Bu çalışmada konuşmadan metne çeviri için önerilmiş ve çok sayıda dille ön eğitilmiş iki model olan Whisper-Small ve Wav2Vec2-XLS-R-300M modellerinin Türkçe dilinde konuşmadan metne çevirme başarıları incelenmiştir. Çalışmada açık kaynaklı bir veri kümesi olan Türkçe dilinde hazırlanmış Mozilla Common Voice 11.0 versiyonu kullanılmıştır. Az sayıda veri içeren bu veri kümesi ile çok dilli modeller olan Whisper-Small ve Wav2Vec2-XLS-R-300M ince ayar yapılmıştır. İki modelin konuşmadan metne çeviri başarımı değerlendirilmiş ve Wav2Vec2-XLS-R-300M modelinin 0,28 WER değeri Whisper-Small modelinin 0,16 WER değeri gösterdiği gözlemlenmiştir. Ek olarak modellerin başarısı eğitim ve doğrulama veri kümesinde bulunmayan çağrı merkezi kayıtlarıyla hazırlanmış sınama verisiyle incelenmiştir.
TÜBİTAK TEYDEB 1501
3210713
Bu çalışma TÜBİTAK TEYDEB 1501 kapsamında desteklenmekte olan 3210713 numaralı "Güncel Derin Öğrenme Mimarileri ile Türkçe Dili için Konuşmadan Metne Çeviri Yapabilen ve Hizmet Olarak Yazılım (SaaS) Modeli ile Çalışan Sistemin Geliştirilmesi" isimli proje kapsamında gerçekleştirilmiştir.
In this study, the performances of the Whisper-Small and Wav2Vec2-XLS-R-300M models which are two pre-trained multilingual models for speech to text were examined for the Turkish language. Mozilla Common Voice version 11.0 which is prepared in Turkish language and is an open-source data set, was used in the study. The multilingual models, Whisper-Small and Wav2Vec2-XLS-R-300M were fine-tuned with this data set which contains a small amount of data. The speech to text performance of the two models was compared. WER values are calculated as 0.28 and 0.16 for the Wav2Vec2-XLS-R-300M and the Whisper-Small models respectively. In addition, the performances of the models were examined with the test data prepared with call center records that were not included in the training and validation dataset.
3210713
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Makaleler(Araştırma) |
Authors | |
Project Number | 3210713 |
Early Pub Date | October 22, 2023 |
Publication Date | November 20, 2023 |
Published in Issue | Year 2023 Volume: 16 Issue: 2 |
https://i.creativecommons.org/l/by-nc/4.0Makale Kabulü | |
Çevrimiçi makale yüklemesi yapmak için kullanıcı kayıt/girişini kullanınız. Dergiye gönderilen makalelerin kabul süreci şu aşamalardan oluşmaktadır: 1. Gönderilen her makale ilk aşamada en az iki hakeme gönderilmektedir. 2. Hakem ataması, dergi editörleri tarafından yapılmaktadır. Derginin hakem havuzunda yaklaşık 200 hakem bulunmaktadır ve bu hakemler ilgi alanlarına göre sınıflandırılmıştır. Her hakeme ilgilendiği konuda makale gönderilmektedir. Hakem seçimi menfaat çatışmasına neden olmayacak biçimde yapılmaktadır. 3. Hakemlere gönderilen makalelerde yazar adları kapatılmaktadır. 4. Hakemlere bir makalenin nasıl değerlendirileceği açıklanmaktadır ve aşağıda görülen değerlendirme formunu doldurmaları istenmektedir. 5. İki hakemin olumlu görüş bildirdiği makaleler editörler tarafından benzerlik incelemesinden geçirilir. Makalelerdeki benzerliğin %25’ten küçük olması beklenir. 6. Tüm aşamaları geçmiş olan bir bildiri dil ve sunuş açısından editör tarafından incelenir ve gerekli düzeltme ve iyileştirmeler yapılır. Gerekirse yazarlara durum bildirilir.
|