Research Article
BibTex RIS Cite

Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW

Year 2025, Volume: 14 Issue: 2, 134 - 143, 27.06.2025
https://doi.org/10.46810/tdfd.1644789

Abstract

Afet izleme görevlerinde, insansız hava araçları (İHA'lar) bir afetin etkisini değerlendirmek için geniş alanları kapsamalıdır. Bu tür görevlerin başarısı için kritik olan, Hava Verileri ve Tutum Yön Referans Sistemi (ADAHRS) verilerinin sürekli olarak iletilmesinin yanı sıra Yer Kontrol İstasyonuna (GCS) istikrarlı RSSI ve video besleme iletimi sağlanmasıdır. Bununla birlikte, çok yönlü antenler İHA'nın operasyonel menzili ile sınırlı olduğundan, geniş kapsama alanı bir zorluk teşkil etmektedir. Bu sınırlamanın üstesinden gelmek için, istikrarlı bir bağlantıyı sürdürmek için sürekli olarak İHA'ya yönlendirilmesi gereken yüksek kazançlı bir yönlü anten gereklidir. Bu çalışmada, ATmega328P mikrodenetleyici, iki servo motor ve bir GPS alıcısı kullanılarak tasarlanan ve uygulanan, iki serbestlik derecesi sağlayan bir anten izleyici sunulmaktadır. İzleyici, azimut ekseninde (yaw) 180 derecelik dönüşe ve yükseklik ekseninde (pitch) 90 derecelik dönüşe izin verir. Sistem arayüzü LabVIEW kullanılarak geliştirilmiştir. Deneysel sonuçlar, önerilen anten izleyicinin İHA'nın operasyonel menzilini önemli ölçüde genişlettiğini ve anten izleyicisi olmayan sistemlere kıyasla minimum RSSI dalgalanmaları ile istikrarlı bir bağlantı sağladığını göstermektedir. ADAHRS verilerinin sürekli kullanılabilirliği, kararlı RSSI ve video beslemesi, kritik görev operasyonlarının başarısını garanti eder.

References

  • Laghari AA, Jumani AK, Laghari RA, Nawaz H. Unmanned aerial vehicles: A review. Cognitive Robotics. 2023;3:8-22.
  • Mohsan SAH, Khan MA, Noor F, Ullah I, Alsharif MH. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones. 2022;6(6):147.
  • Xiamen Four-Faith Communication Technology. What does DBI mean? Detailed Introduction of DBI in Wireless Routers — Four-Faith;. Accessed: Dec. 22, 2024. https://www.fourfaith.com/industry-news/what-does-dbi-mean.html.
  • Bevelacqua PJ. Antenna arrays: Performance limits and geometry optimization. Arizona state university; 2008.
  • Saunders SR, Aragon-Zavala AA. Antennas and propagation for wireless communication systems. John Wiley & Sons; 2024.´
  • İşcan M, Taş AI, Vural B, Ozden AB, Yılmaz C. Antenna tracker design with a discrete lyapunov stability based controller for mini unmanned aerial vehicles. International Journal of Multidisciplinary Studies and Innovative Technologies. 2022;6(1):77-85.
  • Smith J, Doe J. Optimization of Antenna Tracker Systems for UAV Communication. IEEE Transactions on Antennas and Propagation. 2017;56(7):234556.
  • Brown M, Green L. Real-time Adaptive Antenna Tracking for UAVs in Challenging Environments. In: Proceedings of the International Conference on UAV Technology. Springer; 2019. p. 123-30.
  • Chen W, Liu Z. Design and Simulation of Antenna Tracker for UAV Applications. Aerospace Science and Technology. 2015; 45:17-28.
  • Davis A, Thomas P. Modeling and Simulation of Antenna Tracker Systems. New York: Wiley-IEEE Press; 2018.
  • GrabCAD, Inc . FPV Antenna Tracker OPEN-SOURCE CAD FILES;. Accessed: Dec. 06, 2024. https://grabcad.com/library/fpv-antenna-tracker-1.
  • Changoluisa I, Barzallo J, Pantoja J, Cayo S, Navarro-Mendez DV, Cruz PJ. A Portable UAV Tracking System for Communications and Video Transmission. In: 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC); 2019. p. 1-6.
  • Stojcsics D, Molnar A. AirGuardian–UAV hardware and software system for small size UAVs. International Journal of Advanced Robotic Systems; 2012. 9(5):174.
  • Allouch, A., Cheikhrouhou, O., Koubâa, A., Khalgui, M., & Abbes, T. (2019). MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial Systems. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 621-628). IEEE. doi:10.1109/IWCMC.2019.8766580
  • Using Pymavlink Libraries (mavgen); Accessed: Dec. 06, 2024. https://mavlink.io/en/mavgen_python/
  • Zhu L, Ma W, Xiao Z and Zhang R. Performance Analysis and Optimization for Movable Antenna Aided Wideband Communications. IEEE Transactions on Wireless Communications. 2024; 23(12): pp. 18653-18668.
  • 3D CAD Software: Shape the World We Live In; Accessed: Dec. 06, 2024. https://www.3ds.com/products/catia
  • Zhang, J., Zhou, F., Li, W. et al. Beam prediction and tracking mechanism with enhanced LSTM for mmWave aerial base station. Wireless Netw 30, 7513–7525 (2024). https://doi.org/10.1007/s11276-024-03673-w
  • Kelechi AH, Alsharif MH, Oluwole DA, Achimugu P, Ubadike O, Nebhen J, Aaron-Anthony A, Uthansakul P. The Recent Advancement in Unmanned Aerial Vehicle Tracking Antenna: A Review. Sensors (Basel). 2021 Aug 23;21(16):5662. doi: 10.3390/s21165662. PMID: 34451102; PMCID: PMC8402316.
  • Nugroho G, Dectaviansyah D. Design, manufacture and performance analysis of an automatic antenna tracker for an unmanned aerial vehicle (UAV). Journal of Mechatronics, Electrical Power, and Vehicular Technology, 2018, 9.1: 32-40.
  • Yousaf, J, Zia, H, Alhalabi, M, Yaghi, M, Basmaji, T, Shehhi, EA, Ghazal, M. Drone and controller detection and localization: Trends and challenges. Applied Sciences; 2022. 12(24), 12612.
  • Kandregula, V. R., Zaharis, Z. D., Ahmed, Q. Z., Khan, F. A., Loh, T. H., Schreiber, J., Serres, A. J. R., & Lazaridis, P. I. (2024). A Review of Unmanned Aerial Vehicle Based Antenna and Propagation Measurements. Sensors, 24(22), 7395. https://doi.org/10.3390/s24227395.
  • Jayadi A, Adhinata FD, Sembiring JP, Adhi CG, Selsily WH, Amiruddin A. Design And Implementation Of A PID Control System On A UAV Tracker Antenna. In 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA) 2023 Nov 14 (pp. 769-773).
  • Codău, C., Buta, R.-C., Păstrăv, A., Dolea, P., Palade, T., & Puschita, E. (2024). Experimental Evaluation of an SDR-Based UAV Localization System. Sensors, 24(9), 2789. https://doi.org/10.3390/s24092789

Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW

Year 2025, Volume: 14 Issue: 2, 134 - 143, 27.06.2025
https://doi.org/10.46810/tdfd.1644789

Abstract

In disaster monitoring missions, unmanned aerial vehicles (UAVs) must cover large areas to assess the impact of a disaster. Critical to the success of such missions is the continuous transmission of Air Data and Attitude Heading Reference System (ADAHRS) data, along with stable RSSI and video feed transmission to the Ground Control Station (GCS). However, the vast coverage area poses a challenge, as omnidirectional antennas are limited by the UAV’s operational range. To overcome this limitation, a high-gain directional antenna is required, which needs to be constantly aimed at the UAV to maintain a stable connection. This study presents an antenna tracker, designed and implemented using an ATmega328P microcontroller, two servo motors, and a GPS receiver, providing two degrees of freedom. The tracker allows 180-degree rotation on the azimuth axis (yaw) and 90-degree rotation on the elevation axis (pitch). The system interface was developed using LabVIEW. Experimental results demonstrate that the proposed antenna tracker significantly extends the UAV’s operational range while maintaining a stable connection with minimal RSSI fluctuations compared to systems without an antenna tracker. The continuous availability of ADAHRS data, stable RSSI, and video feed ensures the success of critical mission operations.

Ethical Statement

There is no need for an Ethics Committee Certificate for our study.

Supporting Institution

Institute of Graduate Education at Sakarya University of Applied Sciences

Thanks

The authors are grateful to the faculty and educators at the Institute of Graduate Education at Sakarya University of Applied Sciences for their invaluable support and guidance throughout this research. Their expertise and encouragement have been instrumental in the successful completion of this project.

References

  • Laghari AA, Jumani AK, Laghari RA, Nawaz H. Unmanned aerial vehicles: A review. Cognitive Robotics. 2023;3:8-22.
  • Mohsan SAH, Khan MA, Noor F, Ullah I, Alsharif MH. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones. 2022;6(6):147.
  • Xiamen Four-Faith Communication Technology. What does DBI mean? Detailed Introduction of DBI in Wireless Routers — Four-Faith;. Accessed: Dec. 22, 2024. https://www.fourfaith.com/industry-news/what-does-dbi-mean.html.
  • Bevelacqua PJ. Antenna arrays: Performance limits and geometry optimization. Arizona state university; 2008.
  • Saunders SR, Aragon-Zavala AA. Antennas and propagation for wireless communication systems. John Wiley & Sons; 2024.´
  • İşcan M, Taş AI, Vural B, Ozden AB, Yılmaz C. Antenna tracker design with a discrete lyapunov stability based controller for mini unmanned aerial vehicles. International Journal of Multidisciplinary Studies and Innovative Technologies. 2022;6(1):77-85.
  • Smith J, Doe J. Optimization of Antenna Tracker Systems for UAV Communication. IEEE Transactions on Antennas and Propagation. 2017;56(7):234556.
  • Brown M, Green L. Real-time Adaptive Antenna Tracking for UAVs in Challenging Environments. In: Proceedings of the International Conference on UAV Technology. Springer; 2019. p. 123-30.
  • Chen W, Liu Z. Design and Simulation of Antenna Tracker for UAV Applications. Aerospace Science and Technology. 2015; 45:17-28.
  • Davis A, Thomas P. Modeling and Simulation of Antenna Tracker Systems. New York: Wiley-IEEE Press; 2018.
  • GrabCAD, Inc . FPV Antenna Tracker OPEN-SOURCE CAD FILES;. Accessed: Dec. 06, 2024. https://grabcad.com/library/fpv-antenna-tracker-1.
  • Changoluisa I, Barzallo J, Pantoja J, Cayo S, Navarro-Mendez DV, Cruz PJ. A Portable UAV Tracking System for Communications and Video Transmission. In: 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC); 2019. p. 1-6.
  • Stojcsics D, Molnar A. AirGuardian–UAV hardware and software system for small size UAVs. International Journal of Advanced Robotic Systems; 2012. 9(5):174.
  • Allouch, A., Cheikhrouhou, O., Koubâa, A., Khalgui, M., & Abbes, T. (2019). MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial Systems. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 621-628). IEEE. doi:10.1109/IWCMC.2019.8766580
  • Using Pymavlink Libraries (mavgen); Accessed: Dec. 06, 2024. https://mavlink.io/en/mavgen_python/
  • Zhu L, Ma W, Xiao Z and Zhang R. Performance Analysis and Optimization for Movable Antenna Aided Wideband Communications. IEEE Transactions on Wireless Communications. 2024; 23(12): pp. 18653-18668.
  • 3D CAD Software: Shape the World We Live In; Accessed: Dec. 06, 2024. https://www.3ds.com/products/catia
  • Zhang, J., Zhou, F., Li, W. et al. Beam prediction and tracking mechanism with enhanced LSTM for mmWave aerial base station. Wireless Netw 30, 7513–7525 (2024). https://doi.org/10.1007/s11276-024-03673-w
  • Kelechi AH, Alsharif MH, Oluwole DA, Achimugu P, Ubadike O, Nebhen J, Aaron-Anthony A, Uthansakul P. The Recent Advancement in Unmanned Aerial Vehicle Tracking Antenna: A Review. Sensors (Basel). 2021 Aug 23;21(16):5662. doi: 10.3390/s21165662. PMID: 34451102; PMCID: PMC8402316.
  • Nugroho G, Dectaviansyah D. Design, manufacture and performance analysis of an automatic antenna tracker for an unmanned aerial vehicle (UAV). Journal of Mechatronics, Electrical Power, and Vehicular Technology, 2018, 9.1: 32-40.
  • Yousaf, J, Zia, H, Alhalabi, M, Yaghi, M, Basmaji, T, Shehhi, EA, Ghazal, M. Drone and controller detection and localization: Trends and challenges. Applied Sciences; 2022. 12(24), 12612.
  • Kandregula, V. R., Zaharis, Z. D., Ahmed, Q. Z., Khan, F. A., Loh, T. H., Schreiber, J., Serres, A. J. R., & Lazaridis, P. I. (2024). A Review of Unmanned Aerial Vehicle Based Antenna and Propagation Measurements. Sensors, 24(22), 7395. https://doi.org/10.3390/s24227395.
  • Jayadi A, Adhinata FD, Sembiring JP, Adhi CG, Selsily WH, Amiruddin A. Design And Implementation Of A PID Control System On A UAV Tracker Antenna. In 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA) 2023 Nov 14 (pp. 769-773).
  • Codău, C., Buta, R.-C., Păstrăv, A., Dolea, P., Palade, T., & Puschita, E. (2024). Experimental Evaluation of an SDR-Based UAV Localization System. Sensors, 24(9), 2789. https://doi.org/10.3390/s24092789
There are 24 citations in total.

Details

Primary Language English
Subjects Electronic Device and System Performance Evaluation, Testing and Simulation, Embedded Systems, Electronics, Sensors and Digital Hardware (Other)
Journal Section Articles
Authors

Hüsamettin Osmanoğlu 0000-0002-1027-2945

Mohamad Rachidi 0009-0005-3994-6447

Gökhan Atalı 0000-0003-1215-9249

Onur Demirel 0000-0002-4221-3739

Publication Date June 27, 2025
Submission Date February 23, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Osmanoğlu, H., Rachidi, M., Atalı, G., Demirel, O. (2025). Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW. Türk Doğa Ve Fen Dergisi, 14(2), 134-143. https://doi.org/10.46810/tdfd.1644789
AMA Osmanoğlu H, Rachidi M, Atalı G, Demirel O. Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW. TJNS. June 2025;14(2):134-143. doi:10.46810/tdfd.1644789
Chicago Osmanoğlu, Hüsamettin, Mohamad Rachidi, Gökhan Atalı, and Onur Demirel. “Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW”. Türk Doğa Ve Fen Dergisi 14, no. 2 (June 2025): 134-43. https://doi.org/10.46810/tdfd.1644789.
EndNote Osmanoğlu H, Rachidi M, Atalı G, Demirel O (June 1, 2025) Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW. Türk Doğa ve Fen Dergisi 14 2 134–143.
IEEE H. Osmanoğlu, M. Rachidi, G. Atalı, and O. Demirel, “Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW”, TJNS, vol. 14, no. 2, pp. 134–143, 2025, doi: 10.46810/tdfd.1644789.
ISNAD Osmanoğlu, Hüsamettin et al. “Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW”. Türk Doğa ve Fen Dergisi 14/2 (June 2025), 134-143. https://doi.org/10.46810/tdfd.1644789.
JAMA Osmanoğlu H, Rachidi M, Atalı G, Demirel O. Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW. TJNS. 2025;14:134–143.
MLA Osmanoğlu, Hüsamettin et al. “Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 2, 2025, pp. 134-43, doi:10.46810/tdfd.1644789.
Vancouver Osmanoğlu H, Rachidi M, Atalı G, Demirel O. Design and Implementation of a GPS-Based UAV Tracking Antenna System Using LabVIEW. TJNS. 2025;14(2):134-43.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.