Research Article
BibTex RIS Cite

INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS

Year 2025, Volume: 32 Issue: 138, 116 - 127, 30.06.2025
https://doi.org/10.7216/teksmuh.1578575

Abstract

Hybrid textile composites reinforced with carbon, glass, and basalt fibers have gained significant attention due to their superior mechanical properties and lightweight nature. This study investigates the tensile and flexural behavior of hybrid composites produced using different fiber combinations. Basalt yarn (17 μm, 1200 tex) was used as the warp yarn in all samples, while 3K carbon, 12K carbon, E-glass (300 tex), and basalt (1200 tex, 17 μm) were used as weft yarns. The fabrics were woven in a plain weave structure and reinforced with an epoxy matrix using the hand lay-up method. Tensile and three-point flexural tests were conducted to evaluate the mechanical performance of the composites. The results showed that the glass/basalt hybrid composite exhibited the highest tensile strength in the warp direction, reaching 550 MPa, and the highest flexural strength at 740,4 MPa. In the weft direction, the 12K carbon/basalt hybrid composite achieved the highest tensile strength of 252 MPa, whereas the basalt/basalt composite had the highest flexural strength of 144 MPa. These findings indicate that fiber hybridization significantly affects the mechanical properties of composite materials, making them suitable for various engineering applications.

Project Number

2020FEBE047

Thanks

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Pamukkale University Scientific Research Projects [grant number 2020FEBE047].

References

  • Hoa, S. V., (2009), Principles of the manufacturing of composite materials, DEStech Publications, Inc.
  • Sapuan, S. M., Aulia, H. S., Ilyas, R. A., Atiqah, A., Dele-Afolabi, T. T., Nurazzi, M. N., ..., Atikah, M. S. N., (2020), Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites, Polymers, 12(10), 2211.
  • Krauklis, A. E., Karl, C. W., Gagani, A. I., Jørgensen, J. K., (2021), Composite material recycling technology—state-of-the-art and sustainable development for the 2020s, Journal of Composites Science, 5(1), 28.
  • Chawla, K. K., (2012), Composite materials: science and engineering, Springer Science & Business Media.
  • Obande, W., Brádaigh, C. M. Ó., Ray, D., (2021), Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion–A review, Composites Part B: Engineering, 215, 108771.
  • Das, T. K., Ghosh, P., Das, N. C., (2019), Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review, Advanced Composites and Hybrid Materials, 2, 214-233.
  • Sandhya, B. R., Ramesh, A., Prasad B D., Mohanna, C., (2015), A Review On Carbon Fibers, International Journal of Advanced Engineering and Global Technology, 3(4), 476-484.
  • Rajak, D. K., Wagh, P. H., Linul, E., (2021), Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review, Polymers, 13(21), 3721.
  • Kufel, A., Para, S., Kuciel, S., (2021), Basalt/glass fiber polypropylene hybrid composites: Mechanical properties at different temperatures and under cyclic loading and micromechanical modelling, Materials, 14(19), 5574.
  • Balaji, K. V., Shirvanimoghaddam, K., Rajan, G. S., Ellis, A. V., Naebe, M., (2020), Surface treatment of Basalt fiber for use in automotive composites, Materials Today Chemistry, 17, 100334.
  • Cousin, P., Hassan, M., Vijay, P. V., Robert, M., Benmokrane, B., (2019)., Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars, Journal of Composite materials, 53(26-27), 3651-3670.
  • Asadi, A., Baaij, F., Mainka, H., Rademacher, M., Thompson, J., Kalaitzidou, K., (2017), Basalt fibers as a sustainable and cost-effective alternative to glass fibers in sheet molding compound (SMC), Composites Part B: Engineering, 123, 210-218.
  • Swolfs, Y., Gorbatikh, L., Verpoest, I., (2014), Fibre hybridisation in polymer composites: A review, Composites Part A: Applied Science and Manufacturing, 67, 181-200.
  • Guo, R., Xian, G., Li, C., Huang, X., Xin, M., (2022), Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod, Mechanics of Advanced Materials and Structures, 29(27), 6288-6300.
  • Abd El-Baky, M. A., Attia, M. A., Abdelhaleem, M. M., Hassan, M. A., (2022), Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties, Journal of Natural Fibers, 19(3), 954-968.
  • Chen, D., Sun, G., Meng, M., Jin, X., Li, Q., (2019), Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates, Thin-Walled Structures, 142, 516-531.
  • Jamshaid, H., Mishra, R., (2016), A green material from rock: basalt fiber–a review, The Journal of The Textile Institute, 107(7), 923-937.
  • Poyyathappan, K., Ganesan, G., Baskar, P., & Elayaperumal, A. (2014). Tensile and flexural studies on glass-carbon hybrid composites subjected to low frequency cyclic loading. International Journal of Engineering and Technology, 6(1), 82–88.
  • Dong, C. (2024). Flexural properties and optimisation of hybrid composites reinforced by carbon, glass and flax fibres. Hybrid Advances, 7, 100302.
  • Kadiyala, A. K., Bhudolia, S. K., & Joshi, S. C. (2022). Evaluation of the flexural properties and failure evolution of a hybrid composite manufactured by automated dry fibre placement followed by liquid resin infusion. Composites Part A: Applied Science and Manufacturing, 154, 106764.
  • Altaee, M. A., & Mostafa, N. H. (2023). Mechanical properties of interply and intraply hybrid laminates based on jute-glass/epoxy composites. Journal of Engineering and Applied Science, 70, 121.

KARBON, CAM, BAZALT HİBRİT DOKUMA KUMAŞLARIN PERFORMANS ÖZELLİKLERİNİN İNCELENMESİ

Year 2025, Volume: 32 Issue: 138, 116 - 127, 30.06.2025
https://doi.org/10.7216/teksmuh.1578575

Abstract

Hibrit tekstil kompozitleri, üstün mekanik özellikleri ve hafif yapıları nedeniyle giderek daha fazla ilgi görmektedir. Bu çalışmada, farklı lif kombinasyonları kullanılarak üretilen hibrit kompozitlerin çekme ve eğilme davranışları incelenmiştir. Tüm numunelerde çözgü ipliği olarak bazalt ipliği (17 μm, 1200 tex) kullanılmış, atkı ipliği olarak ise 3K karbon, 12K karbon, E-cam (300 tex) ve bazalt (1200 tex, 17 μm) iplikleri tercih edilmiştir. Kumaşlar bezayağı örgü yapısında dokunmuş ve el yatırma yöntemiyle epoksi matris ile güçlendirilmiştir. Kompozitlerin mekanik performansını değerlendirmek için çekme ve üç nokta eğilme testleri uygulanmıştır. Elde edilen sonuçlara göre, çözgü yönünde en yüksek çekme dayanımı 550 MPa ve en yüksek eğilme dayanımı 740,4 MPa ile cam/bazalt hibrit kompozitinde gözlemlenmiştir. Atkı yönünde yapılan testlerde ise 12K karbon/bazalt hibrit kompoziti en yüksek çekme dayanımına (252 MPa) sahip olurken, bazalt/bazalt kompoziti en yüksek eğilme dayanımını (144 MPa) göstermiştir. Bu bulgular, lif hibritizasyonunun kompozit malzemelerin mekanik özelliklerini önemli ölçüde etkilediğini ve çeşitli mühendislik uygulamaları için uygun hale getirdiğini göstermektedir.

Ethical Statement

Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.

Project Number

2020FEBE047

References

  • Hoa, S. V., (2009), Principles of the manufacturing of composite materials, DEStech Publications, Inc.
  • Sapuan, S. M., Aulia, H. S., Ilyas, R. A., Atiqah, A., Dele-Afolabi, T. T., Nurazzi, M. N., ..., Atikah, M. S. N., (2020), Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites, Polymers, 12(10), 2211.
  • Krauklis, A. E., Karl, C. W., Gagani, A. I., Jørgensen, J. K., (2021), Composite material recycling technology—state-of-the-art and sustainable development for the 2020s, Journal of Composites Science, 5(1), 28.
  • Chawla, K. K., (2012), Composite materials: science and engineering, Springer Science & Business Media.
  • Obande, W., Brádaigh, C. M. Ó., Ray, D., (2021), Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion–A review, Composites Part B: Engineering, 215, 108771.
  • Das, T. K., Ghosh, P., Das, N. C., (2019), Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review, Advanced Composites and Hybrid Materials, 2, 214-233.
  • Sandhya, B. R., Ramesh, A., Prasad B D., Mohanna, C., (2015), A Review On Carbon Fibers, International Journal of Advanced Engineering and Global Technology, 3(4), 476-484.
  • Rajak, D. K., Wagh, P. H., Linul, E., (2021), Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review, Polymers, 13(21), 3721.
  • Kufel, A., Para, S., Kuciel, S., (2021), Basalt/glass fiber polypropylene hybrid composites: Mechanical properties at different temperatures and under cyclic loading and micromechanical modelling, Materials, 14(19), 5574.
  • Balaji, K. V., Shirvanimoghaddam, K., Rajan, G. S., Ellis, A. V., Naebe, M., (2020), Surface treatment of Basalt fiber for use in automotive composites, Materials Today Chemistry, 17, 100334.
  • Cousin, P., Hassan, M., Vijay, P. V., Robert, M., Benmokrane, B., (2019)., Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars, Journal of Composite materials, 53(26-27), 3651-3670.
  • Asadi, A., Baaij, F., Mainka, H., Rademacher, M., Thompson, J., Kalaitzidou, K., (2017), Basalt fibers as a sustainable and cost-effective alternative to glass fibers in sheet molding compound (SMC), Composites Part B: Engineering, 123, 210-218.
  • Swolfs, Y., Gorbatikh, L., Verpoest, I., (2014), Fibre hybridisation in polymer composites: A review, Composites Part A: Applied Science and Manufacturing, 67, 181-200.
  • Guo, R., Xian, G., Li, C., Huang, X., Xin, M., (2022), Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod, Mechanics of Advanced Materials and Structures, 29(27), 6288-6300.
  • Abd El-Baky, M. A., Attia, M. A., Abdelhaleem, M. M., Hassan, M. A., (2022), Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties, Journal of Natural Fibers, 19(3), 954-968.
  • Chen, D., Sun, G., Meng, M., Jin, X., Li, Q., (2019), Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates, Thin-Walled Structures, 142, 516-531.
  • Jamshaid, H., Mishra, R., (2016), A green material from rock: basalt fiber–a review, The Journal of The Textile Institute, 107(7), 923-937.
  • Poyyathappan, K., Ganesan, G., Baskar, P., & Elayaperumal, A. (2014). Tensile and flexural studies on glass-carbon hybrid composites subjected to low frequency cyclic loading. International Journal of Engineering and Technology, 6(1), 82–88.
  • Dong, C. (2024). Flexural properties and optimisation of hybrid composites reinforced by carbon, glass and flax fibres. Hybrid Advances, 7, 100302.
  • Kadiyala, A. K., Bhudolia, S. K., & Joshi, S. C. (2022). Evaluation of the flexural properties and failure evolution of a hybrid composite manufactured by automated dry fibre placement followed by liquid resin infusion. Composites Part A: Applied Science and Manufacturing, 154, 106764.
  • Altaee, M. A., & Mostafa, N. H. (2023). Mechanical properties of interply and intraply hybrid laminates based on jute-glass/epoxy composites. Journal of Engineering and Applied Science, 70, 121.
There are 21 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Textile Science, Textile Technology
Journal Section Articles
Authors

Aslıhan Tugan 0000-0003-1402-0638

Güngör Durur 0000-0001-9105-1986

Barış Hasçelik

Project Number 2020FEBE047
Publication Date June 30, 2025
Submission Date November 3, 2024
Acceptance Date May 9, 2025
Published in Issue Year 2025 Volume: 32 Issue: 138

Cite

APA Tugan, A., Durur, G., & Hasçelik, B. (2025). INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS. Tekstil Ve Mühendis, 32(138), 116-127. https://doi.org/10.7216/teksmuh.1578575
AMA Tugan A, Durur G, Hasçelik B. INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS. Tekstil ve Mühendis. June 2025;32(138):116-127. doi:10.7216/teksmuh.1578575
Chicago Tugan, Aslıhan, Güngör Durur, and Barış Hasçelik. “INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS”. Tekstil Ve Mühendis 32, no. 138 (June 2025): 116-27. https://doi.org/10.7216/teksmuh.1578575.
EndNote Tugan A, Durur G, Hasçelik B (June 1, 2025) INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS. Tekstil ve Mühendis 32 138 116–127.
IEEE A. Tugan, G. Durur, and B. Hasçelik, “INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS”, Tekstil ve Mühendis, vol. 32, no. 138, pp. 116–127, 2025, doi: 10.7216/teksmuh.1578575.
ISNAD Tugan, Aslıhan et al. “INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS”. Tekstil ve Mühendis 32/138 (June 2025), 116-127. https://doi.org/10.7216/teksmuh.1578575.
JAMA Tugan A, Durur G, Hasçelik B. INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS. Tekstil ve Mühendis. 2025;32:116–127.
MLA Tugan, Aslıhan et al. “INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS”. Tekstil Ve Mühendis, vol. 32, no. 138, 2025, pp. 116-27, doi:10.7216/teksmuh.1578575.
Vancouver Tugan A, Durur G, Hasçelik B. INVESTIGATION OF PERFORMANCE CHARACTERISTICS OF CARBON, GLASS, BASALT HYBRID WOVEN FABRICS. Tekstil ve Mühendis. 2025;32(138):116-27.