Review
BibTex RIS Cite

BİOMİMETİC DENTİSTRY

Year 2025, Volume: 12 Issue: 1, 149 - 156, 21.04.2025
https://doi.org/10.15311/selcukdentj.1448008

Abstract

ABSTRACT: In the oral cavity, remineralization and demineralization processes are in
delicate balance. Disruption of this balance can lead to the development of carious lesions
Initial carious lesions can be prevented from cavitation through remineralization, thus
preserving dental structure without the need for challenging treatments as decay progresses.
In the prevention of dental caries, while fluoride has long played an effective role supported
by numerous studies, recent focus has shifted towards the use of bioactive formulations such
as micro and nano hydroxyapatite, tricalcium phosphate, and bioactive glass, considering
their biological compatibility, remineralization capacities, and ability to mimic natural
processes. Recent research on remineralization relies on biomimetic remineralization
materials capable of forming apatite crystals within completely demineralized collagen
fibers. Nanostructured materials, having higher surface-to-volume ratios compared to
microstructured ones, exhibit superior properties. Examples of nanostructured materials
include calcium fluoride nanoparticles, calcium phosphate-based nanomaterials,
nanobioactive glass materials, and nanohydroxyapatite particles. These nanoparticle-
containing biomimetic materials have become a significant component in minimal invasive
treatments and preservation of natural dental structure in dentistry. Designed to provide
results closest to natural dental tissue, these materials ensure the longevity of dental
restorations.
Biomimetic dentistry is a discipline within restorative dentistry that aims to mimic the natural
structure, function, and aesthetics of teeth. The fundamental principle of biomimetic dentistry
is to restore lost dental tissues with materials possessing appropriate mechanical strength to
regain full function while preserving aesthetic outcomes. With a focus on mimicking natural
dental structure, research efforts have been intensified on adhesive restorative materials.
Subsequently, this paper will examine biomimetic restorative materials and treatment options
based on diagnoses related to substance loss in dental tissues.

References

  • 1. Paryani M, Bhojwani P. R, Ikhar A, Reche A, & Paul P. Evolution of Biomimetic Approaches for Regenerative and Restorative Dentistry. Cureus. 2023; 15(1). 2. Jelinek R. Biomimetics: A molecular perspective: Walter de Gruyter. (2013). 3. Nie Z, Zhang Y, Tang R, & Wang X. Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. Journal of Inorganic Biochemistry. 2022; 232: 111815. 4. Zan G, & Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Advanced Materials. 2016; 28(11): 2099-2147.
  • 5. Subramani K, & Ahmed W. (Eds.). Nanobiomaterials in clinical dentistry. William Andrew. (2012).
  • 6. Pires P. M, Neves A. D. A, Makeeva I. M, Schwendicke F, Faus-Matoses V, Yoshihara K, & Sauro S. Contemporary restorative ion-releasing materials: Current status, interfacial properties and operative approaches. British Dental Journal. 2020; 229(7): 450-458.
  • 7. Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiological reviews. 2017; 97(3): 939-993.
  • 8. Acevedo A. M, Montero M, Rojas-Sanchez F, Machado C, & Rivera L. E. Clinical evaluation of the ability of Cavistat® in a mint confection to inhibit the development of dental caries in children. (2008).
  • 9. Grohe B, & Mittler S. Advanced non-fluoride approaches to dental enamel remineralization: The next level in enamel repair management. Biomaterials and Biosystems. 2021; 4: 100029.
  • 10. Abou Neel E. A, Aljabo A, Strange A, Ibrahim S, Coathup M, Young A. M, & Mudera, V. Demineralization–remineralization dynamics in teeth and bone. International journal of nanomedicine. 2016; 4743-4763.
  • 11. Lemos J. A, Palmer S. R, Zeng L, Wen Z. T, Kajfasz J. K, Freires I. A, & Brady L. J. The biology of Streptococcus mutans. Microbiology spectrum. 2019; 7(1): 1000-1128.
  • 12. West N. X, & Joiner A. Enamel mineral loss. Journal of dentistry. 2014; 42: S2-S11.
  • 13. Denis, M, Atlan A, Vennat E, Tirlet G, & Attal J. P. White defects on enamel: diagnosis and anatomopathology: two essential factors for proper treatment (part 1). International orthodontics. 2013; 11(2): 139-165.
  • 14. Daruich P. M, & Brizuela M. Remineralization of initial carious lesions. In StatPearls [Internet]. StatPearls Publishing. (2023).
  • 15. Gevkaliuk N. O & Nazarenko I. V. Morphological structure of enamel caries in the dynamic process of demineralization and remineralization. Regulatory Mechanisms in Biosystems. 2023; 14(3): 333-340.
  • 16. Baiju R. M & Thomas S. Nanotechnology for Oral Disease Prevention. In Nanomaterials in Dental Medicine Singapore. Springer Nature Singapore. 2023; pp. 51-73
  • 17. Enax J, Amaechi B. T, Farah R, Liu J. A, Schulze zur Wiesche E & Meyer F. (2023). Remineralization strategies for teeth with molar incisor hypomineralization (MIH): A literature review. Dentistry Journal. 2023; 11(3): 80.
  • 18. Singer L, Fouda A, & Bourauel C. Biomimetic approaches and materials in restorative and regenerative dentistry. BMC Oral Health. 2023; 23(1): 105.
  • 19. Malcangi G, Patano A, Morolla R, De Santis M, Piras F, Settanni V & Inchingolo A. M. Analysis of dental enamel remineralization: a systematic review of technique comparisons. Bioengineering. 2023; 10(4): 472.
  • 20. Gandolfi M. G, Taddei P, Zamparini F, Ottolenghi L, Polimeni A & Prati C. Dentine surface modification and remineralization induced by bioactive toothpastes. International Journal of Dental Hygiene. 2024; 22(3): 554-574.
  • 21. Malcangi G, Patano A, Morolla R, De Santis M, Piras F, Settanni V & Inchingolo A. M. Analysis of dental enamel remineralization: a systematic review of technique comparisons. Bioengineering. 2023; 10(4): 472.
  • 22. Xavier G. D, Thomas G, Jose S, Vivek V. J, Selvam K & Ramakrishnan, A. Comparative evaluation of remineralization potential of four different remineralization agents on human enamel: An in vitro study. Journal of Conservative Dentistry and Endodontics. 2024; 27(1): 29-35.
  • 23. Zhang O. L, Niu J. Y, Yin I. X, Yu O. Y, Mei M. L & Chu C. H. Bioactive materials for caries management: A literature review. Dentistry Journal. 2023; 11(3): 59.
  • 24. Lubojanski A, Piesiak-Panczyszyn D, Zakrzewski W, Dobrzynski W, Szymonowicz M, Rybak Z & Dobrzynski M. The safety of fluoride compounds and their effect on the human body—A narrative review. Materials. 2023; 16(3): 1242.
  • 25. Ubolsa-Ard P, Sanon K, Hiraishi N, Sayed M, Sakamaki Y, Yiu C. K. Y &Shimada Y. Influence of surface pre-reacted glass-ionomer (S-PRG) filler eluate on collagen morphology, remineralization, and ultimate tensile strength of demineralized dentin. Journal of the Mechanical Behavior of Biomedical Materials. 2024; 150: 106295.
  • 26. Delikan E, Erturk-Avunduk A. T, Karatas O & Saçmacı Ş. Effect of topical fluoride applications on residual monomer release from resin-based restorative materials. BMC Oral Health, 2023; 23(1): 1.
  • 27. Hunwin K, Page G, Edgar M, Botana A, Armitage R, Bhogadia M & Grootveld M. Physicochemical properties, biological chemistry and mechanisms of action of caries-arresting diammine-silver (I) fluoride and silver (I)-fluoride solutions for clinical use: a critical review. Frontiers in Oral Health. 2024; 5.
  • 28. Bhat Y, Babaji P, Kamalaksharappa S. K, Chandrappa P. M & Ambareen Z. Silver Diamine Fluoride: A Literature Review. (2023).
  • 29. Ameen S. M. Natural Dentin Remineralizing Agents. Natural Conservative Dentistry: An Alternative Approach to Solve Restorative Problems. 2024; 59.
  • 30. Petersen P. E & Lennon M. A. Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community dentistry and oral epidemiology. 2004; 32(5): 319-321.
  • 31. König K. G. Role of fluoride toothpastes in a caries-preventive strategy. Caries Research. 1993; 27: 23-23.
  • 32. Villa O, Ramberg P, Fukui H, Emilson C. G, Papanikolaou G, Heijl L & Birkhed D. Interaction between chlorhexidine and fluoride in a mouthrinse solution—a 4-day and 6-week randomized clinical pilot study. Clinical oral investigations. 2018; 22: 1439-1448.
  • 33. Baik A, Alamoudi N, El-Housseiny A & Altuwirqi A. Fluoride varnishes for preventing occlusal dental caries: A review. Dentistry journal. 2021; 9(6): 64.
  • 34. Weyant R. J, Tracy S. L, Anselmo T. T, Beltrán-Aguilar E. D, Donly K. J, Frese W. A & on Scientific A.D.A.C. Topical fluoride for caries prevention. The Journal of the American Dental Association. 2013; 144(11): 1279-1291.
  • 35. Bonetti D & Clarkson J. E. Fluoride varnish for caries prevention: efficacy and implementation. Caries Research. 2016; 50(Suppl. 1): 45-49.
  • 36. Kaur S, Bhola M, Bajaj N & Brar G. S. Neoteric Non-Fluoride Enamel Remineralization Systems: A Review. Baba Farid University Dental Journal. 2021; 11(1): 64-72.
  • 37. Zhang J, Mylonas P & Banerjee A. Mineralizing agents to manage early carious lesions. Part I: mode of action. Dental Update. 2023; 50(6): 490-497.
  • 38. Reynolds E. C. Calcium phosphate‐based remineralization systems: scientific evidence? Australian Dental Journal. 2008; 53(3): 268-273.
  • 39. Divyapriya G. K, Yavagal P. C & Veeresh D. J. Casein phosphopeptide-amorphous calcium phosphate in dentistry: An update. International Journal of Oral Health Sciences. 2016; 6(1): 18-25.
  • 40. Hsu S. M, Alsafadi M, Vasconez C, Fares C, Craciun V, O’Neill E & Esquivel-Upshaw J. Qualitative analysis of remineralization capabilities of bioactive glass (NovaMin) and fluoride on hydroxyapatite (HA) discs: an in vitro study. Materials. 2021; 14(14): 3813.
  • 41. Khijmatgar S, Reddy U, John S, Badavannavar A. N, Souza T. D. Is there evidence for Novamin application in remineralization? A systematic review. Journal of Oral Biology and Craniofacial Research. 2021; 10(2): 87-92.
  • 42. Niu L. N, Zhang W, Pashley D. H, Breschi L, Mao J, Chen J. H & Tay F. R. Biomimetic remineralization of dentin. Dental materials. 2014; 30(1): 77-96.
  • 43. Ivanisenko Y, Darbandi A, Dasgupta S, Kruk R & Hahn H. Bulk Nanostructured Materials: Non‐Mechanical Synthesis. Advanced Engineering Materials. 2010; 12(8): 666-676.
  • 44. Priya G. B, Archana P, Kumari V & Balaji S. Nanobiomaterials in Preventive AND Restorative Dentistry–A Review. Journal of Coastal Life Medicine. 2023; 11: 3037-3045.
  • 45. Bordea I. R, Candrea S, Alexescu G. T, Bran S, Băciuț M, Băciuț G & Todea D. A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug metabolism reviews. 2020; 52(2): 319-332.
  • 46. Yousefi A. M, Oudadesse H, Akbarzadeh R, Wers E & Lucas-Girot A. Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnology Reviews. 2014; 3(6): 527-552.
  • 47. Pupilli F, Ruffini A, Dapporto M, Tavoni M, Tampieri A & Sprio S. Design strategies and biomimetic approaches for calcium phosphate scaffolds in bone tissue regeneration. Biomimetics. 2022; 7(3): 112.
  • 48. Vano M, Derchi G, Barone A & Covani U. Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: A double-blind randomized controlled trial. Quintessence international. 2014; 45(8).
  • 49. Kalra D. D, Kalra R. D, Kini P. V & Prabhu C. A. Nonfluoride remineralization: An evidence-based review of contemporary technologies. J Dent Allied Sci. 2014; 3(1): 24-33.
  • 50. Nagmode D. P, Gündap D. G, Abraham D. S. & Lokhande D. N. Novel remineralizing agents in tooth repair: A review. Indian Journal of Clinical Research in Dentistry. 2022; 3(1): 1-6.
  • 51. Lin Y, Chen J, Zhou X & Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Critical Reviews in Microbiology. 2021; 47(5): 667-677.
  • 52. Ly K. A, Milgrom P & Rothen M. Xylitol, sweeteners, and dental caries. Pediatric Dentistry. 2006; 28(2): 154-163.
  • 53. Banerjee P. Evaluation of Microleakage, Shear Bond Strength and Resin Tag Formation Following the Use of Natural Collagen Cross Linker, Grape Seed Extract on Primary Molars: An in Vitro Study (Master's thesis, Rajiv Gandhi University of Health Sciences (India)). (2020).
  • 54. Hamed I, Özogul F & Regenstein J. M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology. 2016; 48: 40-50.
  • 55. Liu X, Wu Y, Zhao X & Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydrate Polymers. 2021; 267: 118179.
  • 56. Salama A. Recent progress in preparation and applications of chitosan/calcium phosphate composite materials. International Journal of Biological Macromolecules. 2021; 178: 240-252.
  • 57. Nimbeni S. B, Nimbeni B. S. & Divakar D. D. Role of chitosan in remineralization of enamel and dentin: A systematic review. International Journal of Clinical Pediatric Dentistry. 2021; 14(4): 562.
  • 58. Ho C. C & Ding S. J. Structure, properties and applications of mussel-inspired polydopamine. Journal of biomedical nanotechnology. 2014; 10(10): 3063-3084.
  • 59. AlShehri A. M, Kamocki K, Viana Í. E. L, Scaramucci T, Hara A, Windsor L. J & Sochacki S. F. Effect of a modified adhesive system with encapsulated arginine and calcium carbonate on dentin permeability. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2023; 111(8): 1546-1556.
  • 60. Yamashita J. M, Torres N. M, Moura‐Grec P. G, Marsicano J. A, Sales‐Peres A & Sales‐Peres S. H. D. C. Role of arginine and fluoride in the prevention of eroded enamel: an in vitro model. Australian Dental Journal. 2013; 58(4): 478-482.
  • 61. Orilisi G, Vitiello F, Notarstefano V, Furlani M, Riberti N, Monterubbianesi R & Putignano A. Multidisciplinary evaluation of the remineralization potential of three fluoride-based toothpastes on natural white spot lesions. Clinical oral investigations. 2023; 27(12): 7451-7462.
  • 62. Badiee M, Jafari N, Fatemi S, Ameli N, Kasraei S & Ebadifar A. Comparison of the effects of toothpastes containing nanohydroxyapatite and fluoride on white spot lesions in orthodontic patients: A randomized clinical trial. Dental Research Journal. 2020; 17(5): 354-359.
  • 63. Silva V. M, Massaro C, Buzalaf M. A. R, Janson G & Garib D. Prevention of non-cavitated lesions with fluoride and xylitol varnishes during orthodontic treatment: A randomized clinical trial. Clinical Oral Investigations. 2021; 25: 3421-3430.
  • 64. Kau C. H, Wang J, Palombini A, Abou-Kheir N & Christou T. Effect of fluoride dentifrices on white spot lesions during orthodontic treatment: a randomized trial. The Angle Orthodontist. 2019; 89(3): 365-371.
  • 65. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore R. C & Aggeli A. Self-assembling peptide scaffolds promote enamel remineralization. Journal of Dental Research. 2007; 86(5): 426-430.
  • 66. Zafar M. S, Amin F, Fareed M. A, Ghabbani H, Riaz S, Khurshid Z & Kumar N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 2020; 5(3): 34.
  • 67. Almuhaiza M. Glass-ionomer cements in restorative dentistry: A critical appraisal. J Contemp Dent Pract. 2016; 17(4): 331-336.
  • 68. Lohbauer U. Dental glass ionomer cements as permanent filling materials?—Properties, limitations future trends. Materials. 2009; 3(1): 76-96.
  • 69. Mohammed N. Y, Sharaf A. A, Talaat D. M & Hanafi S. A. Evaluation of shear bond strength of nanoparticles glass carbomer and high viscosity glass ionomer in primary teeth dentin (in vitro study). Alexandria Dental Journal. 2018; 43(1): 17-21.
  • 70. Menezes-Silva R, Cabral R. N, Pascotto R. C, Borges A. F. S, Martins C. C, Navarro M. F. D. L & Leal S. C. Mechanical and optical properties of conventional restorative glass-ionomer cements-a systematic review. Journal of Applied Oral Science. 2019; 27: e2018357.
  • 71. Colceriu Burtea L, Prejmerean C, Prodan D, Baldea I, Vlassa M, Filip M & Ambrosie I. New pre-reacted glass containing dental composites (giomers) with improved fluoride release and biocompatibility. Materials. 2019; 12(23): 4021.
  • 72. Dhull K. S & Nandlal B. Comparative evaluation of fluoride release from PRG-composites and compomer on application of topical fluoride: An in-vitro: study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2009; 27(1): 27-32.
  • 73. Dhull K. S & Nandlal B. Effect of low-concentration daily topical fluoride application on fluoride release of giomer and compomer: An: in vitro: study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2011; 29(1): 39-45.
  • 74. Pantulap U, Arango-Ospina M & Boccaccini A. R. Bioactive glasses incorporating less-common ions to improve biological and physical properties. Journal of Materials Science: Materials in Medicine. 2022; 33: 1-41.
  • 75. Simila H. O & Boccaccini A. R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dental Materials. 2022; 38(5): 725-747.
  • 76. Baino F, Hamzehlou S & Kargozar S. Bioactive glasses: where are we and where are we going? Journal of functional biomaterials. 2018; 9(1): 25.
  • 77. Skallevold H. E, Rokaya D, Khurshid Z & Zafar M. S. Bioactive glass applications in dentistry. International Journal of Molecular Sciences. 2019; 20(23): 5960.
  • 78. Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B & Van Landuyt K. L. Is secondary caries with composites a material-based problem? Dental Materials. 2015; 31(11): e247-e277.
  • 79. Khan A. S. & Syed M. R. A review of bioceramics-based dental restorative materials. Dental Materials Journal. 2019; 38(2): 163-176.
  • 80. Noronha V. T, Paula A. J, Durán G, Galembeck A, Cogo-Müller K, Franz-Montan M & Durán N. Silver nanoparticles in dentistry. Dental Materials. 2017; 33(10): 1110-1126.
  • 81. Carvalho S. M, Moreira C. D, Oliveira A. C. X, Oliveira A. A, Lemos E. M & Pereira M. M. Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. Nanobiomaterials in clinical dentistry. Elsevier. 2019; 351-383.
  • 82. Tülü G, Kaya B. Ü, Çetin E. S & Köle M. Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms. Odontology. 2021; 109(4): 802-811.
  • 83. Șaramet V, Meleșcanu-Imre M, Țâncu A. M. C, Albu C. C, Ripszky-Totan A & Pantea M. Molecular interactions between saliva and dental composites resins: A way forward. Materials. 2021; 14(10): 2537.
  • 84. Abouelleil H, Attik N, Chiriac R, Toche F, Ory A, Zayakh A & Pradelle-Plasse N. Comparative study of two bioactive dental materials. Dental Materials. 2024; 40(2): 297-306.
  • 85. Conti G, Veneri F, Amadori F, Garzoni A, Majorana A & Bardellini E. Evaluation of antibacterial activity of a bioactive restorative material versus a Glass-Ionomer cement on Streptococcus mutans: in-vitro study. Dentistry Journal. 2023; 11(6): 149.
  • 86. Porto I. C, Andrade A. K & Montes M. A. Diagnosis and treatment of dentinal hypersensitivity. Journal of Oral Science. 2009; 51(3): 323-332.
  • 87. Trushkowsky R. D & Oquendo A. Treatment of dentin hypersensitivity. Dental Clinics. 2011; 55(3): 599-608.
  • 88. Schmidlin P. R & Sahrmann P. Current management of dentin hypersensitivity. Clinical oral investigations. 2013; 17: 55-59.
  • 89. Mantzourani M & Sharma D. Dentine sensitivity: past, present and future. Journal of dentistry. 2013; 41: S3-S17.
  • 90. Kumar I. L. S & Ramesh S. A Novel Biomimetic Approach in Re-Mineralizing Enamel and Dentine—A Review. Biomedicine. 2019; 39(4): 514-520.
  • 91. Zafar M. S, Amin F, Fareed M. A, Ghabbani H, Riaz S, Khurshid Z & Kumar, N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 2020; 5(3): 34.
  • 92. Fang L, Zhou H, Cheng L, Wang Y, Liu F & Wang S. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Frontiers in Cellular and Infection Microbiology. 2023; 13: 1124411.
  • 93. White T. D & Folkens P. A. The human bone manual. Elsevier. (2005).
  • 94. Chu J, Feng X, Guo H, Zhang T, Zhao H & Zhang Q. Remineralization efficacy of an amelogenin-based synthetic peptide on carious lesions. Frontiers in physiology. 2018; 9: 842.
  • 95. Xu J, Shi H, Luo J, Yao H, Wang P, Li Z & Wei J. Advanced materials for enamel remineralization. Frontiers in Bioengineering and Biotechnology. 2022; 10: 985881.
  • 96. Arzate H, Zeichner‐David M & Mercado‐Celis G. Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontology 2000. 2015; 67(1): 211-233.
  • 97. Margolis H. C, Beniash E & Fowler C. E. Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of dental research. 2006; 85(9): 775-793.
  • 98. Fiorino A, Marturano A, Placella G, Staderini E, Domingo L. I, Cerulli G. G & Blasi P. Amelogenin-derived peptides in bone regeneration: A systematic review. International Journal of Molecular Sciences. 2021; 22(17): 9224.
  • 99. Baioumy Y. M. Deciphering pH Effects on the Peptide-guided Nucleation and Growth of Hydroxyapatite and Peptide-Ion Interactions for Dentin Hypersensitivity Treatment. University of Washington. (2020).
  • 100. Yucesoy D. T, Fong H, Hamann J, Hall E, Dogan S & Sarikaya M. Biomimetic dentin repair: Amelogenin-derived peptide guides occlusion and peritubular mineralization of human teeth. ACS Biomaterials Science & Engineering. 2023; 9(3): 1486-1495.
  • 101. Mannocci F & Cowie J. Restoration of endodontically treated teeth. British dental journal. 2014; 216(6): 341-346.
  • 102. Mannocci F, Bitter K, Sauro S, Ferrari P, Austin R & Bhuva B. Present status and future directions: the restoration of root filled teeth. International Endodontic Journal. 2022; 55: 1059-1084.
  • 103. Selvaraj H, Krithikadatta J, Shrivastava D, Onazi M. A. A, Algarni H.A, Munaga S & Srivastava K. C. Systematic review fracture resistance of endodontically treated posterior teeth restored with fiber reinforced composites-a systematic review. BMC Oral Health. 2023; 23(1): 566.
  • 104. Almutairi W. M, Algarni M. A, Daabash M. D, Alturki Y. S, Aldosari M. M, Altamimi M. R & Alhezam A. Success and Current Practice of Direct Vs. Indirect Restorations After Endodontic Treatment: A Systematic Review. Annals of Dental Specialty. 2023; 11(3-2023): 87-93.
  • 105. Che S, Awang R. A, Adnan M. B. M, Ma X, Gao X & Ismail N. H. Restorative Strategies for Posterior Teeth Following Endodontic Treatment. Journal of Natural Science, Biology and Medicine. 2024; 15(2): 337.
  • 106. Blum I. R. Restoration repair as a contemporary approach to tooth preservation: criteria for decision making and clinical recommendations. Primary dental journal. 2019; 8(1): 38-43.
  • 107. Anwarullah A, Konagala R. K, Raju M. K, Lingam A. S & Varma, L. U. Endocrown-The Realm of Post-Free Endodontic Restorations. Journal of Evolution of Medical and Dental Sciences. 2021; 10(16): 1187-1191.
  • 108. Upadhyay A, Pillai S, Khayambashi P, Sabri H, Lee K. T, Tarar M & Tran S. D. Biomimetic aspects of oral and dentofacial regeneration. Biomimetics. 2020; 5(4): 51.
  • 109. Ahmad I. Protocols for predictable aesthetic dental restorations. John Wiley & Sons. (2008).
  • 110. Manik K, Ikhar A, Patel A, Chandak M, Mahapatra J, Bhopatkar J & Bhojwani P. R. Effortless Precision: A Case Report on the Stamp Technique for Posterior Teeth. Cureus. 2024; 16(6).
  • 111. Peskersoy C, Sener M, Gurses O. B, Erbil E & Turkun M. Evaluation of Proximal Contact Tightness and Contact Area of Posterior Composite Resin Restorations. Applied Sciences. 2024; 14(18): 8335.
  • 112. Sayed S. S, Hassanien O. A. S. & Alsherbiney H. H. The influence of lateral pressure on sectional matrix in optimizing proximal contact tightness in class ii resin composite restoration: randomized clinical trial. NeuroQuantology. 2023; 21(6): 389.
  • 113. Wijaya Y. H, Soesilo D, Rochyani L & Pangabdian, F. Direct composite restoration using stamp technique and pizza technique: A case report. (2020).
  • 114. Nugroho J. J, Trilaksana A. C, Rovani C. A, Natsir N & Rahim F. Pizza Technique in Site 1 restoration in lower Second Molar Tooth: A case report. Journal of International Dental and Medical Research. 2019; 12(2): 723-726.

Biyomimetik Dİş Hekimliği

Year 2025, Volume: 12 Issue: 1, 149 - 156, 21.04.2025
https://doi.org/10.15311/selcukdentj.1448008

Abstract

ÖZ Ağız içinde remineralizasyon ve demineralizasyon süreçleri bir denge halindedir. Bu dengenin bozulması durumunda çürük lezyonları gelişecektir. Başlangıç çürük lezyonları, remineralizasyon yoluyla kavitasyon oluşmadan önlenebilir. Böylece çürüğün ilerlediği aşamalarda meydana gelebilecek zorlu tedavilere gerek kalmadan diş yapısının korunması sağlanmış olur. Diş çürüğünün önlenmesi kapsamında, florun uzun yıllara ve çok sayıda araştırmaya dayanan etkili rolüne karşılık, son zamanlarda bu konuda biyolojik uyumlulukları, remineralizasyon kapasiteleri ve doğal süreçleri taklit edebilme kabiliyetleri açısından mikro ve nano hidroksiapatit, trikalsiyum fosfat, biyoaktif cam gibi biyoaktif formülasyonların kullanımı önerilmektedir. Remineralizasyon üzerine yapılan son araştırmalar, tamamen demineralize kollajen lifler içinde apatit kristalleri oluşturma yeteneğine sahip biyomimetik remineralizasyon materyallerine dayanmaktadır. Nano yapılı malzemeler, daha yüksek yüzey/hacim oranlarına sahip oldukları için mikro yapılı malzemelere göre üstün özelliklere sahiptirler. Nano yapılı malzemelere örnek olarak, kalsiyum florür nanopartikülleri, kalsiyum fosfat içerikli nanomateryaller, nanobioaktif cam materyalleri, nanohidroksilapatit partikülleri verilebilir. Bu nanopartikül içerikli biyomimetik materyaller, diş hekimliğinde minimal invaziv tedavilerin ve doğal diş dokusunun korunmasının önemli bir parçası haline gelmektedir. Bu materyaller, doğal diş dokusuna en yakın sonuçları sağlamak için tasarlanmıştır ve diş restorasyonlarının uzun ömürlü olmasını sağlar.
Biyomimetik diş hekimliği, dişlerin doğal yapısını, işlevini ve estetiğini taklit etmeyi amaçlayan bir restoratif diş hekimliği disiplinidir. Biyomimetik diş hekimliğinin temel prensibi, estetik sonuçların korunmasıyla birlikte tam fonksiyonu geri kazandırmak ve tüm fonksiyonel stresleri taşımak için kaybolan diş dokularını uygun mekanik dayanıma sahip materyallerle değiştirmektir. Doğal diş yapısını taklit etmeyi amaçlayan bu yaklaşım sayesinde, adeziv restoratif materyaller üzerine yapılan çalışmalar yoğunlaştırılmıştır. Sırasıyla diş dokusunda meydana gelen madde kaybına bağlı olarak teşhis konulan endikasyona göre biyomimetik özellik gösteren restoratif materyaller ve tedavi seçenekleri incelenecektir.

References

  • 1. Paryani M, Bhojwani P. R, Ikhar A, Reche A, & Paul P. Evolution of Biomimetic Approaches for Regenerative and Restorative Dentistry. Cureus. 2023; 15(1). 2. Jelinek R. Biomimetics: A molecular perspective: Walter de Gruyter. (2013). 3. Nie Z, Zhang Y, Tang R, & Wang X. Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. Journal of Inorganic Biochemistry. 2022; 232: 111815. 4. Zan G, & Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Advanced Materials. 2016; 28(11): 2099-2147.
  • 5. Subramani K, & Ahmed W. (Eds.). Nanobiomaterials in clinical dentistry. William Andrew. (2012).
  • 6. Pires P. M, Neves A. D. A, Makeeva I. M, Schwendicke F, Faus-Matoses V, Yoshihara K, & Sauro S. Contemporary restorative ion-releasing materials: Current status, interfacial properties and operative approaches. British Dental Journal. 2020; 229(7): 450-458.
  • 7. Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiological reviews. 2017; 97(3): 939-993.
  • 8. Acevedo A. M, Montero M, Rojas-Sanchez F, Machado C, & Rivera L. E. Clinical evaluation of the ability of Cavistat® in a mint confection to inhibit the development of dental caries in children. (2008).
  • 9. Grohe B, & Mittler S. Advanced non-fluoride approaches to dental enamel remineralization: The next level in enamel repair management. Biomaterials and Biosystems. 2021; 4: 100029.
  • 10. Abou Neel E. A, Aljabo A, Strange A, Ibrahim S, Coathup M, Young A. M, & Mudera, V. Demineralization–remineralization dynamics in teeth and bone. International journal of nanomedicine. 2016; 4743-4763.
  • 11. Lemos J. A, Palmer S. R, Zeng L, Wen Z. T, Kajfasz J. K, Freires I. A, & Brady L. J. The biology of Streptococcus mutans. Microbiology spectrum. 2019; 7(1): 1000-1128.
  • 12. West N. X, & Joiner A. Enamel mineral loss. Journal of dentistry. 2014; 42: S2-S11.
  • 13. Denis, M, Atlan A, Vennat E, Tirlet G, & Attal J. P. White defects on enamel: diagnosis and anatomopathology: two essential factors for proper treatment (part 1). International orthodontics. 2013; 11(2): 139-165.
  • 14. Daruich P. M, & Brizuela M. Remineralization of initial carious lesions. In StatPearls [Internet]. StatPearls Publishing. (2023).
  • 15. Gevkaliuk N. O & Nazarenko I. V. Morphological structure of enamel caries in the dynamic process of demineralization and remineralization. Regulatory Mechanisms in Biosystems. 2023; 14(3): 333-340.
  • 16. Baiju R. M & Thomas S. Nanotechnology for Oral Disease Prevention. In Nanomaterials in Dental Medicine Singapore. Springer Nature Singapore. 2023; pp. 51-73
  • 17. Enax J, Amaechi B. T, Farah R, Liu J. A, Schulze zur Wiesche E & Meyer F. (2023). Remineralization strategies for teeth with molar incisor hypomineralization (MIH): A literature review. Dentistry Journal. 2023; 11(3): 80.
  • 18. Singer L, Fouda A, & Bourauel C. Biomimetic approaches and materials in restorative and regenerative dentistry. BMC Oral Health. 2023; 23(1): 105.
  • 19. Malcangi G, Patano A, Morolla R, De Santis M, Piras F, Settanni V & Inchingolo A. M. Analysis of dental enamel remineralization: a systematic review of technique comparisons. Bioengineering. 2023; 10(4): 472.
  • 20. Gandolfi M. G, Taddei P, Zamparini F, Ottolenghi L, Polimeni A & Prati C. Dentine surface modification and remineralization induced by bioactive toothpastes. International Journal of Dental Hygiene. 2024; 22(3): 554-574.
  • 21. Malcangi G, Patano A, Morolla R, De Santis M, Piras F, Settanni V & Inchingolo A. M. Analysis of dental enamel remineralization: a systematic review of technique comparisons. Bioengineering. 2023; 10(4): 472.
  • 22. Xavier G. D, Thomas G, Jose S, Vivek V. J, Selvam K & Ramakrishnan, A. Comparative evaluation of remineralization potential of four different remineralization agents on human enamel: An in vitro study. Journal of Conservative Dentistry and Endodontics. 2024; 27(1): 29-35.
  • 23. Zhang O. L, Niu J. Y, Yin I. X, Yu O. Y, Mei M. L & Chu C. H. Bioactive materials for caries management: A literature review. Dentistry Journal. 2023; 11(3): 59.
  • 24. Lubojanski A, Piesiak-Panczyszyn D, Zakrzewski W, Dobrzynski W, Szymonowicz M, Rybak Z & Dobrzynski M. The safety of fluoride compounds and their effect on the human body—A narrative review. Materials. 2023; 16(3): 1242.
  • 25. Ubolsa-Ard P, Sanon K, Hiraishi N, Sayed M, Sakamaki Y, Yiu C. K. Y &Shimada Y. Influence of surface pre-reacted glass-ionomer (S-PRG) filler eluate on collagen morphology, remineralization, and ultimate tensile strength of demineralized dentin. Journal of the Mechanical Behavior of Biomedical Materials. 2024; 150: 106295.
  • 26. Delikan E, Erturk-Avunduk A. T, Karatas O & Saçmacı Ş. Effect of topical fluoride applications on residual monomer release from resin-based restorative materials. BMC Oral Health, 2023; 23(1): 1.
  • 27. Hunwin K, Page G, Edgar M, Botana A, Armitage R, Bhogadia M & Grootveld M. Physicochemical properties, biological chemistry and mechanisms of action of caries-arresting diammine-silver (I) fluoride and silver (I)-fluoride solutions for clinical use: a critical review. Frontiers in Oral Health. 2024; 5.
  • 28. Bhat Y, Babaji P, Kamalaksharappa S. K, Chandrappa P. M & Ambareen Z. Silver Diamine Fluoride: A Literature Review. (2023).
  • 29. Ameen S. M. Natural Dentin Remineralizing Agents. Natural Conservative Dentistry: An Alternative Approach to Solve Restorative Problems. 2024; 59.
  • 30. Petersen P. E & Lennon M. A. Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community dentistry and oral epidemiology. 2004; 32(5): 319-321.
  • 31. König K. G. Role of fluoride toothpastes in a caries-preventive strategy. Caries Research. 1993; 27: 23-23.
  • 32. Villa O, Ramberg P, Fukui H, Emilson C. G, Papanikolaou G, Heijl L & Birkhed D. Interaction between chlorhexidine and fluoride in a mouthrinse solution—a 4-day and 6-week randomized clinical pilot study. Clinical oral investigations. 2018; 22: 1439-1448.
  • 33. Baik A, Alamoudi N, El-Housseiny A & Altuwirqi A. Fluoride varnishes for preventing occlusal dental caries: A review. Dentistry journal. 2021; 9(6): 64.
  • 34. Weyant R. J, Tracy S. L, Anselmo T. T, Beltrán-Aguilar E. D, Donly K. J, Frese W. A & on Scientific A.D.A.C. Topical fluoride for caries prevention. The Journal of the American Dental Association. 2013; 144(11): 1279-1291.
  • 35. Bonetti D & Clarkson J. E. Fluoride varnish for caries prevention: efficacy and implementation. Caries Research. 2016; 50(Suppl. 1): 45-49.
  • 36. Kaur S, Bhola M, Bajaj N & Brar G. S. Neoteric Non-Fluoride Enamel Remineralization Systems: A Review. Baba Farid University Dental Journal. 2021; 11(1): 64-72.
  • 37. Zhang J, Mylonas P & Banerjee A. Mineralizing agents to manage early carious lesions. Part I: mode of action. Dental Update. 2023; 50(6): 490-497.
  • 38. Reynolds E. C. Calcium phosphate‐based remineralization systems: scientific evidence? Australian Dental Journal. 2008; 53(3): 268-273.
  • 39. Divyapriya G. K, Yavagal P. C & Veeresh D. J. Casein phosphopeptide-amorphous calcium phosphate in dentistry: An update. International Journal of Oral Health Sciences. 2016; 6(1): 18-25.
  • 40. Hsu S. M, Alsafadi M, Vasconez C, Fares C, Craciun V, O’Neill E & Esquivel-Upshaw J. Qualitative analysis of remineralization capabilities of bioactive glass (NovaMin) and fluoride on hydroxyapatite (HA) discs: an in vitro study. Materials. 2021; 14(14): 3813.
  • 41. Khijmatgar S, Reddy U, John S, Badavannavar A. N, Souza T. D. Is there evidence for Novamin application in remineralization? A systematic review. Journal of Oral Biology and Craniofacial Research. 2021; 10(2): 87-92.
  • 42. Niu L. N, Zhang W, Pashley D. H, Breschi L, Mao J, Chen J. H & Tay F. R. Biomimetic remineralization of dentin. Dental materials. 2014; 30(1): 77-96.
  • 43. Ivanisenko Y, Darbandi A, Dasgupta S, Kruk R & Hahn H. Bulk Nanostructured Materials: Non‐Mechanical Synthesis. Advanced Engineering Materials. 2010; 12(8): 666-676.
  • 44. Priya G. B, Archana P, Kumari V & Balaji S. Nanobiomaterials in Preventive AND Restorative Dentistry–A Review. Journal of Coastal Life Medicine. 2023; 11: 3037-3045.
  • 45. Bordea I. R, Candrea S, Alexescu G. T, Bran S, Băciuț M, Băciuț G & Todea D. A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug metabolism reviews. 2020; 52(2): 319-332.
  • 46. Yousefi A. M, Oudadesse H, Akbarzadeh R, Wers E & Lucas-Girot A. Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnology Reviews. 2014; 3(6): 527-552.
  • 47. Pupilli F, Ruffini A, Dapporto M, Tavoni M, Tampieri A & Sprio S. Design strategies and biomimetic approaches for calcium phosphate scaffolds in bone tissue regeneration. Biomimetics. 2022; 7(3): 112.
  • 48. Vano M, Derchi G, Barone A & Covani U. Effectiveness of nano-hydroxyapatite toothpaste in reducing dentin hypersensitivity: A double-blind randomized controlled trial. Quintessence international. 2014; 45(8).
  • 49. Kalra D. D, Kalra R. D, Kini P. V & Prabhu C. A. Nonfluoride remineralization: An evidence-based review of contemporary technologies. J Dent Allied Sci. 2014; 3(1): 24-33.
  • 50. Nagmode D. P, Gündap D. G, Abraham D. S. & Lokhande D. N. Novel remineralizing agents in tooth repair: A review. Indian Journal of Clinical Research in Dentistry. 2022; 3(1): 1-6.
  • 51. Lin Y, Chen J, Zhou X & Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Critical Reviews in Microbiology. 2021; 47(5): 667-677.
  • 52. Ly K. A, Milgrom P & Rothen M. Xylitol, sweeteners, and dental caries. Pediatric Dentistry. 2006; 28(2): 154-163.
  • 53. Banerjee P. Evaluation of Microleakage, Shear Bond Strength and Resin Tag Formation Following the Use of Natural Collagen Cross Linker, Grape Seed Extract on Primary Molars: An in Vitro Study (Master's thesis, Rajiv Gandhi University of Health Sciences (India)). (2020).
  • 54. Hamed I, Özogul F & Regenstein J. M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology. 2016; 48: 40-50.
  • 55. Liu X, Wu Y, Zhao X & Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydrate Polymers. 2021; 267: 118179.
  • 56. Salama A. Recent progress in preparation and applications of chitosan/calcium phosphate composite materials. International Journal of Biological Macromolecules. 2021; 178: 240-252.
  • 57. Nimbeni S. B, Nimbeni B. S. & Divakar D. D. Role of chitosan in remineralization of enamel and dentin: A systematic review. International Journal of Clinical Pediatric Dentistry. 2021; 14(4): 562.
  • 58. Ho C. C & Ding S. J. Structure, properties and applications of mussel-inspired polydopamine. Journal of biomedical nanotechnology. 2014; 10(10): 3063-3084.
  • 59. AlShehri A. M, Kamocki K, Viana Í. E. L, Scaramucci T, Hara A, Windsor L. J & Sochacki S. F. Effect of a modified adhesive system with encapsulated arginine and calcium carbonate on dentin permeability. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2023; 111(8): 1546-1556.
  • 60. Yamashita J. M, Torres N. M, Moura‐Grec P. G, Marsicano J. A, Sales‐Peres A & Sales‐Peres S. H. D. C. Role of arginine and fluoride in the prevention of eroded enamel: an in vitro model. Australian Dental Journal. 2013; 58(4): 478-482.
  • 61. Orilisi G, Vitiello F, Notarstefano V, Furlani M, Riberti N, Monterubbianesi R & Putignano A. Multidisciplinary evaluation of the remineralization potential of three fluoride-based toothpastes on natural white spot lesions. Clinical oral investigations. 2023; 27(12): 7451-7462.
  • 62. Badiee M, Jafari N, Fatemi S, Ameli N, Kasraei S & Ebadifar A. Comparison of the effects of toothpastes containing nanohydroxyapatite and fluoride on white spot lesions in orthodontic patients: A randomized clinical trial. Dental Research Journal. 2020; 17(5): 354-359.
  • 63. Silva V. M, Massaro C, Buzalaf M. A. R, Janson G & Garib D. Prevention of non-cavitated lesions with fluoride and xylitol varnishes during orthodontic treatment: A randomized clinical trial. Clinical Oral Investigations. 2021; 25: 3421-3430.
  • 64. Kau C. H, Wang J, Palombini A, Abou-Kheir N & Christou T. Effect of fluoride dentifrices on white spot lesions during orthodontic treatment: a randomized trial. The Angle Orthodontist. 2019; 89(3): 365-371.
  • 65. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore R. C & Aggeli A. Self-assembling peptide scaffolds promote enamel remineralization. Journal of Dental Research. 2007; 86(5): 426-430.
  • 66. Zafar M. S, Amin F, Fareed M. A, Ghabbani H, Riaz S, Khurshid Z & Kumar N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 2020; 5(3): 34.
  • 67. Almuhaiza M. Glass-ionomer cements in restorative dentistry: A critical appraisal. J Contemp Dent Pract. 2016; 17(4): 331-336.
  • 68. Lohbauer U. Dental glass ionomer cements as permanent filling materials?—Properties, limitations future trends. Materials. 2009; 3(1): 76-96.
  • 69. Mohammed N. Y, Sharaf A. A, Talaat D. M & Hanafi S. A. Evaluation of shear bond strength of nanoparticles glass carbomer and high viscosity glass ionomer in primary teeth dentin (in vitro study). Alexandria Dental Journal. 2018; 43(1): 17-21.
  • 70. Menezes-Silva R, Cabral R. N, Pascotto R. C, Borges A. F. S, Martins C. C, Navarro M. F. D. L & Leal S. C. Mechanical and optical properties of conventional restorative glass-ionomer cements-a systematic review. Journal of Applied Oral Science. 2019; 27: e2018357.
  • 71. Colceriu Burtea L, Prejmerean C, Prodan D, Baldea I, Vlassa M, Filip M & Ambrosie I. New pre-reacted glass containing dental composites (giomers) with improved fluoride release and biocompatibility. Materials. 2019; 12(23): 4021.
  • 72. Dhull K. S & Nandlal B. Comparative evaluation of fluoride release from PRG-composites and compomer on application of topical fluoride: An in-vitro: study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2009; 27(1): 27-32.
  • 73. Dhull K. S & Nandlal B. Effect of low-concentration daily topical fluoride application on fluoride release of giomer and compomer: An: in vitro: study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2011; 29(1): 39-45.
  • 74. Pantulap U, Arango-Ospina M & Boccaccini A. R. Bioactive glasses incorporating less-common ions to improve biological and physical properties. Journal of Materials Science: Materials in Medicine. 2022; 33: 1-41.
  • 75. Simila H. O & Boccaccini A. R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review. Dental Materials. 2022; 38(5): 725-747.
  • 76. Baino F, Hamzehlou S & Kargozar S. Bioactive glasses: where are we and where are we going? Journal of functional biomaterials. 2018; 9(1): 25.
  • 77. Skallevold H. E, Rokaya D, Khurshid Z & Zafar M. S. Bioactive glass applications in dentistry. International Journal of Molecular Sciences. 2019; 20(23): 5960.
  • 78. Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B & Van Landuyt K. L. Is secondary caries with composites a material-based problem? Dental Materials. 2015; 31(11): e247-e277.
  • 79. Khan A. S. & Syed M. R. A review of bioceramics-based dental restorative materials. Dental Materials Journal. 2019; 38(2): 163-176.
  • 80. Noronha V. T, Paula A. J, Durán G, Galembeck A, Cogo-Müller K, Franz-Montan M & Durán N. Silver nanoparticles in dentistry. Dental Materials. 2017; 33(10): 1110-1126.
  • 81. Carvalho S. M, Moreira C. D, Oliveira A. C. X, Oliveira A. A, Lemos E. M & Pereira M. M. Bioactive glass nanoparticles for periodontal regeneration and applications in dentistry. Nanobiomaterials in clinical dentistry. Elsevier. 2019; 351-383.
  • 82. Tülü G, Kaya B. Ü, Çetin E. S & Köle M. Antibacterial effect of silver nanoparticles mixed with calcium hydroxide or chlorhexidine on multispecies biofilms. Odontology. 2021; 109(4): 802-811.
  • 83. Șaramet V, Meleșcanu-Imre M, Țâncu A. M. C, Albu C. C, Ripszky-Totan A & Pantea M. Molecular interactions between saliva and dental composites resins: A way forward. Materials. 2021; 14(10): 2537.
  • 84. Abouelleil H, Attik N, Chiriac R, Toche F, Ory A, Zayakh A & Pradelle-Plasse N. Comparative study of two bioactive dental materials. Dental Materials. 2024; 40(2): 297-306.
  • 85. Conti G, Veneri F, Amadori F, Garzoni A, Majorana A & Bardellini E. Evaluation of antibacterial activity of a bioactive restorative material versus a Glass-Ionomer cement on Streptococcus mutans: in-vitro study. Dentistry Journal. 2023; 11(6): 149.
  • 86. Porto I. C, Andrade A. K & Montes M. A. Diagnosis and treatment of dentinal hypersensitivity. Journal of Oral Science. 2009; 51(3): 323-332.
  • 87. Trushkowsky R. D & Oquendo A. Treatment of dentin hypersensitivity. Dental Clinics. 2011; 55(3): 599-608.
  • 88. Schmidlin P. R & Sahrmann P. Current management of dentin hypersensitivity. Clinical oral investigations. 2013; 17: 55-59.
  • 89. Mantzourani M & Sharma D. Dentine sensitivity: past, present and future. Journal of dentistry. 2013; 41: S3-S17.
  • 90. Kumar I. L. S & Ramesh S. A Novel Biomimetic Approach in Re-Mineralizing Enamel and Dentine—A Review. Biomedicine. 2019; 39(4): 514-520.
  • 91. Zafar M. S, Amin F, Fareed M. A, Ghabbani H, Riaz S, Khurshid Z & Kumar, N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics. 2020; 5(3): 34.
  • 92. Fang L, Zhou H, Cheng L, Wang Y, Liu F & Wang S. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Frontiers in Cellular and Infection Microbiology. 2023; 13: 1124411.
  • 93. White T. D & Folkens P. A. The human bone manual. Elsevier. (2005).
  • 94. Chu J, Feng X, Guo H, Zhang T, Zhao H & Zhang Q. Remineralization efficacy of an amelogenin-based synthetic peptide on carious lesions. Frontiers in physiology. 2018; 9: 842.
  • 95. Xu J, Shi H, Luo J, Yao H, Wang P, Li Z & Wei J. Advanced materials for enamel remineralization. Frontiers in Bioengineering and Biotechnology. 2022; 10: 985881.
  • 96. Arzate H, Zeichner‐David M & Mercado‐Celis G. Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontology 2000. 2015; 67(1): 211-233.
  • 97. Margolis H. C, Beniash E & Fowler C. E. Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of dental research. 2006; 85(9): 775-793.
  • 98. Fiorino A, Marturano A, Placella G, Staderini E, Domingo L. I, Cerulli G. G & Blasi P. Amelogenin-derived peptides in bone regeneration: A systematic review. International Journal of Molecular Sciences. 2021; 22(17): 9224.
  • 99. Baioumy Y. M. Deciphering pH Effects on the Peptide-guided Nucleation and Growth of Hydroxyapatite and Peptide-Ion Interactions for Dentin Hypersensitivity Treatment. University of Washington. (2020).
  • 100. Yucesoy D. T, Fong H, Hamann J, Hall E, Dogan S & Sarikaya M. Biomimetic dentin repair: Amelogenin-derived peptide guides occlusion and peritubular mineralization of human teeth. ACS Biomaterials Science & Engineering. 2023; 9(3): 1486-1495.
  • 101. Mannocci F & Cowie J. Restoration of endodontically treated teeth. British dental journal. 2014; 216(6): 341-346.
  • 102. Mannocci F, Bitter K, Sauro S, Ferrari P, Austin R & Bhuva B. Present status and future directions: the restoration of root filled teeth. International Endodontic Journal. 2022; 55: 1059-1084.
  • 103. Selvaraj H, Krithikadatta J, Shrivastava D, Onazi M. A. A, Algarni H.A, Munaga S & Srivastava K. C. Systematic review fracture resistance of endodontically treated posterior teeth restored with fiber reinforced composites-a systematic review. BMC Oral Health. 2023; 23(1): 566.
  • 104. Almutairi W. M, Algarni M. A, Daabash M. D, Alturki Y. S, Aldosari M. M, Altamimi M. R & Alhezam A. Success and Current Practice of Direct Vs. Indirect Restorations After Endodontic Treatment: A Systematic Review. Annals of Dental Specialty. 2023; 11(3-2023): 87-93.
  • 105. Che S, Awang R. A, Adnan M. B. M, Ma X, Gao X & Ismail N. H. Restorative Strategies for Posterior Teeth Following Endodontic Treatment. Journal of Natural Science, Biology and Medicine. 2024; 15(2): 337.
  • 106. Blum I. R. Restoration repair as a contemporary approach to tooth preservation: criteria for decision making and clinical recommendations. Primary dental journal. 2019; 8(1): 38-43.
  • 107. Anwarullah A, Konagala R. K, Raju M. K, Lingam A. S & Varma, L. U. Endocrown-The Realm of Post-Free Endodontic Restorations. Journal of Evolution of Medical and Dental Sciences. 2021; 10(16): 1187-1191.
  • 108. Upadhyay A, Pillai S, Khayambashi P, Sabri H, Lee K. T, Tarar M & Tran S. D. Biomimetic aspects of oral and dentofacial regeneration. Biomimetics. 2020; 5(4): 51.
  • 109. Ahmad I. Protocols for predictable aesthetic dental restorations. John Wiley & Sons. (2008).
  • 110. Manik K, Ikhar A, Patel A, Chandak M, Mahapatra J, Bhopatkar J & Bhojwani P. R. Effortless Precision: A Case Report on the Stamp Technique for Posterior Teeth. Cureus. 2024; 16(6).
  • 111. Peskersoy C, Sener M, Gurses O. B, Erbil E & Turkun M. Evaluation of Proximal Contact Tightness and Contact Area of Posterior Composite Resin Restorations. Applied Sciences. 2024; 14(18): 8335.
  • 112. Sayed S. S, Hassanien O. A. S. & Alsherbiney H. H. The influence of lateral pressure on sectional matrix in optimizing proximal contact tightness in class ii resin composite restoration: randomized clinical trial. NeuroQuantology. 2023; 21(6): 389.
  • 113. Wijaya Y. H, Soesilo D, Rochyani L & Pangabdian, F. Direct composite restoration using stamp technique and pizza technique: A case report. (2020).
  • 114. Nugroho J. J, Trilaksana A. C, Rovani C. A, Natsir N & Rahim F. Pizza Technique in Site 1 restoration in lower Second Molar Tooth: A case report. Journal of International Dental and Medical Research. 2019; 12(2): 723-726.
There are 111 citations in total.

Details

Primary Language Turkish
Subjects Restorative Dentistry
Journal Section Review
Authors

Seda Baktır 0000-0002-4482-6213

Hacer Balkaya 0000-0001-9180-5610

Sezer Demirbuğa 0000-0001-6013-974X

Publication Date April 21, 2025
Submission Date March 6, 2024
Acceptance Date January 14, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Baktır S, Balkaya H, Demirbuğa S. Biyomimetik Dİş Hekimliği. Selcuk Dent J. 2025;12(1):149-56.