Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 5, 1 - 25

Abstract

Project Number

-

References

  • [1] J.K. Shneine, & Y.H. Alaraji, Int. J. Recent. Sci. Res, (5) (2016) 1411.
  • [2] S.B.S. Ganguly, & K.K. Sen, A Review on 1, 2, 4-Triazoles. Journal of Advanced Pharmacy Education and Research, 3(3-2013) (2013) 102-115.
  • [3] R.K. Singla, & G.V. Bhat, QSAR model for predicting the fungicidal action of 1, 2, 4-triazole derivatives against Candida albicans. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5) (2010) 696-701.
  • [4] http://shodhganga.inflibnet.ac.in/bitstream/10603/122880/6/06_chapter%201.pdf, accesed at the 7th of October 2018
  • [5] M.S. Saini, & J. Dwivedi, Synthesis and biological significances of 1, 2, 4-triazole and its derivatives: A review. International Journal of Pharmaceutical Sciences and Research, 4(8) (2013) 2866.
  • [6] A. Martin, & R. Martin, A review on the antimicrobial activity of 1, 2, 4-triazole derivatives. Int. J. Life Sci. Pharm. Res, 3 (2014) 321-329.
  • [7] S. Maddila, R. Pagadala, & S.B. Jonnalagadda, 1, 2, 4-Triazoles: A review of synthetic approaches and the biological activity. Letters in Organic Chemistry, 10(10) (2013) 693-714.
  • [8] A.H. Malani, A.H. Makwana, & H.R. Makwana, A brief review article: Various synthesis and therapeutic importance of 1, 2, 4-triazole and its derivatives. Moroccan Journal of Chemistry, 5(1) (2017) 41-58.
  • [9] N. Singla, J. Bariwal, & S. Kaur, Design and synthesis of 1, 2, 4-triazole substituted thiophenes. Int J Pharmaceut Sci Res, 9 (2018) 158-164.
  • [10] V. Borys, K. Andrıy, & P. Vladymyr, Electrospray ionization mass spectrometry fragmentation pathways of salts of some 1, 2, 4-triazolylthioacetate acids, the active pharmaceutical ingredients. Asian J Pharm Clin Res, 11(10) (2018) 303-312.
  • [11] S. Eswaran, A.V. Adhikari, & N.S. Shetty, Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1, 2, 4-triazole moiety. European journal of medicinal chemistry, 44(11) (2009) 4637-4647.
  • [12] S.K. Reddy, M.N. Purohit, & G.V. Pujar, Synthesis and pharmacological activity of some novel bis-heterocycles encompassing pyrrole. Int J Pharm Pharm Sci, 4(5) (2012) 153-157.
  • [13] S. Philip, M.N. Purohit, K.K. La, M.S. Eswar, T. Raizaday, S. Prudhvi, G.V. Pujar, Desıgn, synthesıs and ın vıtro antı-cancer actıvıty of novel 1,2,4-trıazole derıvatıves. Int J Pharm Pharm Sci, 6(10) (2011) 185-189.
  • [14] N.N. Gülerman, H.N. Doğan, S. Rollas, C. Johansson, & C. Celik, Synthesis and structure elucidation of some new thioether derivatives of 1, 2, 4-triazoline-3-thiones and their antimicrobial activities. Il Farmaco, 56(12) (2001) 953-958.
  • [15] H.A. El-Sherief, B.G. Youssif, S.N.A., Bukhari, M. Abdel-Aziz, & H.M. Abdel-Rahman, Novel 1, 2, 4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorganic chemistry, 76 (2018) 314-325.
  • [16] I. Bushueva, V. Parchenko, R. Shcherbyna, A. Safonov, A. Kaplaushenko, B. Gutyj, & I. Harıv, Tryfuzol-new original veterinary drug. Journal of Faculty of Parmak of Ankara University, 41(1) (2017).
  • [17] B. Tüzün, Examination of anti-oxidant properties and molecular docking parameters of some compounds in human body. Turkish Computational and Theoretical Chemistry, 4(2) (2020) 76-87.
  • [18] H. Saraç, , A. Demirbaş, & B. Tüzün, Could Zingiber officinale plant be effective against Omicron BA. 2.75 of SARS-CoV-2?. Turkish Computational and Theoretical Chemistry, 7(3) (2023) 42-56.
  • [19] B. Tüzün, Evaluation of cytotoxicity, chemical composition, antioxidant potential, apoptosis relationship, molecular docking, and MM-GBSA analysis of Rumex crispus leaf extracts. Journal of Molecular Structure, 1323 (2025) 140791.
  • [20] H. Saraç, & B. Tüzün, Antioxidant Activity Properties of Extract of Turmeric (Curcuma longa L.) Plant. Turkish Computational and Theoretical Chemistry, 8(2) (2023) 19-27.
  • [21] N. Ullah, A. Alam, B. Tüzün, N.U. Rehman, M. Ayaz, A.A. Elhenawy, ... & M. Ahmad, Synthesis of novel thiazole derivatives containing 3-methylthiophene carbaldehyde as potent anti α-glucosidase agents: In vitro evaluation, molecular docking, dynamics, MM-GBSA, and DFT studies. Journal of Molecular Structure, 1321 (2025) 140070.
  • [22] A.D. Becke, Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3) (1992) 2155-2160.
  • [23] D. Vautherin, & D.T. Brink, Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Physical Review C, 5(3) (1972) 626.
  • [24] E.G. Hohenstein, S.T. Chill, & C.D. Sherrill, Assessment of the performance of the M05− 2X and M06− 2X exchange-correlation functionals for noncovalent interactions in biomolecules. Journal of Chemical Theory and Computation, 4(12) (2008) 1996-2000.
  • [25] H. Li, K. Sze, & K. Fung, Validation of inter-helical orientation of the steril-alpha-motif of human deleted in liver cancer 2 by residual dipolar couplings, protein data bank ID: 2JW2.
  • [26] K. Okamoto, M. Ikemori-Kawada, A. Jestel, K. von König, Y. Funahashi, T. Matsushima, ... & J. Matsui, Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS medicinal chemistry letters, 6(1) (2015) 89-94.
  • [27] M. McTigue, J. Wickersham, C. Pinko, Y. Hong, T. Marrone, Crystal structure of the VEGFR2 kinase domain in complex with PF- 00337210 (N,2-dimethyl-6-(7-(2-morpholinoethoxy)quinolin-4-yloxy) benzofuran-3-carboxamide) (2010) PDB DOI: https://doi.org/10.2210/pdb2xir/pdb
  • [28] R. Kong, F. Yi, P. Wen, J. Liu, X. Chen, J. Ren, ... & J.Y. Wu, Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. The Journal of clinical investigation, 125(12) (2015) 4407-4420.
  • [29] L.R. McLean, Y. Zhang, N. Zaidi, X. Bi, R. Wang, R. Dharanipragada, ... & D. Kominos, X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase. Bioorganic & medicinal chemistry letters, 22(9) (2012) 3296-3300.
  • [30] C.H. Zhou, & Y. Wang, Recent researches in triazole compounds as medicinal drugs. Current medicinal chemistry, 19(2) (2012) 239-280.
  • [31] R. Kharb, P.C. Sharma, & M.S. Yar, Pharmacological significance of triazole scaffold. Journal of enzyme inhibition and medicinal chemistry, 26(1) (2011) 1-21.
  • [32] C. Girmenia, & E. Finolezzi, New-generation triazole antifungal drugs: review of the phase II and III trials. 1 (2011) 1577.
  • [33] J. Huo, H. Hu, M. Zhang, X. Hu, M. Chen, D. Chen, ... & Z. Wen, A mini review of the synthesis of poly-1, 2, 3-triazole-based functional materials. RSC advances, 7(4) (2017) 2281-2287.
  • [34] R. Dennington, T.A. Keith, & J. M. Millam, (2016). GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA.
  • [35] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.R. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford
  • [36] B. Tüzün, Theoretical evaluation of six indazole derivatives as corrosion inhibitors based on DFT. Turkish computational and theoretical chemistry, 2(1) (2018) 12-22.
  • [37] H. Yalazan, D. Koç, F. Aydın Kose, S. Fandaklı, B. Tüzün, M.İ. Akgül, ... & H. Kantekin, Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. Journal of Biomolecular Structure and Dynamics, 42(23) (2024) 13100-13113.
  • [38] Schrödinger Release 2022-4: Maestro, Schrödinger, LLC, New York, NY, 2022.
  • [39] I. Shahzadi, A.F. Zahoor, B. Tüzün, A. Mansha, M.N. Anjum, A. Rasul, ... & M. Mojzych, Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1, 2, 4-triazole. Plos one, 17(12) (2022) e0278027.
  • [40] M. El Faydy, L. Lakhrissi, N. Dahaieh, K. Ounine, B. Tüzün, N. Chahboun, ... & A. Zarrouk, Synthesis, Biological Properties, and Molecular Docking Study of Novel 1, 2, 3-Triazole-8-quinolinol Hybrids. ACS omega, 9(23) (2024) 25395–25409.
  • [41] Schrödinger Release 2022-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2022; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2022
  • [42] Schrödinger Release 2022-4: LigPrep, Schrödinger, LLC, New York, NY, 2022.
  • [43] Schrödinger Release 2022-4: QikProp, Schrödinger, LLC, New York, NY, 2022.
  • [44] Poustforoosh, A., Faramarz, S., Nematollahi, M. H., Mahmoodi, M., & Azadpour, M. (2024). Correction: Structure-Based Drug Design for Targeting IRE1: An in Silico Approach for Treatment of Cancer. Drug Research, 74(02), e1-e1.
  • [45] A. Poustforoosh, The impact of cationic/anionic ratio on the physicochemical aspects of catanionic niosomes as a promising carrier for anticancer drugs. Journal of Molecular Liquids, (2024) 125338.
  • [46] A. Poustforoosh, Investigation on the structural and dynamical properties of cationic, anionic, and catanionic niosomes as multifunctional controlled drug delivery system for cabozantinib. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 687 (2024) 133547.
  • [47] A. Boris, V.V. Parchenko, E.G. Knysh, & A.G. Kaplaushenko, Development of hplc-esı-ms method for determınıng morpholınıum 2-(5-(pyrıdıne-4-yl)-1, 2, 4-trıazole-3-yltıo) acetate ın bırd eggs.
  • [48] N.D. Greer, Voriconazole: the newest triazole antifungal agent. Proc (Bayl Univ Med Cent) 16(2) (2003) 241-8.
  • [49] H. Yalazan, D. Koç, F. Aydın Kose, M.İ. Akgül, S. Fandaklı, B. Tüzün, ... & H. Kantekin, Chalcone-based schiff bases: Design, synthesis, structural characterization and biological effects. Journal of Molecular Structure, 1337 (2025) 142211.
  • [50] S. Manap, H. Medetalibeyoğlu, A. Kılıç, O.F. Karataş, B. Tüzün, M. Alkan, ... & H. Yüksek, Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1, 2, 4-triazole, and assessment of their anticancer activity. Journal of Biomolecular Structure and Dynamics, 42(21) (2024) 11916-11930.
  • [51] O. Myroslava, A. Poustforoosh, B. Inna, V. Parchenko, B. Tüzün, & B. Gutyj, Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1, 2, 4-triazol-3-yl) methyl) morpholine as a potential drug for the treatment of fungal pathologies. Computational Biology and Chemistry, 113 (2024) 108206.
  • [52] A. Rafik, B. Tuzun, H. Zouihri, A. Poustforoosh, R. Hsissou, A. Elhenaey, & T. Guedira, Morphology studies, optic proprieties, hirschfeld electrostatic potential mapping, docking molecular anti-inflammatory, and dynamic molecular approaches of hybrid phosphate. Journal of the Indian Chemical Society, 101(11) (2024) 101419.
  • [53] N. Barghady, S.A. Assou, M. Er-Rajy, K. Boujdi, A. Arzine, Y. Rhazi, ... & M. El Yazidi, Design, synthesis, characterization, and theoretical calculations, along with in silico and in vitro antimicrobial proprieties of new isoxazole-amide conjugates. Open Chemistry, 22(1) (2024) 20240109.
  • [54] A.K. Goswami, M.A. Aboul-Soud, N. Gogoi, M. El-Shazly, J.P. Giesy, B. Tüzün, ... & H.K. Sharma, Integrative in silico evaluation of the antiviral potential of terpenoids and its metal complexes derived from Homalomena aromatica based on main protease of SARS-CoV-2. Open Chemistry, 22(1) (2024) 20240085.
  • [55] Ü.M., Koçyiğit, M. Doğan, H. Muğlu, P. Taslimi, B. Tüzün, H. Yakan, ... & İ. Gülçin, Determination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds. Journal of Molecular Structure, 1264 (2022) 133249.
  • [56] F. Türkan, P. Taslimi, B. Cabir, M.S. Ağırtaş, Y. Erden, H.U. Celebioglu, ... & I. Gulcin, Co and Zn Metal phthalocyanines with bulky substituents: anticancer, antibacterial activities and their inhibitory effects on some metabolic enzymes with molecular docking studies. Polycyclic Aromatic Compounds, 42(7) (2022) 4475-4486.
  • [57] M.R. Taysi, M. Kirici, M. Kirici, B. Tuzun, & A. Poustforoosh, Antioxidant enzyme activities, molecular docking studies, MM-GBSA, and molecular dynamic of chlorpyrifos in freshwater fish Capoeta umbla. Journal of biomolecular structure and dynamics, 42(1) (2024) 163-176.
  • [58] A.H.T. Kafa, G. Tüzün, E. Güney, R. Aslan, K. Sayın, B. Tüzün, & H. Ataseven, Synthesis, computational analyses, antibacterial and antibiofilm properties of nicotinamide derivatives. Structural Chemistry, 33(4) (2022) 1189-1197.
  • [59] H. Medetalibeyoğlu, S. Manap, M. Alkan, M. Beytur, N. Barlak, O.F. Karatas, ... & P. Taslimi, Novel Schiff Bases: Synthesis, Characterization, Bioactivity, Cytotoxicity, and Computational Evaluations. Polycyclic Aromatic Compounds, (2024) 1-19.
  • [60] M. Tapera, H. Kekeçmuhammed, B. Tüzün, S.D. Daştan, M.S. Çelik, P. Taslimi, ... & E. Sarıpınar, Novel 1, 2, 4-triazole-maleamic acid derivatives: synthesis and evaluation as anticancer agents with carbonic anhydrase inhibitory activity. Journal of Molecular Structure, 1313 (2024) 138680.
  • [61] A. Mermer, M.V. Bulbul, S.M. Kalender, I. Keskin, B. Tuzun, & O.E. Eyupoglu, Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies. Journal of Molecular Liquids, 359 (2022) 119264.
  • [62] A. Poustforoosh, & F. Moosavi, Evaluation of the FDA-approved kinase inhibitors to uncover the potential repurposing candidates targeting ABC transporters in multidrug-resistant cancer cells: an in silico approach. Journal of Biomolecular Structure and Dynamics, 42(24) (2024) 13650-13662.

The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs

Year 2025, Volume: 9 Issue: 5, 1 - 25

Abstract

This study aimed to develop and validate an HPLC-MS method for determining Tryfuzol-neo 1% (piperidinium-{[5-(2-furan)-4-phenyl-4Н-1,2,4-triazole-3-ylthio)acetate}) in food control, veterinary, and biological samples, while also investigating its molecular interactions with cancer targets. A novel HPLC-MS methodology was developed and successfully applied to quantify Tryfuzol-neo residues in meat and animal organ matrices. Complementary computational studies were conducted using Gaussian calculations at B3LYP, HF, and M062X levels with 6-31g, 6-31++g, and 6-31++g(d,p) basis sets to examine the compound's properties. Molecular docking and dynamics simulations revealed stable binding interactions between Tryfuzol-neo and six cancer-related proteins: 2JW2, 2H80, and 3WZE (liver cancer); 2XIR and 5C5S (kidney cancer); and 3VF8 (spleen cancer). The results demonstrate the method's effectiveness for detecting Tryfuzol-neo in complex biological samples, while the computational analyses suggest potential therapeutic applications through specific protein interactions. This work presents the first validated HPLC-MS protocol for Tryfuzol-neo detection in food safety and veterinary medicine contexts, with the additional finding of its promising binding affinity to multiple cancer targets. The combination of analytical and in silico approaches provides a comprehensive characterization of Tryfuzol-neo, supporting its potential dual use as both a veterinary drug and a candidate for further anticancer research. These findings warrant additional pharmacological studies to explore Tryfuzol-neo's therapeutic potential and mechanism of action against the investigated cancer types.

Ethical Statement

-

Supporting Institution

This work was supported by the Scientific Research Project Fund of Sivas Cumhuriyet University (CUBAP) under the project number RGD-020.

Project Number

-

Thanks

-

References

  • [1] J.K. Shneine, & Y.H. Alaraji, Int. J. Recent. Sci. Res, (5) (2016) 1411.
  • [2] S.B.S. Ganguly, & K.K. Sen, A Review on 1, 2, 4-Triazoles. Journal of Advanced Pharmacy Education and Research, 3(3-2013) (2013) 102-115.
  • [3] R.K. Singla, & G.V. Bhat, QSAR model for predicting the fungicidal action of 1, 2, 4-triazole derivatives against Candida albicans. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(5) (2010) 696-701.
  • [4] http://shodhganga.inflibnet.ac.in/bitstream/10603/122880/6/06_chapter%201.pdf, accesed at the 7th of October 2018
  • [5] M.S. Saini, & J. Dwivedi, Synthesis and biological significances of 1, 2, 4-triazole and its derivatives: A review. International Journal of Pharmaceutical Sciences and Research, 4(8) (2013) 2866.
  • [6] A. Martin, & R. Martin, A review on the antimicrobial activity of 1, 2, 4-triazole derivatives. Int. J. Life Sci. Pharm. Res, 3 (2014) 321-329.
  • [7] S. Maddila, R. Pagadala, & S.B. Jonnalagadda, 1, 2, 4-Triazoles: A review of synthetic approaches and the biological activity. Letters in Organic Chemistry, 10(10) (2013) 693-714.
  • [8] A.H. Malani, A.H. Makwana, & H.R. Makwana, A brief review article: Various synthesis and therapeutic importance of 1, 2, 4-triazole and its derivatives. Moroccan Journal of Chemistry, 5(1) (2017) 41-58.
  • [9] N. Singla, J. Bariwal, & S. Kaur, Design and synthesis of 1, 2, 4-triazole substituted thiophenes. Int J Pharmaceut Sci Res, 9 (2018) 158-164.
  • [10] V. Borys, K. Andrıy, & P. Vladymyr, Electrospray ionization mass spectrometry fragmentation pathways of salts of some 1, 2, 4-triazolylthioacetate acids, the active pharmaceutical ingredients. Asian J Pharm Clin Res, 11(10) (2018) 303-312.
  • [11] S. Eswaran, A.V. Adhikari, & N.S. Shetty, Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1, 2, 4-triazole moiety. European journal of medicinal chemistry, 44(11) (2009) 4637-4647.
  • [12] S.K. Reddy, M.N. Purohit, & G.V. Pujar, Synthesis and pharmacological activity of some novel bis-heterocycles encompassing pyrrole. Int J Pharm Pharm Sci, 4(5) (2012) 153-157.
  • [13] S. Philip, M.N. Purohit, K.K. La, M.S. Eswar, T. Raizaday, S. Prudhvi, G.V. Pujar, Desıgn, synthesıs and ın vıtro antı-cancer actıvıty of novel 1,2,4-trıazole derıvatıves. Int J Pharm Pharm Sci, 6(10) (2011) 185-189.
  • [14] N.N. Gülerman, H.N. Doğan, S. Rollas, C. Johansson, & C. Celik, Synthesis and structure elucidation of some new thioether derivatives of 1, 2, 4-triazoline-3-thiones and their antimicrobial activities. Il Farmaco, 56(12) (2001) 953-958.
  • [15] H.A. El-Sherief, B.G. Youssif, S.N.A., Bukhari, M. Abdel-Aziz, & H.M. Abdel-Rahman, Novel 1, 2, 4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorganic chemistry, 76 (2018) 314-325.
  • [16] I. Bushueva, V. Parchenko, R. Shcherbyna, A. Safonov, A. Kaplaushenko, B. Gutyj, & I. Harıv, Tryfuzol-new original veterinary drug. Journal of Faculty of Parmak of Ankara University, 41(1) (2017).
  • [17] B. Tüzün, Examination of anti-oxidant properties and molecular docking parameters of some compounds in human body. Turkish Computational and Theoretical Chemistry, 4(2) (2020) 76-87.
  • [18] H. Saraç, , A. Demirbaş, & B. Tüzün, Could Zingiber officinale plant be effective against Omicron BA. 2.75 of SARS-CoV-2?. Turkish Computational and Theoretical Chemistry, 7(3) (2023) 42-56.
  • [19] B. Tüzün, Evaluation of cytotoxicity, chemical composition, antioxidant potential, apoptosis relationship, molecular docking, and MM-GBSA analysis of Rumex crispus leaf extracts. Journal of Molecular Structure, 1323 (2025) 140791.
  • [20] H. Saraç, & B. Tüzün, Antioxidant Activity Properties of Extract of Turmeric (Curcuma longa L.) Plant. Turkish Computational and Theoretical Chemistry, 8(2) (2023) 19-27.
  • [21] N. Ullah, A. Alam, B. Tüzün, N.U. Rehman, M. Ayaz, A.A. Elhenawy, ... & M. Ahmad, Synthesis of novel thiazole derivatives containing 3-methylthiophene carbaldehyde as potent anti α-glucosidase agents: In vitro evaluation, molecular docking, dynamics, MM-GBSA, and DFT studies. Journal of Molecular Structure, 1321 (2025) 140070.
  • [22] A.D. Becke, Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3) (1992) 2155-2160.
  • [23] D. Vautherin, & D.T. Brink, Hartree-Fock calculations with Skyrme's interaction. I. Spherical nuclei. Physical Review C, 5(3) (1972) 626.
  • [24] E.G. Hohenstein, S.T. Chill, & C.D. Sherrill, Assessment of the performance of the M05− 2X and M06− 2X exchange-correlation functionals for noncovalent interactions in biomolecules. Journal of Chemical Theory and Computation, 4(12) (2008) 1996-2000.
  • [25] H. Li, K. Sze, & K. Fung, Validation of inter-helical orientation of the steril-alpha-motif of human deleted in liver cancer 2 by residual dipolar couplings, protein data bank ID: 2JW2.
  • [26] K. Okamoto, M. Ikemori-Kawada, A. Jestel, K. von König, Y. Funahashi, T. Matsushima, ... & J. Matsui, Distinct binding mode of multikinase inhibitor lenvatinib revealed by biochemical characterization. ACS medicinal chemistry letters, 6(1) (2015) 89-94.
  • [27] M. McTigue, J. Wickersham, C. Pinko, Y. Hong, T. Marrone, Crystal structure of the VEGFR2 kinase domain in complex with PF- 00337210 (N,2-dimethyl-6-(7-(2-morpholinoethoxy)quinolin-4-yloxy) benzofuran-3-carboxamide) (2010) PDB DOI: https://doi.org/10.2210/pdb2xir/pdb
  • [28] R. Kong, F. Yi, P. Wen, J. Liu, X. Chen, J. Ren, ... & J.Y. Wu, Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. The Journal of clinical investigation, 125(12) (2015) 4407-4420.
  • [29] L.R. McLean, Y. Zhang, N. Zaidi, X. Bi, R. Wang, R. Dharanipragada, ... & D. Kominos, X-ray crystallographic structure-based design of selective thienopyrazole inhibitors for interleukin-2-inducible tyrosine kinase. Bioorganic & medicinal chemistry letters, 22(9) (2012) 3296-3300.
  • [30] C.H. Zhou, & Y. Wang, Recent researches in triazole compounds as medicinal drugs. Current medicinal chemistry, 19(2) (2012) 239-280.
  • [31] R. Kharb, P.C. Sharma, & M.S. Yar, Pharmacological significance of triazole scaffold. Journal of enzyme inhibition and medicinal chemistry, 26(1) (2011) 1-21.
  • [32] C. Girmenia, & E. Finolezzi, New-generation triazole antifungal drugs: review of the phase II and III trials. 1 (2011) 1577.
  • [33] J. Huo, H. Hu, M. Zhang, X. Hu, M. Chen, D. Chen, ... & Z. Wen, A mini review of the synthesis of poly-1, 2, 3-triazole-based functional materials. RSC advances, 7(4) (2017) 2281-2287.
  • [34] R. Dennington, T.A. Keith, & J. M. Millam, (2016). GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA.
  • [35] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.R. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford
  • [36] B. Tüzün, Theoretical evaluation of six indazole derivatives as corrosion inhibitors based on DFT. Turkish computational and theoretical chemistry, 2(1) (2018) 12-22.
  • [37] H. Yalazan, D. Koç, F. Aydın Kose, S. Fandaklı, B. Tüzün, M.İ. Akgül, ... & H. Kantekin, Design, syntheses, theoretical calculations, MM-GBSA, potential anti-cancer and enzyme activities of novel Schiff base compounds. Journal of Biomolecular Structure and Dynamics, 42(23) (2024) 13100-13113.
  • [38] Schrödinger Release 2022-4: Maestro, Schrödinger, LLC, New York, NY, 2022.
  • [39] I. Shahzadi, A.F. Zahoor, B. Tüzün, A. Mansha, M.N. Anjum, A. Rasul, ... & M. Mojzych, Repositioning of acefylline as anti-cancer drug: Synthesis, anticancer and computational studies of azomethines derived from acefylline tethered 4-amino-3-mercapto-1, 2, 4-triazole. Plos one, 17(12) (2022) e0278027.
  • [40] M. El Faydy, L. Lakhrissi, N. Dahaieh, K. Ounine, B. Tüzün, N. Chahboun, ... & A. Zarrouk, Synthesis, Biological Properties, and Molecular Docking Study of Novel 1, 2, 3-Triazole-8-quinolinol Hybrids. ACS omega, 9(23) (2024) 25395–25409.
  • [41] Schrödinger Release 2022-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2022; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2022
  • [42] Schrödinger Release 2022-4: LigPrep, Schrödinger, LLC, New York, NY, 2022.
  • [43] Schrödinger Release 2022-4: QikProp, Schrödinger, LLC, New York, NY, 2022.
  • [44] Poustforoosh, A., Faramarz, S., Nematollahi, M. H., Mahmoodi, M., & Azadpour, M. (2024). Correction: Structure-Based Drug Design for Targeting IRE1: An in Silico Approach for Treatment of Cancer. Drug Research, 74(02), e1-e1.
  • [45] A. Poustforoosh, The impact of cationic/anionic ratio on the physicochemical aspects of catanionic niosomes as a promising carrier for anticancer drugs. Journal of Molecular Liquids, (2024) 125338.
  • [46] A. Poustforoosh, Investigation on the structural and dynamical properties of cationic, anionic, and catanionic niosomes as multifunctional controlled drug delivery system for cabozantinib. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 687 (2024) 133547.
  • [47] A. Boris, V.V. Parchenko, E.G. Knysh, & A.G. Kaplaushenko, Development of hplc-esı-ms method for determınıng morpholınıum 2-(5-(pyrıdıne-4-yl)-1, 2, 4-trıazole-3-yltıo) acetate ın bırd eggs.
  • [48] N.D. Greer, Voriconazole: the newest triazole antifungal agent. Proc (Bayl Univ Med Cent) 16(2) (2003) 241-8.
  • [49] H. Yalazan, D. Koç, F. Aydın Kose, M.İ. Akgül, S. Fandaklı, B. Tüzün, ... & H. Kantekin, Chalcone-based schiff bases: Design, synthesis, structural characterization and biological effects. Journal of Molecular Structure, 1337 (2025) 142211.
  • [50] S. Manap, H. Medetalibeyoğlu, A. Kılıç, O.F. Karataş, B. Tüzün, M. Alkan, ... & H. Yüksek, Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1, 2, 4-triazole, and assessment of their anticancer activity. Journal of Biomolecular Structure and Dynamics, 42(21) (2024) 11916-11930.
  • [51] O. Myroslava, A. Poustforoosh, B. Inna, V. Parchenko, B. Tüzün, & B. Gutyj, Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1, 2, 4-triazol-3-yl) methyl) morpholine as a potential drug for the treatment of fungal pathologies. Computational Biology and Chemistry, 113 (2024) 108206.
  • [52] A. Rafik, B. Tuzun, H. Zouihri, A. Poustforoosh, R. Hsissou, A. Elhenaey, & T. Guedira, Morphology studies, optic proprieties, hirschfeld electrostatic potential mapping, docking molecular anti-inflammatory, and dynamic molecular approaches of hybrid phosphate. Journal of the Indian Chemical Society, 101(11) (2024) 101419.
  • [53] N. Barghady, S.A. Assou, M. Er-Rajy, K. Boujdi, A. Arzine, Y. Rhazi, ... & M. El Yazidi, Design, synthesis, characterization, and theoretical calculations, along with in silico and in vitro antimicrobial proprieties of new isoxazole-amide conjugates. Open Chemistry, 22(1) (2024) 20240109.
  • [54] A.K. Goswami, M.A. Aboul-Soud, N. Gogoi, M. El-Shazly, J.P. Giesy, B. Tüzün, ... & H.K. Sharma, Integrative in silico evaluation of the antiviral potential of terpenoids and its metal complexes derived from Homalomena aromatica based on main protease of SARS-CoV-2. Open Chemistry, 22(1) (2024) 20240085.
  • [55] Ü.M., Koçyiğit, M. Doğan, H. Muğlu, P. Taslimi, B. Tüzün, H. Yakan, ... & İ. Gülçin, Determination of biological studies and molecular docking calculations of isatin-thiosemicarbazone hybrid compounds. Journal of Molecular Structure, 1264 (2022) 133249.
  • [56] F. Türkan, P. Taslimi, B. Cabir, M.S. Ağırtaş, Y. Erden, H.U. Celebioglu, ... & I. Gulcin, Co and Zn Metal phthalocyanines with bulky substituents: anticancer, antibacterial activities and their inhibitory effects on some metabolic enzymes with molecular docking studies. Polycyclic Aromatic Compounds, 42(7) (2022) 4475-4486.
  • [57] M.R. Taysi, M. Kirici, M. Kirici, B. Tuzun, & A. Poustforoosh, Antioxidant enzyme activities, molecular docking studies, MM-GBSA, and molecular dynamic of chlorpyrifos in freshwater fish Capoeta umbla. Journal of biomolecular structure and dynamics, 42(1) (2024) 163-176.
  • [58] A.H.T. Kafa, G. Tüzün, E. Güney, R. Aslan, K. Sayın, B. Tüzün, & H. Ataseven, Synthesis, computational analyses, antibacterial and antibiofilm properties of nicotinamide derivatives. Structural Chemistry, 33(4) (2022) 1189-1197.
  • [59] H. Medetalibeyoğlu, S. Manap, M. Alkan, M. Beytur, N. Barlak, O.F. Karatas, ... & P. Taslimi, Novel Schiff Bases: Synthesis, Characterization, Bioactivity, Cytotoxicity, and Computational Evaluations. Polycyclic Aromatic Compounds, (2024) 1-19.
  • [60] M. Tapera, H. Kekeçmuhammed, B. Tüzün, S.D. Daştan, M.S. Çelik, P. Taslimi, ... & E. Sarıpınar, Novel 1, 2, 4-triazole-maleamic acid derivatives: synthesis and evaluation as anticancer agents with carbonic anhydrase inhibitory activity. Journal of Molecular Structure, 1313 (2024) 138680.
  • [61] A. Mermer, M.V. Bulbul, S.M. Kalender, I. Keskin, B. Tuzun, & O.E. Eyupoglu, Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies. Journal of Molecular Liquids, 359 (2022) 119264.
  • [62] A. Poustforoosh, & F. Moosavi, Evaluation of the FDA-approved kinase inhibitors to uncover the potential repurposing candidates targeting ABC transporters in multidrug-resistant cancer cells: an in silico approach. Journal of Biomolecular Structure and Dynamics, 42(24) (2024) 13650-13662.
There are 62 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Article
Authors

Vladimir Parchenko 0000-0002-2283-1695

Alireza Poustforoosh 0000-0001-7780-5008

Yuri Karpenko 0000-0002-4390-9949

Boris Kyrychko 0000-0003-1463-5501

Burak Tüzün 0000-0002-0420-2043

Elena Kyrychko 0000-0002-0769-0804

Tetiana Chetvertak 0000-0001-6734-1537

Bersu Kul 0009-0006-3347-0801

Project Number -
Early Pub Date May 27, 2025
Publication Date
Submission Date April 17, 2025
Acceptance Date May 20, 2025
Published in Issue Year 2025 Volume: 9 Issue: 5

Cite

APA Parchenko, V., Poustforoosh, A., Karpenko, Y., Kyrychko, B., et al. (2025). The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs. Turkish Computational and Theoretical Chemistry, 9(5), 1-25.
AMA Parchenko V, Poustforoosh A, Karpenko Y, Kyrychko B, Tüzün B, Kyrychko E, Chetvertak T, Kul B. The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs. Turkish Comp Theo Chem (TC&TC). May 2025;9(5):1-25.
Chicago Parchenko, Vladimir, Alireza Poustforoosh, Yuri Karpenko, Boris Kyrychko, Burak Tüzün, Elena Kyrychko, Tetiana Chetvertak, and Bersu Kul. “The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs”. Turkish Computational and Theoretical Chemistry 9, no. 5 (May 2025): 1-25.
EndNote Parchenko V, Poustforoosh A, Karpenko Y, Kyrychko B, Tüzün B, Kyrychko E, Chetvertak T, Kul B (May 1, 2025) The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs. Turkish Computational and Theoretical Chemistry 9 5 1–25.
IEEE V. Parchenko, A. Poustforoosh, Y. Karpenko, B. Kyrychko, B. Tüzün, E. Kyrychko, T. Chetvertak, and B. Kul, “The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs”, Turkish Comp Theo Chem (TC&TC), vol. 9, no. 5, pp. 1–25, 2025.
ISNAD Parchenko, Vladimir et al. “The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs”. Turkish Computational and Theoretical Chemistry 9/5 (May 2025), 1-25.
JAMA Parchenko V, Poustforoosh A, Karpenko Y, Kyrychko B, Tüzün B, Kyrychko E, Chetvertak T, Kul B. The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs. Turkish Comp Theo Chem (TC&TC). 2025;9:1–25.
MLA Parchenko, Vladimir et al. “The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs”. Turkish Computational and Theoretical Chemistry, vol. 9, no. 5, 2025, pp. 1-25.
Vancouver Parchenko V, Poustforoosh A, Karpenko Y, Kyrychko B, Tüzün B, Kyrychko E, Chetvertak T, Kul B. The Development and Theoretical Examination of Hplc-Ms Determination Method For A Novel Veterinary Drug Tryfuzol-Neo 1% In Meat And Animal Organs. Turkish Comp Theo Chem (TC&TC). 2025;9(5):1-25.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)