Review Article
BibTex RIS Cite

Gut-Brain Axis and Two Major Neurodegenerative Diseases: A Literature Review on the Role of Microbiota

Year 2025, Volume: 1 Issue: 1, 1 - 11, 01.05.2025

Abstract

The gut-brain axis is a term that describes the intricate bidirectional communication network between the digestive system and the nervous system through various pathways. The most popular and undoubtedly the most decisive component of this axis is the microbiota. The microbiota is closely related to many systems and one of these systems is the nervous system. Although studies on the role of the microbiota in diseases have been conducted for many years, interest in this field has begun to increase, especially in the last decade with promising results and the widespread use of techniques such as 16S rRNA sequencing. Uncovering different factors in disease processes opens the door to a more integrated and effective approach in treatment modalities. Microbiota, one of the most mysterious examples of these factors, both brings a new perspective to the standard models of diseases and encourages new studies with valuable data. Therefore, further studies on this topic, which is a candidate to be defined as a common pathway in the background of system/organ-specific physiopathological models, is noteworthy in terms of its potential to bring a breath of fresh air to diseases that are felt desperate.

Ethical Statement

Since no live subjects were used in the research, there are no ethical issues.

Supporting Institution

The research was not funded by any institution or organization.

Thanks

We would like to thank the editors of Sanatorium Medical Journal for inviting us to write this article.

References

  • 1. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009 May;6(5):306-14. doi: 10.1038/nrgastro.2009.35.
  • 2. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019 Oct 1;99(4):1877-2013. doi: 10.1152/physrev.00018.2018.
  • 3. Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. Neurogastroenterol Motil. 2012 May;24(5):405-13. doi: 10.1111/j.1365-2982.2012.01906.x.
  • 4. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013 Dec;13(6):935-40. doi: 10.1016/j.coph.2013.09.008.
  • 5. Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol. 2021 Aug;29(8):686-699. doi: 10.1016/j.tim.2020.11.007.
  • 6. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015 Mar 2;125(3):926-38. doi: 10.1172/JCI76304.
  • 7. Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother. 2024 Sep;178:117207. doi: 10.1016/j.biopha.2024.117207.
  • 8. Obata Y, Pachnis V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology. 2016 Nov;151(5):836-844. doi: 10.1053/j.gastro.2016.07.044.
  • 9. Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome. 2021 Oct 26;9(1):210. doi: 10.1186/s40168-021-01165-z.
  • 10. Waise TMZ, Dranse HJ, Lam TKT. The metabolic role of vagal afferent innervation. Nat Rev Gastroenterol Hepatol. 2018 Oct;15(10):625-636. doi: 10.1038/s41575-018-0062-1.
  • 11. Kresl P, Rahimi J, Gelpi E, Aldecoa I, Ricken G, Danics K, Keller E, Kovacs GG. Accumulation of prion protein in the vagus nerve in creutzfeldt-jakob disease. Ann Neurol. 2019 May;85(5):782-787. doi: 10.1002/ana.25451.
  • 12. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016 May 27;16(6):341-52. doi: 10.1038/nri.2016.42.
  • 13. Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol. 2020 Dec 10;11:604179. doi: 10.3389/fimmu.2020.604179.
  • 14. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004 Jul 1;558(Pt 1):263-75. doi: 10.1113/jphysiol.2004.063388.
  • 15. Klug M, Hill RA, Choy KH, Kyrios M, Hannan AJ, van den Buuse M. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis. 2012 Jun;46(3):722-31. doi: 10.1016/j.nbd.2012.03.015.
  • 16. Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Prog Mol Biol Transl Sci. 2020;176:43-110. doi: 10.1016/bs.pmbts.2020.08.012.
  • 17. Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018 Apr 12;6(2):133-148. doi: 10.1016/j.jcmgh.2018.04.003.
  • 18. Tran SM, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients. 2021 Feb 25;13(3):732. doi: 10.3390/nu13030732.
  • 19. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19;6(263):263ra158. doi: 10.1126/scitranslmed.3009759. Erratum in: Sci Transl Med. 2014 Dec 10;6(266):266er7. Guan, Ng Lai [corrected to Ng, Lai Guan].
  • 20. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016 Oct;99:110-132. doi: 10.1016/j.neuint.2016.06.011.
  • 21. Salami M, Soheili M. The microbiota-gut- hippocampus axis. Front Neurosci. 2022 Dec 23;16:1065995. doi: 10.3389/fnins.2022.1065995.
  • 22. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018 Oct 1;10(10):1398. doi: 10.3390/nu10101398.
  • 23. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57-63. doi: 10.1038/nature09922.
  • 24. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008 Jan;33(1):18-41. doi: 10.1038/sj.npp.1301559.
  • 25. Madison DV, Malenka RC, Nicoll RA. Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci. 1991;14:379-97. doi: 10.1146/annurev.ne.14.030191.002115.
  • 26. Gage FH. Mammalian neural stem cells. Science. 2000 Feb 25;287(5457):1433-8. doi: 10.1126/science.287.5457.1433.
  • 27. Agnihotri N, Mohajeri MH. Involvement of Intestinal Microbiota in Adult Neurogenesis and the Expression of Brain-Derived Neurotrophic Factor. Int J Mol Sci. 2022 Dec 14;23(24):15934. doi: 10.3390/ijms232415934.
  • 28. Tang W, Meng Z, Li N, Liu Y, Li L, Chen D, Yang Y. Roles of Gut Microbiota in the Regulation of Hippocampal Plasticity, Inflammation, and Hippocampus-Dependent Behaviors. Front Cell Infect Microbiol. 2021 Jan 27;10:611014. doi: 10.3389/fcimb.2020.611014.
  • 29. Ghezzi L, Cantoni C, Rotondo E, Galimberti D. The Gut Microbiome-Brain Crosstalk in Neurodegenerative Diseases. Biomedicines. 2022 Jun 23;10(7):1486. doi: 10.3390/biomedicines10071486.
  • 30. Duong S, Patel T, Chang F. Dementia: What pharmacists need to know. Can Pharm J (Ott). 2017 Feb 7;150(2):118-129. doi: 10.1177/1715163517690745.
  • 31. Shin JH. Dementia Epidemiology Fact Sheet 2022. Ann Rehabil Med. 2022 Apr;46(2):53-59. doi: 10.5535/arm.22027.
  • 32. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022 Feb;7(2):e105-e125. doi: 10.1016/S2468-2667(21)00249-8.
  • 33. Gareau MG. Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol. 2014;817:357-71. doi: 10.1007/978-1-4939-0897-4_16.
  • 34. Arnoriaga-Rodríguez M, Fernández-Real JM. Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Rev Endocr Metab Disord. 2019 Dec;20(4):473-480. doi: 10.1007/s11154-019-09537-5.
  • 35. Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Diet, gut microbiota and cognition. Metab Brain Dis. 2017 Feb;32(1):1-17. doi: 10.1007/s11011-016-9917-8.
  • 36. Livingston G, Huntley J, Liu KY, Costafreda SG, Selbæk G, Alladi S, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet. 2024 Aug 10;404(10452):572-628. doi: 10.1016/S0140-6736(24)01296-0.
  • 37. Santiago JA, Potashkin JA. The Impact of Disease Comorbidities in Alzheimer's Disease. Front Aging Neurosci. 2021 Feb 12;13:631770. doi: 10.3389/fnagi.2021.631770.
  • 38. Zvěřová M. Clinical aspects of Alzheimer's disease. Clin Biochem. 2019 Oct;72:3-6. doi: 10.1016/j.clinbiochem.2019.04.015.
  • 39. Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol. 2023 May;211:115522. doi: 10.1016/j.bcp.2023.115522.
  • 40. Walker KA, Ficek BN, Westbrook R. Understanding the Role of Systemic Inflammation in Alzheimer's Disease. ACS Chem Neurosci. 2019 Aug 21;10(8):3340-3342. doi: 10.1021/acschemneuro.9b00333.
  • 41. Xie J, Van Hoecke L, Vandenbroucke RE. The Impact of Systemic Inflammation on Alzheimer's Disease Pathology. Front Immunol. 2022 Jan 6;12:796867. doi: 10.3389/fimmu.2021.796867.
  • 42. Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017 Sep 29;13(10):612-623. doi: 10.1038/nrneurol.2017.111. Erratum in: Nat Rev Neurol. 2017 Nov;13(11):703. doi: 10.1038/nrneurol.2017.147.
  • 43. Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, et al. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res. 2020 Jan;151:104582. doi: 10.1016/j.phrs.2019.104582.
  • 44. Liu S, Dashper SG, Zhao R. Association Between Oral Bacteria and Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2023;91(1):129-150. doi: 10.3233/JAD-220627.
  • 45. Pruntel SM, van Munster BC, de Vries JJ, Vissink A, Visser A. Oral Health as a Risk Factor for Alzheimer Disease. J Prev Alzheimers Dis. 2024;11(1):249-258. doi: 10.14283/jpad.2023.82.
  • 46. Chen J, Li T, Ye C, Zhong J, Huang JD, Ke Y, Sun H. The Lung Microbiome: A New Frontier for Lung and Brain Disease. Int J Mol Sci. 2023 Jan 21;24(3):2170. doi: 10.3390/ijms24032170.
  • 47. Liang Y, Liu C, Cheng M, Geng L, Li J, Du W, et al. The link between gut microbiome and Alzheimer's disease: From the perspective of new revised criteria for diagnosis and staging of Alzheimer's disease. Alzheimers Dement. 2024 Aug;20(8):5771-5788. doi: 10.1002/alz.14057.
  • 48. Das TK, Blasco-Conesa MP, Korf J, Honarpisheh P, Chapman MR, Ganesh BP. Bacterial Amyloid Curli Associated Gut Epithelial Neuroendocrine Activation Predominantly Observed in Alzheimer's Disease Mice with Central Amyloid-β Pathology. J Alzheimers Dis. 2022;88(1):191-205. doi: 10.3233/JAD-220106.
  • 49. Seo DO, Holtzman DM. Current understanding of the Alzheimer's disease-associated microbiome and therapeutic strategies. Exp Mol Med. 2024 Feb;56(1):86-94. doi: 10.1038/s12276-023-01146-2.
  • 50. Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci. 2023 Sep 18;17:1242254. doi: 10.3389/fnins.2023.1242254.
  • 51. Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev. 2022 Oct;141:104814. doi: 10.1016/j.neubiorev.2022.104814.
  • 52. Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Mol Neurodegener. 2023 Feb 1;18(1):9. doi: 10.1186/s13024-023-00595-7.
  • 53. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep. 2017 Oct 19;7(1):13537. doi: 10.1038/s41598-017-13601-y.
  • 54. Troci A, Philippen S, Rausch P, Rave J, Weyland G, Niemann K, et al. Disease- and stage-specific alterations of the oral and fecal microbiota in Alzheimer's disease. PNAS Nexus. 2023 Dec 11;3(1):pgad427. doi: 10.1093/pnasnexus/pgad427.
  • 55. He B, Sheng C, Yu X, Zhang L, Chen F, Han Y. Alterations of gut microbiota are associated with brain structural changes in the spectrum of Alzheimer's disease: the SILCODE study in Hainan cohort. Front Aging Neurosci. 2023 Jul 14;15:1216509. doi: 10.3389/fnagi.2023.1216509.
  • 56. Li H, Cui X, Lin Y, Huang F, Tian A, Zhang R. Gut microbiota changes in patients with Alzheimer's disease spectrum based on 16S rRNA sequencing: a systematic review and meta-analysis. Front Aging Neurosci. 2024 Aug 8;16:1422350. doi: 10.3389/fnagi.2024.1422350.
  • 57. Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener. 2024 Feb 27;13(1):12. doi: 10.1186/s40035-024-00404-1. 58. Ayten Ş, Bilici S. Modulation of Gut Microbiota Through Dietary Intervention in Neuroinflammation and Alzheimer's and Parkinson's Diseases. Curr Nutr Rep. 2024 Jun;13(2):82-96. doi: 10.1007/s13668-024-00539-7.
  • 59. Zhang T, Gao G, Kwok LY, Sun Z. Gut microbiome-targeted therapies for Alzheimer's disease. Gut Microbes. 2023 Dec;15(2):2271613. doi: 10.1080/19490976.2023.2271613.
  • 60. Liao W, Wei J, Liu C, Luo H, Ruan Y, Mai Y, et al. Magnesium-L-threonate treats Alzheimer's disease by modulating the microbiota-gut-brain axis. Neural Regen Res. 2024 Oct 1;19(10):2281-2289. doi: 10.4103/1673-5374.391310.
  • 61. World Health Organization. Parkinson disease: a public health approach: technical brief. 2022. Available from: https://iris.who.int/handle/10665/355973. License: CC BY-NC-SA 3.0 IGO.
  • 62. Konings B, Villatoro L, Van den Eynde J, Barahona G, Burns R, McKnight M, et al. Gastrointestinal syndromes preceding a diagnosis of Parkinson's disease: testing Braak's hypothesis using a nationwide database for comparison with Alzheimer's disease and cerebrovascular diseases. Gut. 2023 Nov;72(11):2103-2111. doi: 10.1136/gutjnl-2023-329685.
  • 63. Park H, Lee JY, Shin CM, Kim JM, Kim TJ, Kim JW. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes. Parkinsonism Relat Disord. 2015 May;21(5):455-60. doi: 10.1016/j.parkreldis.2015.02.005.
  • 64. Savica R, Carlin JM, Grossardt BR, Bower JH, Ahlskog JE, Maraganore DM, Bharucha AE, Rocca WA. Medical records documentation of constipation preceding Parkinson disease: A case-control study. Neurology. 2009 Nov 24;73(21):1752-8. doi: 10.1212/WNL.0b013e3181c34af5.
  • 65. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022 Nov;22(11):657-673. doi: 10.1038/s41577-022-00684-6.
  • 66. Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, et al. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis. 2021 Jul 26;7(1):65. doi: 10.1038/s41531-021-00203-9.
  • 67. Wang L, Das U, Scott DA, Tang Y, McLean PJ, Roy S. α-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr Biol. 2014 Oct 6;24(19):2319-26. doi: 10.1016/j.cub.2014.08.027.
  • 68. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J Neurol. 2002 Oct;249 Suppl 3:III/1-5. doi: 10.1007/s00415-002-1301-4.
  • 69. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003 May;110(5):517-36. doi: 10.1007/s00702-002-0808-2.
  • 70. Visanji NP, Brooks PL, Hazrati LN, Lang AE. The prion hypothesis in Parkinson's disease: Braak to the future. Acta Neuropathol Commun. 2013 May 8;1:2. doi: 10.1186/2051-5960-1-2.
  • 71. Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, et al. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res. 2023 Aug 24;452:114574. doi: 10.1016/j.bbr.2023.114574.
  • 72. Arotcarena ML, Dovero S, Prigent A, Bourdenx M, Camus S, Porras G, et al. Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain. 2020 May 1;143(5):1462-1475. doi: 10.1093/brain/awaa096.
  • 73. Sumikura H, Takao M, Hatsuta H, Ito S, Nakano Y, Uchino A, et al. Distribution of α-synuclein in the spinal cord and dorsal root ganglia in an autopsy cohort of elderly persons. Acta Neuropathol Commun. 2015 Sep 15;3:57. doi: 10.1186/s40478-015-0236-9.
  • 74. Liu Z, Chan RB, Cai Z, Liu X, Wu Y, Yu Z, et al. α-Synuclein-containing erythrocytic extracellular vesicles: essential contributors to hyperactivation of monocytes in Parkinson's disease. J Neuroinflammation. 2022 Feb 22;19(1):53. doi: 10.1186/s12974-022-02413-1.
  • 75. Sampson TR, Challis C, Jain N, Moiseyenko A, Ladinsky MS, Shastri GG, et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. Elife. 2020 Feb 11;9:e53111. doi: 10.7554/eLife.53111.
  • 76. Haikal C, Ortigosa-Pascual L, Najarzadeh Z, Bernfur K, Svanbergsson A, Otzen DE, Linse S, Li JY. The Bacterial Amyloids Phenol Soluble Modulins from Staphylococcus aureus Catalyze Alpha-Synuclein Aggregation. Int J Mol Sci. 2021 Oct 27;22(21):11594. doi: 10.3390/ijms222111594.
  • 77. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord. 2015 Mar;30(3):350-8. doi: 10.1002/mds.26069.
  • 78. Aho VTE, Houser MC, Pereira PAB, Chang J, Rudi K, Paulin L, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease. Mol Neurodegener. 2021 Feb 8;16(1):6. doi: 10.1186/s13024-021-00427-6.
  • 79. Chen SJ, Chen CC, Liao HY, Lin YT, Wu YW, Liou JM, et al. Association of Fecal and Plasma Levels of Short-Chain Fatty Acids With Gut Microbiota and Clinical Severity in Patients With Parkinson Disease. Neurology. 2022 Feb 22;98(8):e848-e858. doi: 10.1212/WNL.0000000000013225.
  • 80. Julio-Pieper M, Bravo JA, Aliaga E, Gotteland M. Review article: intestinal barrier dysfunction and central nervous system disorders--a controversial association. Aliment Pharmacol Ther. 2014 Nov;40(10):1187-201. doi: 10.1111/apt.12950.
  • 81. Salat-Foix D, Tran K, Ranawaya R, Meddings J, Suchowersky O. Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci. 2012 Mar;39(2):185-8. doi: 10.1017/s0317167100013202.
  • 82. Babacan Yildiz G, Kayacan ZC, Karacan I, Sumbul B, Elibol B, Gelisin O, Akgul O. Altered gut microbiota in patients with idiopathic Parkinson's disease: an age-sex matched case-control study. Acta Neurol Belg. 2023 Jun;123(3):999-1009. doi: 10.1007/s13760-023-02195-0.
  • 83. Bunnett NW. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. J Physiol. 2014 Jul 15;592(14):2943-50. doi: 10.1113/jphysiol.2014.271155.
  • 84. Li P, Killinger BA, Ensink E, Beddows I, Yilmaz A, Lubben N, et al. Gut Microbiota Dysbiosis Is Associated with Elevated Bile Acids in Parkinson's Disease. Metabolites. 2021 Jan 4;11(1):29. doi: 10.3390/metabo11010029.
  • 85. Bai F, You L, Lei H, Li X. Association between increased and decreased gut microbiota abundance and Parkinson's disease: A systematic review and subgroup meta-analysis. Exp Gerontol. 2024 Jun 15;191:112444. doi: 10.1016/j.exger.2024.112444.
  • 86. Zhou S, Li B, Deng Y, Yi J, Mao G, Wang R, et al. Meta-analysis of the relations between gut microbiota and pathogens and Parkinson's disease. Adv Clin Exp Med. 2023 Jun;32(6):613-621. doi: 10.17219/acem/157193.
  • 87. Lin CH, Chen CC, Chiang HL, Liou JM, Chang CM, Lu TP, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease. J Neuroinflammation. 2019 Jun 27;16(1):129. doi: 10.1186/s12974-019-1528-y.
  • 88. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021 Mar 10;7(1):27. doi: 10.1038/s41531-021-00156-z.
  • 89. Bruggeman A, Vandendriessche C, Hamerlinck H, De Looze D, Tate DJ, Vuylsteke M, et al. Safety and efficacy of faecal microbiota transplantation in patients with mild to moderate Parkinson's disease (GUT-PARFECT): a double-blind, placebo-controlled, randomised, phase 2 trial. EClinicalMedicine. 2024 Mar 27;71:102563. doi: 10.1016/j.eclinm.2024.102563.
There are 88 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Invited Review
Authors

Turay Mutlu 0000-0002-6100-1678

Buğra Selluncak 0009-0007-5516-9179

Ismet Melek 0000-0002-0599-4695

Early Pub Date April 28, 2025
Publication Date May 1, 2025
Submission Date March 17, 2025
Acceptance Date March 31, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

Vancouver Mutlu T, Selluncak B, Melek I. Gut-Brain Axis and Two Major Neurodegenerative Diseases: A Literature Review on the Role of Microbiota. Sanatorium Med J. 2025;1(1):1-11.

Sanatorium Medical Journal is a peer-reviewed, open-access journal dedicated to medical research. 

Sanatorium Medical Journal by Atatürk Sanatoryum Training and Research Hospital is licensed under CC BY-NC-SA 4.0