Review
BibTex RIS Cite

The Place of Artificial Intelligence in Pediatric Dentistry: Traditional Review

Year 2025, Volume: 12 Issue: 1, 178 - 183, 21.04.2025
https://doi.org/10.15311/selcukdentj.1499233

Abstract

Artificial intelligence, which has developed rapidly in recent years and become the focus of attention in different sectors, is also very popular in the field of health. These applications aim to reduce human expertise, cost and medical error, save time and increase efficiency and accuracy. The main area of interest of artificial intelligence in healthcare is the creation of artificial intelligence programs that can perform clinical diagnosis and make treatment recommendations. The development of artificial intelligence in the field of dentistry is remarkable. However, these attempts started after medical applications and are still in the early stages. Considering the connection between dentistry and technology artificial intelligence applications have the potential of developing in dental practices. The main problem of studies regarding artificial intelligence in dentistry is the difficulties experienced in data organization, processing and editing. Studies usually carried out by making data sets ready for artificial intelligence models, and therefore resulted in high accuracy. There are very few studies on artificial intelligence in the field of pediatric dentistry. However, in recent years, the number of studies reported on the application of artificial intelligence models in this field has been increasing rapidly in parallel with the number of studies in general dentistry. As the availability of data increases, artificial intelligence applications have begun to prove their benefits in various pediatric dental practices. This review aimed to enlighten the use of artificial intelligence mainly in the field of pediatric dentistry and highlight the current developments in this field.

References

  • 1. McCarthy J. What is artificial intelligence? 2007.
  • 2. Arslan K. Eğitimde yapay zekâ ve uygulamaları. BAEBD. 2020;11(1):71-88.
  • 3. Uzun T. Yapay zeka ve sağlık uygulamaları. İKÇÜ İİBF. 2020;3(1):80–92.
  • 4. Pirim H. Yapay Zeka. JoY. 2006;1(1):81–93.
  • 5. Nayak A. Clinical photography: A to Z. APOS Trends Orthod. 2017;7(1):19.
  • 6. Taulli T. Artificial Intelligence Basics. Berkeley, CA: Apress; 2019.
  • 7. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent. 2018;12(04):594–601.
  • 8. Moor J. The dartmouth college artificial ıntelligence conference: the next fifty years. AI Magazine. 2006;27(4):87.
  • 9. Öztemel E. Yapay Zeka Teknikleri. Papatya Yayıncılık. İstanbul; 2003.
  • 10. Tandon D, Rajawat J, Banerjee M. Present and future of artificial intelligence in dentistry. J Oral Biol Craniofac Res. 2020;10(4):391–6.
  • 11. Yılmaz A. Yapay Zeka. İnkılap Kitabevi. İstanbul; 2020.
  • 12. Gilboy N, Travers D, Wuerz R. Re-evaluating triage in the new millennium: A comprehensive look at the need for standardization and quality. J Emerg Nurs. 1999;25(6):468–73.
  • 13. Bahrammirzaee A. A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput Appl. 2010;19(8):1165–95.
  • 14. Allahverdi Novruz. Uzman Sistemler Bir Yapay Zeka Uygulaması. Atlas Yayın Dağıtım. Ankara; 2002.
  • 15. Babalık A, Güler İ. Boğaz enfeksiyonlarının teşhis ve tedavisinde uzman sistem kullanımı. SUJES. 2007;6(2):109-119.
  • 16. Alpaydın E. Yapay Öğrenme: Yeni Yapay Zeka. Tellekt; 2020.
  • 17. Warwick K. Artificial Intelligence: The Basics: Routledge; 2013.
  • 18. İşçi Ö, Korukoğlu S. Genetik algoritma yaklaşımı ve yöneylem araştırmasında bir uygulama. YED. 2003;10(2):191-208.
  • 19. Rafiee A, Moradi MH, Farzaneh MR. Novel genetic-neuro-fuzzy filter for speckle reduction from sonography images. J Digit Imaging. 2004;17(4):292–300.
  • 20. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.
  • 21. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.
  • 22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
  • 23. Ergezer H, Dikmen M, Özdemir E. Yapay sinir ağları ve tanıma sistemleri. PiVOLKA. 2003;2(6):14–7.
  • 24. Yasav M. Yapay Sinir Ağlarıyla Yüz Mimiklerinin Tanınması [Yüksek lisans]. İstanbul: Yıldız Teknik Üniversitesi; 2008.
  • 25. Kaya U, Yılmaz A. Derin Öğrenme. Kodlab Yayın Dağıtım. İstanbul; 2019.
  • 26. Keleş A. Derin öğrenme ve sağlık alanındaki uygulamaları. J Turk Stud Electric. 2018;13(21):113–27.
  • 27. Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100(3):232–44.
  • 28. Yaji Anisha, Prasad Shesha, Pai Anuradha. Artificial intelligence in dento-maxillofacial radiology. ASDS. 2019;3(1):116–21.
  • 29. Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac Radiol. 2022;51(1):20210197.
  • 30. Leeson D. The digital factory in both the modern dental lab and clinic. Dental Materials. 2020;36(1):43–52.
  • 31. Otani T, Raigrodski AJ, Mancl L, Kanuma I, Rosen J. In vitro evaluation of accuracy and precision of automated robotic tooth preparation system for porcelain laminate veneers. J Prosthet Dent. 2015;114(2):229–35.
  • 32. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.
  • 33. Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L, et al. Detecting white spot lesions on dental photography using deep learning: A pilot study. J Dent. 2021;107:103615.
  • 34. Schlickenrieder A, Meyer O, Schönewolf J, Engels P, Hickel R, Gruhn V, et al. Automatized detection and categorization of fissure sealants from ıntraoral digital photographs using artificial ıntelligence. Diagnostics. 2021;11(9):1608.
  • 35. Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the debonding of cad/cam composite resin crowns with AI. J Dent Res. 2019;98(11):1234–8.
  • 36. Aminoshariae A, Kulild J, Nagendrababu V. Artificial ıntelligence in endodontics: Current applications and future directions. J Endod. 2021;47(9):1352–7.
  • 37. Nelson CA, Hossain SGM, Al-Okaily A, Ong J. A novel vending machine for supplying root canal tools during surgery. J Med Eng Technol. 2012;36(2):102–16.
  • 38. Albayrak B, Özdemir G, Ölçer Us Y, Yüzbaşıoğlu E. Artificial intelligence technologies in dentistry. J Exp Clin Med. 2021;38(SI-2):188–94.
  • 39. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114. 40. Nakano Y, Takeshita T, Kamio N, Shiota S, Shibata Y, Suzuki N, et al. Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples. Artif Intell Med. 2014;60(2):97–101.
  • 41. Akther S, Saleheen N, Samiei SA, Shetty V, Ertin E, Kumar S. mORAL: An mHealth model for inferring Oral Hygiene Behaviors in-the-wild using wrist-worn inertial sensors. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019;3(1):1–25.
  • 42. Yoo JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, et al. Deep learning based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021;11(1):1954.
  • 43. Yüce F, Taşsöker M. The applications of artificial intelligence in dentistry. Yeditepe J Dent. 2023;19(2):141–9.
  • 44. Chu P, Bo C, Liang X, Yang J, Megalooikonomou V, Yang F, et al. Using octuplet siamese network for osteoporosis analysis on dental panoramic radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2018. p. 2579–82.
  • 45. Kann BH, Aneja S, Loganadane GV, Kelly JR, Smith SM, Decker RH, et al. Pretreatment ıdentification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep. 2018;8(1):14036.
  • 46. Kise Y, Ikeda H, Fujii T, Fukuda M, Ariji Y, Fujita H, et al. Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images. Dentomaxillofac Radiol. 2019;48(6):20190019.
  • 47. Akdeniz S, Tosun ME. A review of the use of artificial intelligence in orthodontics. J Exp Clin Med. 2021;38(SI-2):157–62.
  • 48. Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health. 2022;22(1):132.
  • 49. Amasya H, Yildirim D, Aydogan T, Kemaloglu N, Orhan K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models. Dentomaxillofac Radiol. 2020;49(5):20190441.
  • 50. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021;22(1):18.
  • 51. Kurup RJ, Sodhand A, Sangeetha R. Dentistry and artificial ıntelligence. ASDS. 2020;4(10):26–32.
  • 52. Baliga MS. Artificial intelligence - The next frontier in pediatric dentistry. J Indian Soc Pedod Prev Dent. 2019;37(4):315.
  • 53. Vishwanathaiah S, Fageeh HN, Khanagar SB, Maganur PC. Artificial intelligence its uses and application in pediatric dentistry: A review. Biomedicines. 2023;11(3):788.
  • 54. Vona Ş. Derin Öğrenme Yöntemi İle Panoramik Radyografilerde Süt Dişlerinin Tespiti Ve Numaralandırılması [Yüksek lisans]. Ordu: Ordu Üniversitesi; 2023.
  • 55. Kılıc MC, Bayrakdar IS, Çelik Ö, Bilgir E, Orhan K, Aydın OB, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021;50(6):20200172.
  • 56. Zaborowicz K, Biedziak B, Olszewska A, Zaborowicz M. Tooth and bone parameters in the assessment of the chronological age of children and adolescents using neural modelling methods. Sensors. 2021;21(18):6008.
  • 57. Galibourg A, Cussat-Blanc S, Dumoncel J, Telmon N, Monsarrat P, Maret D. Comparison of different machine learning approaches to predict dental age using Demirjian’s staging approach. Int J Legal Med. 2021;135(2):665–75.
  • 58. Sharma S. Artificial intelligence in dentistry: The current concepts and a peek into the future. Int J Contemp Med Res. 2019;6(12):5-9.
  • 59. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.
  • 60. Al-Namankany A. Influence of artificial ıntelligence-driven diagnostic tools on treatment decision-making in early childhood caries: A systematic review of accuracy and clinical outcomes. Dent J. 2023;11(9):214.
  • 61. Karhade DS, Roach J, Shrestha P, Simancas-Pallares MA, Ginnis J, Burk ZJS, et al. An automated machine learning classifier for early childhood caries. Pediatr Dent. 2021;43(3):191–7.
  • 62. Xiao J, Luo J, Ly-Mapes O, Wu TT, Dye T, Al Jallad N, et al. Assessing a smartphone app (aıcaries) that uses artificial ıntelligence to detect dental caries in children and provides ınteractive oral health education: Protocol for a design and usability testing study. JMIR Res Protoc. 2021;10(10):e32921.
  • 63. Chen R, Yang J, Feng Y, Hao J, Liu Z. Model adaptive tooth segmentation. Proc Mach Learn Res. 2023;227:775-798.
  • 64. Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics. 2021;11(8):1477.
  • 65. Ha EG, Jeon KJ, Kim YH, Kim JY, Han SS. Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep. 2021;11(1):23061.
  • 66. Mladenovic R, Kalevski K, Davidovic B, Jankovic S, Todorovic VS, Vasovic M. The role of artificial ıntelligence in the accurate diagnosis and treatment planning of non-syndromic supernumerary teeth: A case report in a six-year-old boy. Children. 2023;10(5):839.
  • 67. Lang NP, Schätzle MA, Löe H. Gingivitis as a risk factor in periodontal disease. J Clin Periodontol. 2009;36:3–8.
  • 68. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic ımage segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834–48.
  • 69. Yüksel B. Dental Plak Varlığının Yapay Zeka İle Değerlendirilmesi [Diş Hekimliği Uzmanlık]. Edirne: Trakya Üniversitesi; 2023.
  • 70. You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: A comparison with clinical assessments. BMC Oral Health. 2020;20(1):141.
  • 71. Zhu H, Yu H, Zhang F, Cao Z, Wu F, Zhu F. Automatic segmentation and detection of ectopic eruption of first permanent molars on panoramic radiographs based on nnU‐Net. Int J Paediatr Dent. 2022;32(6):785–92.
  • 72. Liu J, Liu Y, Li S, Ying S, Zheng L, Zhao Z. Artificial intelligence-aided detection of ectopic eruption of maxillary first molars based on panoramic radiographs. J Dent. 2022;125:104239.
  • 73. Schönewolf J, Meyer O, Engels P, Schlickenrieder A, Hickel R, Gruhn V, et al. Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs. Clin Oral Investig. 2022;26(9):5923–30.
  • 74. Côté C. Artificial intelligence in anesthesiology: Moving into the future. Univ Tor Med J. 2019;96(1).

Yapay Zekanın Çocuk Diş Hekimliğinde Yeri: Geleneksel Derleme

Year 2025, Volume: 12 Issue: 1, 178 - 183, 21.04.2025
https://doi.org/10.15311/selcukdentj.1499233

Abstract

Son yıllarda hızla gelişim gösteren ve farklı sektörlerde ilgi odağı haline gelen yapay zekâ her alanda olduğu gibi sağlık alanında da oldukça popülerdir. Bu uygulamalar insan uzmanlığını, maliyet ve tıbbi hatayı azaltmayı; zaman tasarrufu sağlamayı; verimliliği ve doğruluğu arttırmayı amaçlamaktadır. Sağlık hizmetlerinde yapay zekânın temel ilgi alanı klinik teşhis işlemlerini gerçekleştirebilecek ve tedavi önerilerinde bulunabilecek yapay zekâ programlarının oluşturulmasıdır. Yapay zekâ uygulamalarının diş hekimliği alanındaki gelişimi dikkat çekicidir. Ancak diş hekimliği alanında kullanılan yapay zekâ uygulamaları tıptaki uygulamalardan sonra başlamıştır ve henüz başlangıç aşamasında sayılmaktadır. Günümüzde diş hekimliği alanlarının her biri teknoloji ile bağlantılıdır. Bu da yapay zekâ uygulamalarının diş hekimliğinde geliştirilme potansiyeline sahip olduğunu göstermektedir. Diş hekimliğindeki yapay zekâ çalışmalarının temel sorunu veri organizasyonunda, işlenmesinde ve düzenlenmesinde yaşanılan sıkıntılardır. Veri setlerinin yapay zekâ modellerine hazır hale getirilmesiyle birçok çalışma yapılmış ve yapılan çalışmalar yüksek doğrulukla sonuçlanmıştır. Çocuk diş hekimliği alanında yapay zekâ üzerine yapılmış çalışmalar oldukça azdır, ancak son yıllarda yapay zekâ modellerinin bu alanda uygulanmasıyla ilgili bildirilen çalışma sayısı genel diş hekimliğindeki çalışma sayısıyla paralel olarak hızla artış göstermektedir. Verilerin kullanılabilirliği arttıkça yapay zekâ uygulamaları çeşitli pediatrik dental uygulamalarda faydalarını kanıtlamaya başlamıştır. Bu derlemede, yapay zekânın özellikle çocuk diş hekimliğindeki kullanım alanlarından ve bu konudaki güncel gelişmelerden bahsedilmesi amaçlanmıştır.

References

  • 1. McCarthy J. What is artificial intelligence? 2007.
  • 2. Arslan K. Eğitimde yapay zekâ ve uygulamaları. BAEBD. 2020;11(1):71-88.
  • 3. Uzun T. Yapay zeka ve sağlık uygulamaları. İKÇÜ İİBF. 2020;3(1):80–92.
  • 4. Pirim H. Yapay Zeka. JoY. 2006;1(1):81–93.
  • 5. Nayak A. Clinical photography: A to Z. APOS Trends Orthod. 2017;7(1):19.
  • 6. Taulli T. Artificial Intelligence Basics. Berkeley, CA: Apress; 2019.
  • 7. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent. 2018;12(04):594–601.
  • 8. Moor J. The dartmouth college artificial ıntelligence conference: the next fifty years. AI Magazine. 2006;27(4):87.
  • 9. Öztemel E. Yapay Zeka Teknikleri. Papatya Yayıncılık. İstanbul; 2003.
  • 10. Tandon D, Rajawat J, Banerjee M. Present and future of artificial intelligence in dentistry. J Oral Biol Craniofac Res. 2020;10(4):391–6.
  • 11. Yılmaz A. Yapay Zeka. İnkılap Kitabevi. İstanbul; 2020.
  • 12. Gilboy N, Travers D, Wuerz R. Re-evaluating triage in the new millennium: A comprehensive look at the need for standardization and quality. J Emerg Nurs. 1999;25(6):468–73.
  • 13. Bahrammirzaee A. A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput Appl. 2010;19(8):1165–95.
  • 14. Allahverdi Novruz. Uzman Sistemler Bir Yapay Zeka Uygulaması. Atlas Yayın Dağıtım. Ankara; 2002.
  • 15. Babalık A, Güler İ. Boğaz enfeksiyonlarının teşhis ve tedavisinde uzman sistem kullanımı. SUJES. 2007;6(2):109-119.
  • 16. Alpaydın E. Yapay Öğrenme: Yeni Yapay Zeka. Tellekt; 2020.
  • 17. Warwick K. Artificial Intelligence: The Basics: Routledge; 2013.
  • 18. İşçi Ö, Korukoğlu S. Genetik algoritma yaklaşımı ve yöneylem araştırmasında bir uygulama. YED. 2003;10(2):191-208.
  • 19. Rafiee A, Moradi MH, Farzaneh MR. Novel genetic-neuro-fuzzy filter for speckle reduction from sonography images. J Digit Imaging. 2004;17(4):292–300.
  • 20. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.
  • 21. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37(2):505–15.
  • 22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
  • 23. Ergezer H, Dikmen M, Özdemir E. Yapay sinir ağları ve tanıma sistemleri. PiVOLKA. 2003;2(6):14–7.
  • 24. Yasav M. Yapay Sinir Ağlarıyla Yüz Mimiklerinin Tanınması [Yüksek lisans]. İstanbul: Yıldız Teknik Üniversitesi; 2008.
  • 25. Kaya U, Yılmaz A. Derin Öğrenme. Kodlab Yayın Dağıtım. İstanbul; 2019.
  • 26. Keleş A. Derin öğrenme ve sağlık alanındaki uygulamaları. J Turk Stud Electric. 2018;13(21):113–27.
  • 27. Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res. 2021;100(3):232–44.
  • 28. Yaji Anisha, Prasad Shesha, Pai Anuradha. Artificial intelligence in dento-maxillofacial radiology. ASDS. 2019;3(1):116–21.
  • 29. Putra RH, Doi C, Yoda N, Astuti ER, Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac Radiol. 2022;51(1):20210197.
  • 30. Leeson D. The digital factory in both the modern dental lab and clinic. Dental Materials. 2020;36(1):43–52.
  • 31. Otani T, Raigrodski AJ, Mancl L, Kanuma I, Rosen J. In vitro evaluation of accuracy and precision of automated robotic tooth preparation system for porcelain laminate veneers. J Prosthet Dent. 2015;114(2):229–35.
  • 32. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.
  • 33. Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L, et al. Detecting white spot lesions on dental photography using deep learning: A pilot study. J Dent. 2021;107:103615.
  • 34. Schlickenrieder A, Meyer O, Schönewolf J, Engels P, Hickel R, Gruhn V, et al. Automatized detection and categorization of fissure sealants from ıntraoral digital photographs using artificial ıntelligence. Diagnostics. 2021;11(9):1608.
  • 35. Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the debonding of cad/cam composite resin crowns with AI. J Dent Res. 2019;98(11):1234–8.
  • 36. Aminoshariae A, Kulild J, Nagendrababu V. Artificial ıntelligence in endodontics: Current applications and future directions. J Endod. 2021;47(9):1352–7.
  • 37. Nelson CA, Hossain SGM, Al-Okaily A, Ong J. A novel vending machine for supplying root canal tools during surgery. J Med Eng Technol. 2012;36(2):102–16.
  • 38. Albayrak B, Özdemir G, Ölçer Us Y, Yüzbaşıoğlu E. Artificial intelligence technologies in dentistry. J Exp Clin Med. 2021;38(SI-2):188–94.
  • 39. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114. 40. Nakano Y, Takeshita T, Kamio N, Shiota S, Shibata Y, Suzuki N, et al. Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples. Artif Intell Med. 2014;60(2):97–101.
  • 41. Akther S, Saleheen N, Samiei SA, Shetty V, Ertin E, Kumar S. mORAL: An mHealth model for inferring Oral Hygiene Behaviors in-the-wild using wrist-worn inertial sensors. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019;3(1):1–25.
  • 42. Yoo JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, et al. Deep learning based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021;11(1):1954.
  • 43. Yüce F, Taşsöker M. The applications of artificial intelligence in dentistry. Yeditepe J Dent. 2023;19(2):141–9.
  • 44. Chu P, Bo C, Liang X, Yang J, Megalooikonomou V, Yang F, et al. Using octuplet siamese network for osteoporosis analysis on dental panoramic radiographs. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2018. p. 2579–82.
  • 45. Kann BH, Aneja S, Loganadane GV, Kelly JR, Smith SM, Decker RH, et al. Pretreatment ıdentification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci Rep. 2018;8(1):14036.
  • 46. Kise Y, Ikeda H, Fujii T, Fukuda M, Ariji Y, Fujita H, et al. Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images. Dentomaxillofac Radiol. 2019;48(6):20190019.
  • 47. Akdeniz S, Tosun ME. A review of the use of artificial intelligence in orthodontics. J Exp Clin Med. 2021;38(SI-2):157–62.
  • 48. Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health. 2022;22(1):132.
  • 49. Amasya H, Yildirim D, Aydogan T, Kemaloglu N, Orhan K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models. Dentomaxillofac Radiol. 2020;49(5):20190441.
  • 50. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021;22(1):18.
  • 51. Kurup RJ, Sodhand A, Sangeetha R. Dentistry and artificial ıntelligence. ASDS. 2020;4(10):26–32.
  • 52. Baliga MS. Artificial intelligence - The next frontier in pediatric dentistry. J Indian Soc Pedod Prev Dent. 2019;37(4):315.
  • 53. Vishwanathaiah S, Fageeh HN, Khanagar SB, Maganur PC. Artificial intelligence its uses and application in pediatric dentistry: A review. Biomedicines. 2023;11(3):788.
  • 54. Vona Ş. Derin Öğrenme Yöntemi İle Panoramik Radyografilerde Süt Dişlerinin Tespiti Ve Numaralandırılması [Yüksek lisans]. Ordu: Ordu Üniversitesi; 2023.
  • 55. Kılıc MC, Bayrakdar IS, Çelik Ö, Bilgir E, Orhan K, Aydın OB, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021;50(6):20200172.
  • 56. Zaborowicz K, Biedziak B, Olszewska A, Zaborowicz M. Tooth and bone parameters in the assessment of the chronological age of children and adolescents using neural modelling methods. Sensors. 2021;21(18):6008.
  • 57. Galibourg A, Cussat-Blanc S, Dumoncel J, Telmon N, Monsarrat P, Maret D. Comparison of different machine learning approaches to predict dental age using Demirjian’s staging approach. Int J Legal Med. 2021;135(2):665–75.
  • 58. Sharma S. Artificial intelligence in dentistry: The current concepts and a peek into the future. Int J Contemp Med Res. 2019;6(12):5-9.
  • 59. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.
  • 60. Al-Namankany A. Influence of artificial ıntelligence-driven diagnostic tools on treatment decision-making in early childhood caries: A systematic review of accuracy and clinical outcomes. Dent J. 2023;11(9):214.
  • 61. Karhade DS, Roach J, Shrestha P, Simancas-Pallares MA, Ginnis J, Burk ZJS, et al. An automated machine learning classifier for early childhood caries. Pediatr Dent. 2021;43(3):191–7.
  • 62. Xiao J, Luo J, Ly-Mapes O, Wu TT, Dye T, Al Jallad N, et al. Assessing a smartphone app (aıcaries) that uses artificial ıntelligence to detect dental caries in children and provides ınteractive oral health education: Protocol for a design and usability testing study. JMIR Res Protoc. 2021;10(10):e32921.
  • 63. Chen R, Yang J, Feng Y, Hao J, Liu Z. Model adaptive tooth segmentation. Proc Mach Learn Res. 2023;227:775-798.
  • 64. Ahn Y, Hwang JJ, Jung YH, Jeong T, Shin J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics. 2021;11(8):1477.
  • 65. Ha EG, Jeon KJ, Kim YH, Kim JY, Han SS. Automatic detection of mesiodens on panoramic radiographs using artificial intelligence. Sci Rep. 2021;11(1):23061.
  • 66. Mladenovic R, Kalevski K, Davidovic B, Jankovic S, Todorovic VS, Vasovic M. The role of artificial ıntelligence in the accurate diagnosis and treatment planning of non-syndromic supernumerary teeth: A case report in a six-year-old boy. Children. 2023;10(5):839.
  • 67. Lang NP, Schätzle MA, Löe H. Gingivitis as a risk factor in periodontal disease. J Clin Periodontol. 2009;36:3–8.
  • 68. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic ımage segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834–48.
  • 69. Yüksel B. Dental Plak Varlığının Yapay Zeka İle Değerlendirilmesi [Diş Hekimliği Uzmanlık]. Edirne: Trakya Üniversitesi; 2023.
  • 70. You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: A comparison with clinical assessments. BMC Oral Health. 2020;20(1):141.
  • 71. Zhu H, Yu H, Zhang F, Cao Z, Wu F, Zhu F. Automatic segmentation and detection of ectopic eruption of first permanent molars on panoramic radiographs based on nnU‐Net. Int J Paediatr Dent. 2022;32(6):785–92.
  • 72. Liu J, Liu Y, Li S, Ying S, Zheng L, Zhao Z. Artificial intelligence-aided detection of ectopic eruption of maxillary first molars based on panoramic radiographs. J Dent. 2022;125:104239.
  • 73. Schönewolf J, Meyer O, Engels P, Schlickenrieder A, Hickel R, Gruhn V, et al. Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs. Clin Oral Investig. 2022;26(9):5923–30.
  • 74. Côté C. Artificial intelligence in anesthesiology: Moving into the future. Univ Tor Med J. 2019;96(1).
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Paedodontics
Journal Section Review
Authors

Zeynep Esma Özalan 0009-0002-9351-132X

Makbule Buse Dundar Sarı 0000-0002-8848-8850

Merve Aksoy 0000-0003-1577-0289

Publication Date April 21, 2025
Submission Date June 12, 2024
Acceptance Date July 25, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Özalan ZE, Dundar Sarı MB, Aksoy M. Yapay Zekanın Çocuk Diş Hekimliğinde Yeri: Geleneksel Derleme. Selcuk Dent J. 2025;12(1):178-83.