-lactamase genes and mortality for patients treated with piperacillin/tazobactam or meropenem from the MERINO study. Clin Infect Dis. 2020;ciaa1479.
  • Tufa TB, Fuchs A, Takele BT, et al. High rate of extended-spectrum betalactamase-producing gram-negative infections and associated mortality in Ethiopia: a systematic review and meta-analysis. Antimicrob Resist Infect Cont. 2020;9(1):128.
  • Kallstrom G. Are new β-lactam/β-lactamase inhibitors viable carbapenem sparing options for treating serious infections caused by extended-spectrum β-lactamase-producing microorganisms? Infectious Dis Clin Pract. 2019;27(2):121–2.
  • Khanna NR, Gerriets N. Beta-lactamase inhibitors. In: StatPearls Publishing. Treasure Island (FL); 2024.
  • Yahav D, Giske CG, Grāmatniece A, et al. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34(1):e00115-20.
  • Haines RR, Putsathit P, Hammer KA. Activity of newest generation β-lactam/β-lactamase inhibitor combination therapies against multidrug resistant Pseudomonas aeruginosa. Sci Rep. 2022;12(1):16814.
  • Mojica MF, Maria-Agustina R, Alejandro JV, et al. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022;22(9):e28–e34.
  • Varshaa A, Debasish K. Biochemical exploration of beta-lactamase inhibitors. Front Genet. 2023;13:1–11.
  • Harris PNA, Tambyah PA, Paterson DL. β-lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15(5):475–85.
  • Thamlikitkul V, Lorchirachoonkul N, Tiengrim S. In vitro and in vivo activity of tebipenem against ESBL-producing E. coli. J Med Assoc Thai. 2014;97(11):1259-68.
  • Johnson A, McEntee L, Farrington N, et al. Pharmacodynamics of cefepime combined with the novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(6):e00180-20.
  • Liu X, Dong S, Ma Y, et al. N-(Sulfamoylbenzoyl)-L-proline Derivatives as Potential Non-β-lactam ESBL Inhibitors: Structure-Based Lead Identification, Medicinal Chemistry and Synergistic Anti-bacterial Activities. Med Chem. 2019;15(3):196–206.
  • Baig M, Shakil S, Khan A. Homology modeling and docking study of recent SHV type β-lactamses with traditional and novel inhibitors: an in silico approach to combat problem of multiple drug resistance in various infections. Med Chem Res. 2011;21(8):2229–37.
  • Bassetti M, Giacobbe D, Castaldo N, et al. Role of new antibiotics in extended-spectrum β-lactamase-, AmpC- infections. Curr Opin Infect Dis. 2021;34(6):748–55.
  • Sheu C, Lin S, Chang Y, et al. Management of infections caused by extended-spectrum β–lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev Anti Infect Ther. 2018;16(3):205–18.
  • Sfeir M, Askin G, Christos P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: systematic review and meta-analysis. Int J Antimicrob Agents. 2018;525(4):554–70.
  • Son S, Lee N, Ko J, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2631–42.
  • Huang T, Wu H, Yang S, et al. Global trends of researches on sacral fracture surgery: A bibliometric study based on VOSviewer. Spine. 2020;45(10):E721–E728.
  • van Eck NJ, Waltman L. VOSviewer manual. Manual for VOSviewer version, 2011, 1.0.
  • van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(3):523–38.
  • Kaushik A, Ammerman NC, Lee J, et al. In vitro activity of the new β-lactamase inhibitors relebactam and vaborbactam in combination with β-lactams against Mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother. 2019;63(11):e02623-18.
  • Docobo-Pérez F, López-Cerero L, López-Rojas R, et al. Inoculum effect on the efficacies of amoxicillin-clavulanate, piperacillin-tazobactam, and imipenem against extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing Escherichia Coli in an experimental murine sepsis model. Antimicrob Agents Chemother. 2013;57(5):2109–13.
  • Levasseur P, Girard A-M, Miossec C, et al. In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacteriaceae, including strains with well-characterized β-lactamases. Antimicrob Agents Chemother. 2015;59(3):1931–4.
  • Zhanel GG, Lawson CD, Adam H, et al. Ceftazidime-Avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs. 2013;73(3):159–77.
  • Adeiza S, Shuaibu A. Trends in Monkeypox research: A sixty year bibliometric analysis. Microbes and Infectious Diseases. 2022;3(3):500–13.
  • Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959–75.
  • Islam MA, Adeiza SS, Amin MR, et al. A bibliometric study on Marburg virus research with prevention and control strategies. Front Trop Dis. 2023;3:1068364.
  • Suleiman AS, Abdulmalik SB, Ghazali SM. Extended Spectrum Betalactamase Research Mapping; a 32-year temporal and geographical perspective. PREPRINT (Version 3) available at Research Square, 2022.
  • Adnan S, Ullah R. Top-cited articles in regenerative endodontics: A bibliometric analysis. J Endod. 2018;44(11):1650–64.
  • Shamszadeh S, Asgary S, Nosrat A. Regenerative endodontics: A scientometric and bibliometric analysis. J Endod. 2019;45(3):272–80.
  • dos Santos FA, Matos FG, Stremel ACA, et al. A bibliometric analysis of the scientific literature on dental implants in large animal models. J Osseointegration. 2023;15(2):256–66.
  • Sweileh WM, Mansour AM. Bibliometric analysis of global research output on antimicrobial resistance in the environment (2000–2019). Glob Health Res Policy. 2020;5(1):37.
  • Bang CS, Lee JJ, Baik GH. The most influential articles in Helicobacter pylori research: A bibliometric analysis. Helicobacter. 2019;24(2):e12589.
  • O'Leary H, Gantzert T, Mann A, et al. Citation as representation: Gendered academic citation politics persist in environmental studies publications. J Environ Stud Sci. 2024;17(1):1–11.
  • van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41.
  • Eshima S, Imai K, Sasaki T. Keyword-assisted topic models. Am J Polit Sci. 2024;68(2):730–50.
There are 51 citations in total.

Details

Primary Language English
Subjects Clinical Microbiology, Medical Bacteriology
Journal Section Research Articles
Authors

Ahmed Alsharksi 0000-0003-3496-7765

Adam Mustapha 0000-0001-7218-8741

Serhat Sirekbasan 0000-0001-7967-3539

Tuğba Gürkök Tan 0000-0003-0599-5628

Publication Date April 18, 2025
Submission Date January 10, 2025
Acceptance Date March 10, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Alsharksi, A., Mustapha, A., Sirekbasan, S., Gürkök Tan, T. (2025). Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes. Abant Sağlık Bilimleri Ve Teknolojileri Dergisi, 5(1), 26-38.
AMA Alsharksi A, Mustapha A, Sirekbasan S, Gürkök Tan T. Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes. SABİTED. April 2025;5(1):26-38.
Chicago Alsharksi, Ahmed, Adam Mustapha, Serhat Sirekbasan, and Tuğba Gürkök Tan. “Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes”. Abant Sağlık Bilimleri Ve Teknolojileri Dergisi 5, no. 1 (April 2025): 26-38.
EndNote Alsharksi A, Mustapha A, Sirekbasan S, Gürkök Tan T (April 1, 2025) Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes. Abant Sağlık Bilimleri ve Teknolojileri Dergisi 5 1 26–38.
IEEE A. Alsharksi, A. Mustapha, S. Sirekbasan, and T. Gürkök Tan, “Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes”, SABİTED, vol. 5, no. 1, pp. 26–38, 2025.
ISNAD Alsharksi, Ahmed et al. “Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes”. Abant Sağlık Bilimleri ve Teknolojileri Dergisi 5/1 (April 2025), 26-38.
JAMA Alsharksi A, Mustapha A, Sirekbasan S, Gürkök Tan T. Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes. SABİTED. 2025;5:26–38.
MLA Alsharksi, Ahmed et al. “Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes”. Abant Sağlık Bilimleri Ve Teknolojileri Dergisi, vol. 5, no. 1, 2025, pp. 26-38.
Vancouver Alsharksi A, Mustapha A, Sirekbasan S, Gürkök Tan T. Bibliometric Analysis of New Inhibitors Targeting Extended Spectrum Beta-Lactamase Enzymes. SABİTED. 2025;5(1):26-38.